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Maximal Polygons for Equitransitive Periodic Tilings
Abstract --- It has been shown (Danzer, Griinbaum, and Shepherd: 1987) that in any
periodic equitransitive tiling by convex polygonal tiles, the maximum number of sides of
any tile is 66. This maximum is achieved in the periodic symmetry group p6m. We
extend this result by determining the maximum number of sides in each of the remaining 16
periodic symmetry groups.

1. Introduction

A convex tiling is a set of closed convex polygonal regions, known as tiles, which
cover the plane without gap or overlap. If the vertices of adjacent tiles meet, the tiling is
edge-to-edge. A tling is periodic if its group of symmetries is one of the seventeen
periodic groups, often known as wallpaper groups. (See [3] for a full derivation of the
seventeen periodic groups.) A periodic tiling is characterized by the fact that it has two
translative symmetries in nonparallel directions. Suppose we represent these translations
by the vectors x and y. The period parallelogram of a periodic tiling is the
parallelogram with sides x and y having the minimal positive area. This parallelogram has
the property that by replicating the region inside the parallelogram along the translation
vectors, the entire tiling may be reconstructed.

A tiling is equitransitive, if for each k, all polygons having k sides are in the same
transitivity class. i.e., all polygons having the same number of sides can be mapped to
each other by a symmetry of the tiling.

In this paper we will study periodic equitransitive tilings with convex polygons. In any
such tiling, the maximum number of sides on any tile is 66. (See [1].) This maximum is
achieved in the periodic symmetry group pém. We will consider bounds for the other
sixteen periodic groups. To do this, we will prove the following theorem.

Theorem:: In any equitransitive tiling with one of the seventeen periodic symmetry groups,
the maximum number of sides on any tile is given in Table 1.
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Table I Maximal polygons
symmetry maximal
group Pk max polygon

I cmm 4 30
pé 6 42
p3lm 6 42
p3 3 24
pEg 2 18
p2 2 18
pm 2 18
cm 2 18
pl 1 12

)i pmg 4 18
Pg 2 12

oI p4 4 28
pég 4 28

IV  pdm 4 24
pmm 6 36
p3ml 8 48
pém 12 66

Here py max is the maximum number of centroids possible in the period parallelogram, as
explained below.
The proof of this theorem proceeds in stages. In section 2, we pose a lemma which

gives an initial upper bound for the maximal polygon. We will call this initial upper bound
myg, where g is the symmetry group under consideration. For the groups labeled I, above,

construction proves that mg equals the number of sides on the maximal polygon. For the
remaining cases, we must revise our initial estimates. This is done in sections 3 through 5.

2. The Initial Upper Bound 7
To get the initial bound on the maximal polygon for a particular symmetry group, we
use the following lemma which is stated without proof. A proof can be found in [1].

Lemma: In any periodic tiling, if the period parallelogram contains the centroids of py k-

gons, where k is an integer, then



m
3p3+2py+ps2 Z(R - 6) P
k=7

From the lemma it is possible to get an estimate for myg, the maximum number of sides
on a polygon in a particular symmetry group. As exemplified below, mg depends entirely
upon the maximum value of px. Because we require our figures to be equitransitive, the
maximum value of px will equal the maximum number of k-gon centroids in the period
parallelogram. The maximum number of centroids depends on the symmetries present in
the tiling group, as illustrated by the dots in right half of Figures 1 through 16 [2]. A key
to these group diagrams is given in Table 2. Substituting this maximum value of p into
lemma inequality yields an estimate for mg, the maximal polygon.

As an example, we work through this process for the symmetry group cmm. An
examination of Figure 1, the group diagram for cmm, shows that the maximum number of
centroid images is achieved when a centroid is placed in "general position,” off all lines of
symmetry. In cmm, this maximum is four, which implies that there are at most four k-
gons (for each k) in the period parallelogram. With py at most four, the lemma yields the
following result.

24 = (34) + (2:4) + (1-9),
2 3p3 + 2p4 +ps,
2p7+2pg+ ..+ (Memm-6)Pmerm:
So, to maintain the inequality, mcmm = 30.

To verify that this estimate does in fact correspond to a tiling, we must find a periodic
equitransitive tiling with convex polygonal tiles in symmetry group cmm which contains
30-sided polygons. Figure 1 shows an example of such a tling.

Using the lemma, similar estimates can be made for the groups p6, p31m, p3, pgg, p2,
pm, cm, and pl. Figures illustrating the maximal py for these groups and the
corresponding tilings are shown in Figures 2-9. Thus, for these first nine symmetry
groups, the estimate for the maximal polygon given by the lemma produces an actual tling.

