Computability Equivalences and Trade-Offs in
One-Dimensional Cellular Automata

Judy McDonald
Christopher Schwartz
Alison Warr

Summer Research Program
Oregon State University
Corvallis, OR 97331

August 19, 1987



Computability Equivalences and Trade-Offs in
One-Dimensional Cellular Automata

The concept of computability is important when considering the
equivalence of theoretical machines and attempting to differentate
between competing models. The two-dimensional cellular automata has
been shown to contain a Universal Turing machine with only two states
and a nine neighbor rule (1.e. the Game of Life)('). The one-dimensional
case has been shown capable of Turing machine computation(z), but
equivalencies of computability among the different one-dimensional
machines has not drawn much attention as of yet.

A one-dimensional cellular automaton is a recursive function
phenomena and may be described as follows. Given a finite set of distinct
positive integers (called the state set) S = (84,89, ... ,Sp) a function o

is defined on the set §° of all possible listings with repetition of the
elements of S of some finite length , 1, which is a constant. Now, 1 : §°
-> S is defined for all lists of the form (al,az, I °I) where each a; is

also an element of the set S and not necessarily distinct. The number 1 is
called the window length, each element s; of S is a state and the number

of elements, n, in S is termed the number of states of the machine (also
written as n-states.) The function 9 is then applied to an infinite list {or
row) of elements of S ( See figure 1) that have relative position, that is
a list that looks something like

=2 84-2: B~ 1. 812 B4 10 8542, 843, -
yrhere each 8 is an element of S for all integers j. One iteration of the

rule will actually be an infinite number of applications of the function 9
of the form o : (a;, 8;, {, 8j,49, -, 8j4) —> bj for all integers i where

again b; is in S for all integers j. 9 therefore is a function that maps
g g g

from lists of elements of the state set S to a single element of the state
set but does not necessarily have an inverse function n", indeed for most
cellular functions 1 there frequently does not exist an inverse. This
implies that most cellular functions are an irreversable phenomena, that
is given the first iteration list, it is impossible to determine the initial
list. For an example of this see plate 1 where some of the initial states



,_ r.:w:

X
i1

._ ;M gt g,w

i

Vi e | L,
I ,w ?: R ol L A A W
53 : : . - I gk, (g i %s .?%;;5. _N.s... ;

RRETY *.

» J ai:

f ::ﬁ:;
F foom 5,. :

5 f

with a raadem initial list.

l

=
=

w, Sum med three rule

ﬁ,,w,Nﬂﬂﬂ
; ; Q;;;
ong |

three

]
i
5
:
:
:
3
:
|
i

This is a five-state,

Plate 1




Page 18

Automata window for bt*!

( A ) W

ses 1§ 4 a .ai:'.'I.I.I..::t:::::':.:l::at::at.'
1-2 -t ! .t’f’f:::ﬁi.a.]:f.::f::ﬁ 1+Q |7 1+Q*
LT ..‘
' e ’ t*‘ 1
ss e o, "oy ses | Hh see )
T S Rl
new cell

second row, t+1
first row, t

Figurel. Computing one new cell, bi*! , from the window cells, a'

through a!  for o totel window length of g+1. -1
ot ,. a1, .ol el el
[ Rute ]
ERC LI A I e g
| Rule ]
S e S HE IR I G ¢ S

O Figure 2. The generation of infinite lists by application of
the rule.




Page 2

actually disappear completely after the first iteration!

One application of the rule produces a second infinite list of the same
form as the initial list and again comprised only of elements of S. One
cell being formed in the second list is illustrated pictorally in figure 2.

The second iteration of the ruie is then just the rule applied to the
second list (i.e. the last list produced.) These iterations theoretically may
continue indefinitely, each one producing a new infinite list from its
predecessor list which for comparative purposes are best written top
down with the initial list at the top and increasing iterations plotted
downyrards (see figure 3 ). This whole process will be referred to as 8
machine. The set of all machines with some particular number of states
m and some yindow length n will be referred to as an automata class.

