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"I did not, however, commit suicide;
for | wished to know more of Mathematics.”



This paper will explore a "smoothing process” on a real-valued
function on Rl. We start with a function gp at time 0, and set

gt+1(X) equal to the value of a local average of g, near x. Thus we
obtain a sequence of functions {g,} which is determined by g as well

as how large a neighborhood we take in the local average. We will
come up with conditions for when {g;} converges and compute the

limit. We will also look at several properties of functions that are
preserved under the smoothing process.
Let a bounded interval [-r,r] and a measurable function gy(x) : R

—RuU{} be given. We are also given a "weighting function” f(s): [-r,r]
—R. Define Ilfll=J‘_rr if(s)ids . Now let
r

=1
St+1(x) = £l Jgt(x*'s)f(s)ds

-r

In effect the value of gi,4(x) is a weighted average of g, on an

r-neighborood of x. We are interested in the properties of the
sequence of functions {g;}. From now on we will concentrate on the

special case f(s)=1 (so lifll=1/2r). This is the familiar way of
computing the average value of a function over an interval by
integrating the function over the interval and dividing by the length
of the interval. We will discuss the general case afterwards.

We must first address the question of whether {gy} converges.

This is true in some but not all of the cases, as we can see from

Example 1 : gp(x)=k for some keR. Then gi(x)=k Vt and lim g, =k.
Example 2 : go(x)=x2. Then gt(x)=x2+tr2/3 and lim g, = ce.

There are conditions we can put on gg In order to show that gt

converges. DBefore starting we should note that the smoothing
process can be viewed as an iteration of a convolution : define
(p=(1/2r))(|xl<r and let @, =@x@x. . %@ (n convolutions). Then we see



that gi=gp*@;. We may now begin with a useful tool :
Lemma : For any r>0, lpl, =0 as n —ee.

proof : We compute @ directly and find that @(0)=1 and
[@(y)] < 1 for y=0. Now ('f)n=[(?>]n (by definition of

¢,) and so for y=0, [§ (y)I2 =0 with I§,(VI? <

l@(y)l2 Yy. Since tpefi2 we know from the

Plancherel Theorem that 66132 and so I(f)(y)lz erl
Thus we have dominated convergence and

fl(ﬁn(y)lz —0 (ie. 1§ ly —0). By the Plancherel
Theorem I, = I(‘f)nl2 , and so lp iy =0 4

We now give sufficient conditions for when gt converges and

when the limit is 0

Theorem 1 : If gge LP(R) for any p with 1sp<e then {g,}

converges uniformly to 0.

proof : We divide the proof into 4 cases :

p=2: 'gnlsup=. IgO*‘pn'sup < Iggly 19y by the Schwartz
inequality and the translation invariance of I l,.

So by the lemma 'gn'sup =0 as nm—roo.

p=1: lgo*Pnlsyp = 180* 9*Pn-1ksyp
< Igg*9ly o415
< lggly l9la 19,41
So by the lemma lgO*‘Pnlsup —0 as n—oo.

1¢p<2 : Let E={x: [gg(x)Iz1}). We write gp= EdXE + o XEC -



2(’p< co

Now gnXE el and g9 XEC ¢Z2 and so

iB0*nlsup < BOXE *Pplsup * 1BOXES *¥nlsyp
— 0 as n —ee.

: We first need to show that lgl4=1 V(n21) :

(i) This is clearly true for n=1.
(i) Assume lp I =1.