3. The Second Set of Groups

The second set of groups are those in which two images of a polygon must always
appear in the period parallelogram. There are exactly two symmetry groups in which this
occurs: pmg and pg.

In pmg, for example, each center of symmetry occurs twice in the period parallelogram.
This means that the period parallelogram must contain at least two of every polygon type,
SO px 2 2. Additionally, the group symmetries shown in Figure 10 require that px < 4.



Table 2 Key to symmetry group diagrams
Symbol Meaning
Line of reflection.
------- Line of glide reflection

Center of 2-fold rotation. Black figure indicates that
rotation lies on a line of reflection.

<> @

A A Center of 3-fold rotation.
O B Center of 4-fold rotation.
O @ Centerof 6-fold rotation.

With these constraints, the lemma gives
24 = (34) + (2:4) + (1:4),
23p3 +2p4 +ps,
2p7+2pg+ ... + (mpmg-6)pmpmg,
24 2 (mpmg - 6) 2,
18 2 mpmg.
So 18-gons are the maximum polygons possible for the symmetry group pmg. Figure 10
shows the corresponding tiling with 18-gons. A similar argument for the symmetry group
pg yields a tiling with 12-gons. (See Figure 11).

4. The Third Set of Groups

In the third set of groups we find that mg must be divisible by four. Two symmetry
groups for which this occurs are p4 and p4g. For p4 and p4g, the maximum value of px is
four. (See Figures 12 and 13.) So by the lemma, mg < 30. We now show that in both of
these cases mg = 28.

Suppose 30-gons are possible in p4. Since the four-fold center of rotation is the only
center which occurs once in the period parallelogram and since p30 = 1, the 30-gon must be
centered on this four-center. But since 30 is not divisible by four, this is impossible.
Placing the center of the 30-gon anywhere else in the period parallelogram would require
that p3g > 1, so 30-gons are not possible in p4. For similar reasons 29-gons are not
possible. Thus, we must take mpq4 = 28. Figure 12 shows an example of an equitransitive
p4 tiling with convex polygons using 28-gons. o

Next, suppose mp4g = 30 and 30-gons are possible in p4g. For p3g = 1, the 30-gons

must be centered on either a two or a four center. The 30-gons cannot be on the four-



centers since 30 is not divisible by four. Suppose that the 30-gons sit on two-centers. By
inspection of the group diagram, one finds that each 30-gon can touch other 30-gons either
four or zero times. Assume the 30-gons each touch four other 30-gons. Then the
remaining 26 sides form a closed concave figure centered on the four-fold rotation. Now,
the number of sides of any polygonal figure centered on the four-fold rotation must, of
course, be divisible by four. Since 26 is not divisible by four, we have a contradiction.

The remaining possibility is that the 30-gons touch zero times. This possibility is ruled
out as follows. The lemma dictates that, with a 30-gon present, only four other types of
polygons can exist in the tiling: 3, 4, 5, and 6-gons. By the group symmetries, these four
polygons can each compose at most eight sides of the 30-gon. Three of these polygons
contributing eight sides each leaves six sides for the remaining polygon. The group
symmetries, however, prohibit a polygon from contributing six sides. So again we have
contradiction. ’

The symmetry group will not permit 29-gons since 29 is an odd number. Thus, mp4g <
28. Figure 13 shows an example of an equitransitive tiling with convex 28-gons for the

symmetry group p4g.

5. The Fourth Set of Groups

The remaining four symmetry groups, pmm, p3ml, p4m, and p6m, have the property
that all centers of rotation lie on lines of reflection. Because of this symmetry, we can
determine the number of distinct tiles which must be in the period parallelogram. By
application of the lemma we are then able to reduce the initial estimate for the maximal
polygon.

To illustrate this procedure, we consider the group p4m. Examining Figure 14, we see
that for any k, there are at most eight k-gons in the period parallelogram. Application of the
lemma yields mp4m < 54. This upper bound assumes that for k = mp4m, px = 1. In p4m,
this is true only if the maximal polygon lies on a four-fold center of rotation. This
requirement forces mp4m to be divisible by four. Hence, mp4m < 52 and the other possible
values are also multiples of four . ‘

A maximal polygon on a four-center can touch an identical polygon at most four times.
This leaves (mp4m - 4) edges to be adjacent to other polygons. The lines of reflection
passing through the four-centers allow these other polygons to contribute at most eight
edges to the maximal polygon. From this we determine that the period parallelogram must
include at least (mp4m - 4) / 8 other polygons besides the one on the four-center. With this
fact we show mpam # 52. | o



Suppose mp4m = 52. Then there are at least (52 - 4) / 8 = 6 polygons other than 52-

gon. But from the lemma, when ps2 =1, px = 0 for all k 2 9. This leaves the inequality
p7 +2pg s 2.