Usuaily, in the state set S, one paticular state is chosen to represent
an of f state or quiescent state, call this state by the symbol 0. Often,
limiting the number of non-quiescent states to a finite number in the
initial list {or array) is one restriction imposed on the one-dimensional
cellular automata. Another common restriction is in defining the
conversion function such that it will not allow a cell to become
non-quiescent with only quiescent cells in its input window, that is
§(0,0,0,..,0) = 0. Hence, something cannot come from nothing, so both
these restrictions are in the same spirit in that an infinite amount of
information may not be generated in a finite number of iterations.

For visual comparisons and non-ideal modeling, the cellular automata
may be programmed into a computer where different screen colors may
represent different elements of the set S that contains all of the possible
states of the paticular machine being modeled. Hopefully, the number of
states of the machine is small enough so that distinguishable colors may
be employed in the modeling process. Another, more severe restriction
imposed by computer modeling is that of finite storage space. The cellular
automata uses and produces an infinite ‘database’ of information and in
this sense must always remain a theoretical construct assuming a finite
amount of material in the universe. Nonetheless, important insights and
testing may be achieved by a finite computing machine using fixed array
sizes and wraparound technique in the computation process (For a pictoral
representation of how wraparound functions see figure 4.) An example
of a one-dimensional celiular automata computed with wraparound on a
computer can be seen in plate 1 and plate 2.

The question referred to above, probes the relations of machine
equivalency in the one-dimensional case. All of the one-dimensional



2 ’
except for one in the center.

of all null states

5 gis g & : 8 g 3 e

i ag = = 3 ) =
Plate 2: A typical example of 2 one—-dimensional cellular autemata with vraparoud-‘
This is a five—state, five window, sum med five rule, with the initial list consisting



Page 28

Pictorial Representation of a Cellular Automaton

Figure 3

t-1 t-1 t-1 t-1 t-1 t-1 At-1 t-1
J-3 ]-2 J-1 ] ]+ j+2 J+3 1)+ 4
[ R XN
t t t t t t Al Al
1 - 3 ) - 2 ) -1 ] ]+1 ) + 2 ]+ 3 ]+ 4
At+l At+1 At+1 Atﬂ At*i At+1 At+1 At+1
J-3] J-2f -1 ) Jol )2 )43 )4
R - « «
t+2 t+ 2 1+2 At+2 t+ 2 t+ 2 At+2 At+2
j-3 j-2 1-1 ) J+1 J+2 j+ 3 ]+ 4
t+3 t+ 3 t+ 3 t+3 t+3 t+3 t+ 3 t+ 3
A A . . A . A _ .
EIREINEEN J-1 |%5e2 [ P5e3 P a
WIIUI




Page 2b

OFigure4. Anillustration of the wraparound idea. Here, the
initial array is of length eight and the window size is three.
The shaded windows 8g .8y , 8nd 8, are used to compute the
cell b, . This process cycles around the circle once for one
iteration of the rule and then moves out one ‘shell’.




Page 3

cellular sutomata are capable of degrees of computation where this degree
yrould seemingly depend upon the rule used, the number of states and the
window length. In paticular, mey these parameters be interchanged in any
yray and retention of computability be maintained? This is the question of
simulation. Clearly, a working definition of computability for the
automata is needed. First, however, some basis for comparison is needed
hence we develop the idea of coverting some n-state list to an m-state
list, the difficulty arising when either n > m or m < n so that one set has
fewer symbols than needed forcing a conversion function that is not
one-to-one.

Definition: A conversion function,

f:( Oi, ﬁi+‘, ey Oi+|) ->b K,i £ {52 U a8}
{where 85 £ S, for all integers j, @ is a special null symbel for no output
(i.e. no mapping) and S and S, are paticular state sets] is a function of

fixed length list input, 1, that upon application in any order to every string
of that length converts one list in S to alist in S,. These lists are said

to be convertably the same by the conversion function if the inverse
conversion function exists as well.