(1i1) kpn_,,lll = JR (pn*(p

= Jr IR ¢n(x-y) ¢o(y) dy dx
r\

= 4 R 1/2“"_11 (pn(x-}’) dy dx

by the Fubini Theorem
sz'_ii 1dy by (i)
=1

Thus 19 14 =1 V(n21) by induction. Now let p'

~satisfy 1/p' + 1/p =1 so that 1¢p'<2 . We now show

that, since lgl4=1 and l¢ I, =0, we have kpnlp'
—-0:

Let E ={x : g (x) 2 1/k} and Fj be the
complement of E . Since I¢_ly=1 and ¢ 20 we

have m(IEI;:1 )2k, for otherwise we would have lp Iy

>1. Thus we have

of < ) P32 1] 1772 by Holder

n

E &K E



-1 J*Pn J l-'-“-U-"k 44

E}

X

< (i Jp)P /4 (17P'/2

From the definition of Fl? wé have

|
1
Sp'-ij(‘on
o
L
kP

o [of = Jok el
R B R

ltpnlf /4 1-p/2+ l‘[J.-p'

So I(pnlp- —0 as n —¢. Thus the Hblder ihequality

gives igo'* ‘pnlsup < lgolp lo, b
—0 as n —eo,

QED.

Notice that the above proof works for any r>0. So we see that
im g; =0 regardless of how large or small a neighborhood we

average over. When g0 eL=(R) we mayI not have convergence at

ail. We woay inguire . about those ‘functions that are in
LP(I) for every bounded interval I, i.e. those functions in Ebc(lR)

This question cannot be answered unless more information is given,



average over. Example 1 shows us that when gy ¢L*(R) we may

not have convergence to 0. It is true when gy €¢L%(R), however,

that we do have convergence to a constant :

Theorem 2 : If g, €L ®(R) then there is a keR such that

lim g =k.
proof :

step 1 : Let r>0 be given. Then 3(ge L°°(R)) such that
gn "¢
proof : Let £>0 be given. Let c=1/2r. So g, (x)lxc

V¥x,n. Now

|8n - Sm' = |80*<Pn - So"(Pml
- Igg [9,-0] |
< Iggles 100y
by the Hilder Inequality

< Iggloo 1 (9= )@ +0 ) /c iy
since lg(x)lzc Vx,n

= (1/c)ggle, Icprf - cp]ﬁ1 I

< (1/c)gpl [I(pﬁ I+ I(pilll
by the Minkowski inequality

= (1/c)iggl., [l(pf Iy + |;pi|2]

Now by the lemma there is an N such that for

m,nzN we have [l(pi I + |(Pr2n|2] < ce/iggle,- So



lgn8ml ¢ € for m;n=N . Thus {g } is cauchy,

and since L¥(R) is complete, 3(ge L) such
that g, —g.

step 2 :  We now show that g is constant. Suppose g (x)
—g(x) and that g (y) —g(y). Let £>0 be given.
We may then pick an N4 such that
lgn(x)-g(x)ike/3 and lg, (y)-g(y)le/3 for nzNy.
Also lg, (x)-g(y)l = lgg*le,(x)-¢ ()

< gl ool (X)-0, ()l

< &/3 for nzN, by the same

type argument as in the first part of the proof.
Now let N=max(N4,N5). Thus

lg(x)-g(y)l = lg(x)-g, (x)l+lg,, (x)-g, (¥)I+lg (¥)-g¥)I

<e/3 +¢e/3 +¢e/3 =¢ for n2N

Since € was arbitrary we see that lg(x)-g(y)i=0,

and so g is constant.
QED.

Note : It is clear that if g5€Z™(R) and g —keR then gk

regardless of how we choose r>0 (i.e. how large a
neighborhood we integrate over).

We have just adressed the question of convergehce for functions
in LP(R) for 1gps<e, but what about those functions that are in

) . ) . P
IP(I) for every bounded interval I, ie. those functions in Lbc(R) ?
This question cannot be answered unless more information is given,



1
as we can see by example 2 (where a function in Lbe(R) diverges)
and the following example :

Example 3 : gp(x)=sinx . Then gt(x)=(sinr/r)tsinx and lim g;=0.