The inequality shows that in addition to the 3, 4, 5, and 6-gons, we can have either two 7-
gons or one 8-gon. So, with a 52-gon in the tiling, only five other polygon types are '
possible. This is not enough. Therefore, we have shown that p4m does not admit 52-
gons. Stepping down by four, the next possibility is mpsm = 43. The construction in
Figure 14 shows an equitransitive p4m tiling with convex 48-gons.

Using similar techniques, it is possible to reduce initial estimates for maximal polygon
in the groups pmm, p3ml, and p6ém. The resulting tilings are illustrated in Figures 15-17.
The above methods were used in [1] to get an estimate for the maximal polygons possible
in the symmetry group p6m.
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Figure 1. (left) cmm with 30-gons. In addition to the 30-gons there are 3,4,5,6, and
7-gons present in the figure. (right) Group diagram for cmm demonstrating that the
maximal value for py in cmm is 4.

Figure 2. (left) p6 with 42-gons. In addition to the 42-gons there are 3, 4, 5, and 6-
gons present in the figure. (right) Group diagram for p6 demonstrating that the maximal
value for pi in p6 is 6.



Figure 3. (left) p31m with 42-gons. In addition to the 42-gons there are 3, 4, 5, and
6-gons present in the figure. (right) Group diagram for p31m demonstrating that the
maximal value for pk in p31mis 6.

Figure 4. (left) p3 with 24-gons. In addition to the 24-gons there are 3, 4, 5, and 6-
gons present in the figure. (right) Group diagram for p3 demonstrating that the maximal
value for pk in p31m is 6.



Figure 5. (left) pgg with 18-gons. In addition to the 18-gons there are 3, 4, and 35-
gons present in the figure. (right) Group diagram for pgg demonstrating that the
maximum value for py in pgg is 2.
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Figure 6. (left) p2 with 18-gons. In addition to the 18-gons there are 3, 4, and 5-gons
present in the figure. (right) Group diagram for p2 demonstrating that the maximum
value for py in p2 is 2.




Figure 7. (left) pm with 18-gons. In addition to the 18-gons there are 3, 4, 5, and 6-
gons present in the figure. (right) Group diagram for pm demonstrating that the
maximum value for py in pm is 2.
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Figure 8. (left) cm with 18-gons. In addition to the 18-go;15 there are 3, 4, 5, and 6-
gons present in the figure. (right) Group diagram for cm demonstrating that the
maximum value for pk in cm is 2.



Figure 9. (left) pl with 12-gons. In addition to the 12-gons there are 3, 4, and 5-gons
present in the figure. (right) Group diagram for pl demonstrating that the maximum
value for pg in pl is 1.
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Figure 10. (left) pmg with 18-gons. In addition to the 18-gons there are 3, 4, 5, and
6-gons present in the figure. (right) Group diagram for pmg demonstrating that the
maximum value for py in pl is 4.
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Figure 11. (left) pg with 12-gons. In addition to the 12¥gons there are 3, 4, 5, and 6-
gons present in the figure. (right) Group diagram for pg demonstrating that the maximum
value for pi in pg is 2.
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Figure 12. (Teftip4 with 28-gons. In addition to the 28-gons there are 3, 4, 5, and 6-
gons present in the figure. (right) Group diagram for p4 demonstrating that the
maximum value for pi in p4 is 4.
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Figure 13. (left) p4g with 28-gons. In addition to the 28-gons there are 3, 4, 5, and
6-gons present in the figure. (right) Group diagram for p4g demonstrating that the

maximum value for pi in p4g is 4.

Figure 14. (left) p4m with 48-gons. In addition to the 48-gons there ére 3,4,5,6,7,
and 8-gons present in the figure. (right) Group diagram for p4m demonstrating that the
maximum value for pi in p4g is 4.



1 2
N

+ 4
1
N
71
1 |# |
/¢. ’
N

Figure 15. (left) pmm with 24-gons. In addition to the 24-gons there are 3, 4, 5, 6,
and 7-gons present in the figure. (right) Group diagram for pmm demonstrating that the
maximum value for py in pmm is 4.

Figure 16. (left) p3m1 with 36-gons. In addition to the 36-gons there are 3, 4, 5, 6,
and 7-gons present in the figure. (right) Group diagram for p3m1 demonstrating that the
maximum value for py in p3ml is 6.