Here the conversion is a function that, unlike the cellular function,
maps to and from elements of possibly different state sets, and like the
cellular function takes finite lists to single elements. The importance of
the conversion function lies in the ability to compare strings of different
state sets and thus lays the foundation from which we may simulate one
machine by another by converting corresponding lists and checking
whether they are convertably the same.

With these criteria to decide when two lists are or are not computably
the same we start the question by looking at two and three state
machines. in paticular, we look first at this conversion process. The
interesting cases occur when the machines have a different number of
states, for otherwise we have the trivial case of same-state machines
where the conversion functions are obvious. The conversion function must
be decided since it is the link between the two automata and is the
reference by which computability equivalence is determined. Of
importance is the possibility of ambiguity in the conversion, that is the
conversion function must provide a list that does not depend upon the
position of the starting point or order of conversion. In paticular, what is
the smallest number of symbols (sequence length) of the two-state set



Page 4

that are needed to have an unambiguous conversion function that maps to
and from the three state set. This would imply that the conversion
function f has an inverse §~1 and §(f~1)(Q) = Q which is exactly the
criteria needed to eliminate any possible existence of abiguity in the
conversion function.

Proposition: The smallest sequence length of a conversion function
with an inverse of the two state set to the three state set is at least four.

Proof: Clearly, in order to have a conversion from three states to
two states a sequence of one is not enough, for all of the three-state set
elements cannot be represented and therefore the inverse conversion j"
does not exist. Furthermore, a sequence 1ength of two is not enough, for
with only two symbols in 8 sequence of two there exists no arrangement
that separates the sequences. This leads to a sequence which is not
transiation invariant. That is to say, j" produces different list outputs
dependent upon the starting position in the converted list.

To check the last possibility, assume there exists a conversion
function from any three state list to any two state list such that each
three state element is converted to a seqence of three two state elements

Again it is enough to show that any such conversion is not transiation
invariant. That is, a list of the two state elements could be converted into
more than one list which are different.

It is clear, that in order for a conversion to be translation invariant
there must be some sort of separating element, for otherwise there would
be no way to distinguish the different blocks of three. Hence, we can
reduce the number of possible conversions by only considering those
conversions with the same first element, and those with the same second
element, and those with the same third element. But, by the nature of the
conversion function considering conversions with the same first element
is equivalent to considering conversions yith the same third element.

First let us consider the conversions with the same first element:

Let ay, a,, a3, be the three state elements.

Case 1: Conversion

o,-—>000
82-->001
63"")010

Subseguence Conversion Translation



81820

Case 2: Conversion
8,->000

32")001
a5->011

Subseguence
919183

Case 3: Conversion

ay-->000
0,->010
az-->011
Subseguence
920184

Case 4. Conversion
ay-->001

02-->010
az-->011

Subsequence
9703

Page 5

000001000

Conversion
00000 0011

Conversion
01000 0000

Conversion
010011

8403

Translation
213y

8484

Translation
9

Similarly, we can obtain the other four case consisting of a one in the
first position by replacing each 0 with a 1 and each | witha 0 in the

above four cases.

Now, let us consider the cases consisting of conversions with the

same second element.

Case 1: Conversion
ay - 010



02“>011
33-->l 10
Subseguence

9483

Case 2: Conversion

81 -->010
02-->1 10
a3-->l 11

Subsequence

8384

Case 3: Conversion

8y-->010
8y-->011
ﬂ3"")1 i1

Subsequence

8483

Case 4: Conversion

al -->011
8y-->110
03"")‘ 11

Subsequence

3334

Similarly, we can obtain the other four case consisting of a zero in the
second position by replacing each O with a 1 and each 1 with a O in the

above four cases.

Therefore, since all the possible conversions of. three state elements
to two state elements, using a8 sequence of only three, are not translation
invariant, we conclude that this sequence length of three is not enough.
Hence, we need at least a sequence length of four.