The author has not found general conditions under which

functions not in £P(R) converge, though such functions clearly exist.
We now look at properties of functions that are preserved under
the averaging process, and come up with a class of functions not

necessarily in LP(R) but that do converge.
We first note a few properties of g, that are immediate

consequences of the definitions. For t21 gt(x) is a uniformly

continuous function since this is a property of convolutions. Also if
go(x) is monotone increasing (decreasing) then gi(x) is monotone

increasing (decreasing) since if axb then g;,4(a)=(1/2r)[g,(a+s)ds 2

(1/2r) [g,(bts)ds =g1+1(b). Also if gy(x) is bounded below and above

by m and M respectively, then g,(x) has the same bounds V(t>0).
We say that g; smooths evenly if g,(x)=C(t)gg(x) Vx,t where

C(t) : Z'~R. The functions that smooth evenly are those functions
that look like expanded or contracted versions of themselves when
undergoing the local averaging process. An example of a function
that smooths evenly and converges was given in example 3. Here is
a function that smooths evenly but does not converge :

Example 4 : gg(x)=e* . Then gt(x)=(s.inhr/r)t e* and lim gi(x)=00 Vx.
It turns out that in order to determine whether a function

smooths evenly it is sufficient to see that it does after one step, ie.
g1 (x)=Cg(x). This follows from the following theorem :

Theorem 3 : Suppose g;(x)=C(tlgg(x) + D(t). Then C=lct
and D(t)=(IC(DI*" 1+ 4C(D1)D().



proof : (i) The statement is trivially true for t=1.
(i) Assume g;(x)=C(t)gy(x)+D(t) where C(t) and

D(t) are as above.
(i) Now gy,q(x)=(1/2r) [g,(x+s)ds

=(1/2r) [ [C(t)gg(x+s)+D(t)]ds

= (1/2r) [IC(t)gg(x+s)ds +D(t)

=C(t)gy (x) + D(t)

=[C(INC(1)gg(x)+D(1)) + D(t)
=[C(IHgy(x) + (C(IE+. . +C(1)+1)D()

Thus the theorem is true by induction.

Corallary 3.1 : g5(x) smooths evenly if and only if for some k¢R,
gt(x)=ktgo(x).

Corallary 3.2 : Suppose gg smooths evenly with smoothing
constant k and that [gg(x)iKes for all x. Then k=1
and gq(x)=0 imply {g,(x)} is a strictly monotone

sequence. Also:

lim g(x)=0 | if k<1
lim g, (x)=gq(x) if k=1
lim g(x)=0 when g3(x)=0

teo when gg(x)=0 if k>1.

So we have extended the class of functions that converge to
include those functions that smooth evenly with smoothing constant
<1. The question of which functions smooth evenly is the same as
which functions g satisfy Cg=g*@ for some CeR. Appealing to a
theorem about mean periodic functions (see Meyer, Algebraic
Numbers and Harmonic Analysis, Thm.9.7) we find that the only

candidates for functions that smooth evenly are functions of the



form (at+b)eM with a,beR and AeC, finite sums of these functions,
and limits of the sequences of these (convergent) partial sums.
Examples 1,3, and 4 are of this form. The only other thing we can
say is that no function heZ1(R) smooths evenly (except for the
trivial case when h=0 a.e); for then there is a CeR with Ch=hx¢ =
Ch=h( = C=(sinrx/rx) for all x, which is a contradiction since r>0.

Our previous discussions have all concerned the special case
f(s)=1, the simplest case of weighted averaging. If, in general, we
take f to be bounded, then what we have proved should also hold.
For general f the situation must be handled more delicately, and we
wisely save this case for a later time.

We end our discussion with a few questions :

(1) We saw that for most functions gy that smooth evenly, {g(x)}

forms a monotone sequence at each x. However there are
other functions that also have this property, such as go(x)=x3.

Here gt(x)=x3+'cr2

X. Can we classify, perhaps with a certain
condition, those functions gg with {g(x)} forming a monotone

sequence at each point?
(2) Does every continuous function h(x) come from a “smoothing
process” that started with some arbitrary function?

(3) We call x a fixed point if gy(x)=gy(x) for all t20. Given a

function is there any way to determine it's fixed points under
our process? Are there any functions besides those of the form
ax+b (a,beR) with every point fixed?

(4) What properties of a function are preserved under the averaging
process?

(5) Are there functions with lim g+=g with g something other than

0, eo, or ax+b?