Page 6

Conversion
010110

Conversion
111010

Conversion
o101 11

Translation
a
2

Translation
a8

Translation
32

Translation
a7



Page 7

Due to these ambiguities then a seqence length of at least four is
required for the existence of the inverse conversion function. Next it is
shown that four is sufficient. The proof is by way of a construction.

Proposition: There exists a conversion function with an inverse with
sequence length of four from 3-state representation to 2-state
representation.

Proof; Consider the conversion:

Two-state

Three-state |
0 I 1101
1 i 1001
2 | 0001

It suffices to show that given any combination of three-state symbols, the

combination can be converted to a two-state. Given a set of symbols in
the two-state representation, it can only be converted in one way to the
three-state representation.
i. Case 0,0: 11011101
Subsequence Translation

11011101 0 (the correct transiation)
11011101 no translation (@)
11011101 no translation (@)
11011101 no transiation (@)
11011101 0 (the correct translation)

ii. Case 0,1: 11011001

Subseguence Transiation

11011001 0 (the correct translation)
11011001 no translation (@)
11011001 no translation (@)
11011001 - no transiation (@)
1101100 1 (the correct translation)

iii. Case 0,2: 11010001

Subsequence Translation

11010001 0 (the correct transiation)
11010001 no translation (@)
11010001 no translation (@)
11010001 no translation (@) _
11010001 2 (the correct transiation)



Page 8

ijii. Case 1,0: 10011101
Subsequence Translation

10011101 1 {the correct translation)

10011101 no translation (@)

10011101 no translation (8)

10011101 no translation (@)

10011101 0 (the correct translation)
iv. Case 1,1: 10011001

Subsequence Translation

10011001 1 (the correct transiation)
10011001 no translation (@)
10011001 no translation (@)
10011001 no translation (@)
10011001 1 {the correct transiation)

y. Case 1,2: 10010001
Subsequence

Translation

10010001 1 (the correct translation)
10010001 no translation (@)
10010001 no translation (@)
10010001 no translation (@)
10010001 2 (the correct translation)

vi. Case 2,0: 00011101

Subsequence Translation

00011101 2 (the correct troanslation)
00011101 no transiation {@)
00011101 no translation (@)
00011101 no translation (@)
00011101 0 (the correct translation)

vii. Case 2,1: 00011001

Translation

Subsequence

00011001 2 (the correct translation)
00011001 no translation {@)
00011001 no translation (@)
00011001 no translation (@)
00011001 1 (the correct transiation)

viii. Case 2,2: 00010001



Page 9

Subseguence Translation

00010001 2 (the correct translation)
00010001 no translation (@)
00010001 no translation (@)
00010001 no translation (@)
00010001 2 (the correct transiation)

By construction then, there exists a conversion function with an inverse
which has a sequence length of four. O

With the conversion function constructed for bridging the two-state
and the three-state sets, an exploration of the comparabie computability
of machines of two- and three-states is in order since now the output
lists may be compared. Returning to the idea of the equivalence of
computability, the definition is stated allowing for each single iteration
of the first machine some number of iterations of the mimicking machine
before appropriate output is encountered, as long as for the number of
iteration, t, on the first mechine then the iteration number in the second
machine may be defined by some function 3(t). The invertable conversion
function is also required. Let | denote the integers.

Definition: Two different one-dimensional cellular automata are said to
be computably equivalent if for any rule on either one machine then
there exists a rule on the second machine, a conversion function with an
inverse and a defined function (termed a line number function) 3:1 -> |
such that for each iteration, t, on the first machine the output list is
convertably the same as the list of the a(t) iteration on the second
machine.

By simulate, it is meant that if one machine is computably equivalent
to a second machine, then the first is said to simulate it. With the
definition of computably equivalent, and the construction for the
conversion function with sequence length four (above) for the two- and
three-state machines, is it possible to model or simulate a three-state
machine with a two-state? To answer this requires additionally that the
window length, the initial list and the three state rule be specified or that
possibly for any finite window length, any arbitrary three state rule and
any initial list that there always exists a two-state machine that models
this. The next result concerns a three-state machine with an arbitrary
window length and showing that for any rule on this machine that there
exists a two-state rule of some window length that is computably



Page 10

equivalent.

Theorem|: Given any three-state one-dimensional cellular automata
with window length d, there exists a two-state cellular automata with
window length [2(3)-2+ (d-1)(3)] which is computably equivaient.

Proof: By construction:
Conversion from three-state to two-state:

three state | two state
0 | 1101
1 | 1001
2 | 0001

[See figure 5 for notation and insight]

0 0 0 0 0 0 0
Lel ... A% 0. A%, A% 2, ATi 3, AT ,0. AT 1,1, AT 2,
AOM 3 bealine of three-state code to which the conversion function
has been applied resulting in the two-state code where Ati j £ {0,1} for

all i,teZeond j£ri0,1,2 3}
To determine the next line in the two-state cellular automata,
at*l. 5 =0 and AY' s =1 forall i, Therefore, we say there exists

o “buffer block™ of length two and this block seperates all coded
information and retains a translation invariant rule, i.e. the information
will not “slide” as iterations are performed. Now, all that is needed to be
shown is that the two-block left, call it the information block, may
always be computed correctly in the two-state machine given any
arbitrary three-state rule with window length d. This amounts to showing
that 1) the two-block contains the informetion necessary, 2) each
element of the two-block may be determined uniquely and 3) each element
depends strictly on the coded information that should be used to compute
it. To do this, we begin with a window of length one in the three-state
cellular automata and show it is true here.

It is enough to show that given any window of length 2(3)-2+(d-1)(3)
in the two-state celluler automata, we have the information to uniquely
determine the window in the next row, and that the information needed is
used.

Let d = the window length of the three-state cellular automata.



FPage 108

Notation: Label the cells in the following way:

Three state seses|B

i-1] 8 i+1/8142| B 43| une

Two state ees| -1 -1 -1 -1 i i i 1 i 1+1

Figure S




Page 11

Let D = the window length of the two-state celluler automata.
Let 1, j = the position you are at in the two-state cellular automata.
Let i =the position you are at in the three-state cellular automata.

Letd = 1. Then D = 2(3)-2+ (1-1)3) = 4. For any given Ati j
Case 1: If j=0, then from our window we can see

t t t t
Aic1,3. Ao, A, Ao

and At; o, Al; | along with the position of the buffer give all the
information corresponding to the three-state cell Bti.

Case 2: If j=1, then from our window we can see
t t t t
Ao, A, A, Als

and AY; o, AL | along with the position of the buffer give all the
information corresponding to the three-state cell Bti.

Case 3: If j=2, then from our window we can see
t t
A2, Al
And A% 5=0,A% z=1 forall it which tells us A1 0.

Case 4: If j=3, then from our window we can see

t t
A2, Al
and, Al 5=0,A% =1 forall i,t which tells us At 5 =1

Assume this holds for k=d. Let k=d+1. Then D=2(3)-2+({d+1)-1)(3) = 3d +4.
Then, for any given Ati j:

Case 1: If j=0, then by the induction hypothesis the window of



Page 12

length 3d+1 encompasses
Aoz, Alio. AN Al
which gives all the information corresponding to the three-state cells
8Y, 8Ly, BYig. L Blgey
Since D= 3d + 4, the window also includes |

t t t t
Alisd-1,2+ Alisd-1,3+ Alisg 0 Alivd, 1

thus giving the information corresponding to the last cell in the
three-state d+1 window, Bti+d.

Case 2: If j=1, then an argument similar to case 1 holds.

Case 3: If j=2, then from our window we can see

t t
A2, A3

And Ati,g =0, Ati,3 =1 for all i,t which tells us At*'i 2=0.

»

Case 4: If j=3, then from our yindoy e can see
t t
A2, A3
And Al =0, Al 5= 1 forall it which tells us At 5= 1.

Thus, for any three-state cellular automata of window length d there
exists a two-state cellular automata of window length 4+(3)(d-1) = 3d + 1
vhich is computationally equivalent. . 0

The previous theorem shows that each three-state machines is
computationally equivalent to a two-state machine that is to say all
three-state machines can be simulated by two-state machines. Moreover,
for this construction proof where the initial arrays for the two- and



Page 13

three-state machines start at the same value of t, we actually have 3(t) =
t in the definition form, which is actually as “nice” of a line number
function as could be hoped for. Some color coded pictures of these can be
seen in plates 3 - . Another encouraging result for the theorem sbove
takes form in the following proposition where it is shown that not only
does the conversion function used above bridge the computability
equivalence betyeen the two- and three-state machines but it has the
smallest window length as well which is a iead in for the next topic:
trade-off of states and symbols.

Proposition: The smallest windoy length for the two-state conversion
of the three-state given by

three state |  two state
0 | 1101
1 | 1001
2 | 0001

where the three-state cellular automata has window length d is
D=2(3)-2+(d-1)(3)=3d+1.

Proof: Assume d=1. Assume the smallest window length in the two-state
is 3.

Suppose that there exist the following two subsequences in our
two-state cellular autometa:

11011101
1101 1 001

We see that with the three window there exist two different
circumstances where the window is the same. Hence we could not
uniquely determine the rule for the two-state cellular automata.

Assume d=2. Assume the smallest window length in the two state is 6. In
order to obtain necessary information we must have a window which looks
back at least one. Consider the following subsequence of 8 two-state
cellular sutomata. T

?

t10111011001



a1 A AT
s oo AR

3 =
e I : et e
e s : SR P Ery
e T :

T e 2

AR W

e eonal el
s

o

fotiettichen

il &
&

oo
S

o & gt nsS
Gt T W:% %
Lt et
etin s cian o 4
: o
e

s &
S e e
e

B ey,
o R AR A ol S .
el

A

R R i NS it s A N I

o Tk s s
ot Lo o e iy
e e S et

o 2

b bt A

i oo et b s e R

R odiints o
Jott i i

Plate 3: This is the three—state, three windew, sum med three, cellular autemata.



-

—wTXEY FiI !

2

L e

ol v

Plate 4: The twe-state, tea vindew, cellular autemata which simulates the
three—state cellular autemata pictured ia plate 3.




Page 14

Assume we at at the underlined position. Since we do not knoy the value
in the position of the question mark {(a information cell) we do not know
the value of the corresponding three-state element and therefore are
unable to apply the conversion function.

Similarly, for d=3,4, . .. we can show that there is not enough information
given in a window of length (3d+1)-1.

Hence, we conclude that we need at least a window length of 3d+1. This
together with the above theorem shows that a window of length 3d+1 is
necessary to simulate a three-state cellular automata with a two-state
cellular automata. a

Theorem2: Given any n-state one-dimensional cellular automata with
window length d, there exists a two state one-dimensional cellular
automata with window length [2(n)-2 + {d-1)n] which is computationally
equivalent to the three state.

Proof: First construct the conversion function :
string length = n+1
7\

'd 3
f0)= 111 ...101

f(1)=111...1001

fin-1)= 000 ... 001,

The remainder of the proof is similar to the proof of the case with n=3.0

In the work done so far on simulating a three {(or more) state cellular
automata with a two state cellular automata we have considered only the
cases where the window of the three state cellular sutomata has the form
of a right hand window. But, as will be shown, any other justified window
is the same as a right hand windoy by route of a simple shift. For
example, if we have a left hand window of length two on the three state
cellular automata and the following rule:



Page 15

©

_rindow
00 |
o1 |
02 |
10 |
R
12 |
20 |
21 |
22 |

And with the following initial sequence:

initial sequence 0100201022200001120102021
Then we obtain with the left hand rule {with wrap-around):

left hand rule 1021010200011110101020112
Using a right hand rule (with wrap-around) we would obtain:

right hand rule 0210102000111101010‘201121

it can be seen that by shifting the list generated by the right hand rule by
one to the right the list generated by the left hand rule is obtained. This
tidy little result is due to the invarient form of the conversion function
and the properties of its inverse (i.e it exists and works unambiguously.)
Therefore, the results obtained thus far for windovs of any justification
apply universaliy.

In the case of the Turing machine, two criteria are of importance. For
each such machine the number of symbols and the number of states are
determined. it has been found that a Universal Turing machine exists with
just two states but an arbitrary number of symbols and alternatively there
exists one with only two symbols but an arbitrary number of states. This
seems to imply a natural trade-off between states and symbols in codmg
up @ Universal Turing machine.

Can a similar trade-off be found for one-di menswnal cellular
automata? At this point any machine with a finite number of symbols and
a finite window length may be simulated by a two-state machine. This
represents the reduction of states to a theoretical minimum, for with one



Page 16

state only, no distinction can be made between quiescent and
non-quiescent states so that no computation is possible. The opposite
trade-off takes a machine with a finite number of states and a finite
window size and codes it into a machine with some number of states with
a window length of only two. The following theorem helps with this task.

Theorem: Given any 2-state, n-window cellular automata with rule F,
there exists an equivalent m-state, 2-window cellular sutomats with rule
G, wherem=2"+ 2014 2024 4 21 yn this equivalence, row t of the
2-state cellular automata matches row t*n of the m-state cellular
automata.

The proof of this theorem is by induction. It is helpful, however, to
first prove a specific case of the theorem .
Specific Case of the Theorem: Given any 3-window, 2-state cellular
automata with rule F, there exists an equivalent 2-window, 14-state
cellular automata with rule G.

Proof of the Specific Case:
Assume the 2-state cellular automata has a right-hand window.
Let T = {ty, ti,totzt4ts,ts,to) where

tg = 000
t; =001
t,=010
tz =011
tg= 100
tg = 101
tg=110
ty=111.

Let D = {d, d,d,,d3} where dg = 00
' dy = O
d2 =10
dz=11. o
Let S = {sq,s¢} where S9=0
8¢ = 1. '
Letv=TUDUS. |



Page 17

Let Aoi = cell i of the initial row of the 3-window, 2-state cellular

automata.
Let B°i = cell i of the initial row of the 2- window, 14-state

cellular automata.
Given the initial row of a 3-window, 2-state cellular automata, let

0 .0
BO, = A0, .

The rule for the 14-state cellular automata is the following. In
general terms, G:VXV---V G(Bti,Btiﬂ) = Bt",'i
independent of the 2-state rule, the following portions, which are

really conversions, of the 14-state rule can be defined. Table 1 gives an
illustration of this.

6(sg.5g) = dg {Conversion from a pair of
G(so,s,) = dy symbols, each representing 1
6(s1,5¢) = dy cell, to a symbol representing
6(sy,5¢) = d3 a block of 2 cells)

G(dg.dp) =t

6(dq.dp) = t, (Conversion from a pair
G(dy,d3) = t3 ofsymbols, each representing a
G(dy,dg) = ty4 block of 2 cells, to a symbol
G(d),dy) = tg representing a block of 3 cells)

B(d3,d2) =tg
G(d3,d3) =ty

Depending on the 2-state rule, the remaining portions of G can be
defined. Given the 2-state cellular automata rule F:
F(0,0,0) = 80

F(0,0,1) = a,
F(0,1,0) = a,
F(0,1,1) = ag



Page 178

.

EQUIVALENT
SYMBOL PAIRING
IN ROW 1

EQUIYALENT SYMBOL
(REPRESENTING A BLOCK OF
3 CELLS) INROW 2

EQUIVALENT BLOCK
OF 3 CELLS INROW O

Table 1

REPRESENT ION OF CONVERSION

One set of conversions are from a pair of symbols, each representing one cell to a symbol representing a block of

2 celts (This is column 1 to column 2.) For example, in the shaded row, 10 is converted to d,, ; 01 is converted to
d, .There are also conversions from a pair of symbols, each representing a block of two cells’, to a symbol represent-
in‘g a block of 3 cells. (This is column 2 to column 3). For example, in the shaded row, d1 d2 is converted to ts.

Note that ts corresponds to 101, which is as is should be.



Page 18

F(1,0,0) = a4

F(1,0,1) = ag

F(I,l.0)=86

F(1,1,1) = a4 where a; £ {0,1} fori= 0, .. 7.

Define the 14-state rule as follows.
G(to, t‘) = 80 £S

G(ty,t) =8y £S
Gltot)=ay£ S
G(t3,t)=as £S
Gty t)=a4£S
6(t5,t;) = ag £S
G(tgt) =8¢ £5
6(ty,t) =87 £S fori=o0,..,7.

In summary, read B%; and BL,, ,. Then,

If Bti £S, then Bt"i = d £D, according to 6.
If 8% £ D, then B'* !, = t £7T, according to 6.
if Bti £T, then Bt"i = s £S, according to G.

Figure 6 illustrates how the | a:1--stflte cellular automata works.
In this way, at time t, Ati - B3 ti. So the two cellular automata are

equivalent.
So given any 3-window two-state cellular automata with rule F,

there exists an equivalent 2-window 14-state cellular automata with rule
6.

And now the inductive proof of the theorem follows.

Proof: :
Let A; represent the itM cell of the 2-state cellular sutomata at

time t. :
Let Bti represent the ith cent of the m-state cellular automata at

time t.

~ Let n=1.
Given a 2-state, 1-window cellular automata, does there exists a



Page 188

Schematic Representation of the Two Wir_ldow
Fourteen State Cellular Automata

initial row of 14 state
(Equivalent to initial row
of two state)

Equivalent to row 2 of
two state

vvvvvvvvvvy:

Equivalent to row 3 of l I l l I I I

e H.yyyvvyyyyyri
l/l/l/l/l/l/l/r

Equivalent to row 4 of ' | | l l | | I ' ' |

two stote Vbl vvll o
l/l/l/l/l/l/l/l/l/l/l

T

IIIIIIIIIII

S § § $ § § § S5 § S S.

w

O

Figure 6




Page 19

2-state 2 window cellular automata?
Given the 2-state 1-window cellular automata rule F as follows

F(0) = ag
F(1)=a,, whereay, a, £{0,1}
Create the 2-state, 2-windoy cellular automata rule G as follows
6(0,0) = a8,
6(0,1)= a,
6(1,0) = a4
6(1,1) = ay.
Lt A0, = BO,.
So there is an equivalent 2-state, 2 window cellular automata. -

Assume that given any 2-state, (k- 1)-window cellular automata
~ with rule F, there exists an equivalent m-state, 2-window cellular
automata with rule G.

Let n=k.
By assumption, we have the conversions:
from pairs of symbols, each representing a block of 1 cell, to a
symbol representing a block of 2 cells;
from pairs of symbols, each representing a block of 2 cells, to a
symbol representing a block of 3 cells;
from pairs of symbols, each representing a block of 3 cells, to 8
symbol representing a block of 4 cells;

from pairs of symbols, each representing a block of (k-2) cells, to
a symbol representing a block of (k-1) cells.
Consider the conversion from pairs of symbols, each representing a
block of (k-2) cells, to a8 symbol representing a block of (k-1) cells. Let
gamma; represent the (k-2)-digit binary equivalent of the base ten number

i, where i=0,1,.. 2X°2_4 et rho; be the symbol correspoﬁding to the

(k-1)-length binary conversion of the base ten number i, where
i=0,...,2k' -1. Explicitly, the conversion can be expressed by

G(gamma ma ) =rho;.

, gam . -
(idivay (imod2K~2)



Page 20

Table 2 illustrates this conversion.

We can create the conversion from pairs of symbols£ { rho0, rhol,..,
rho k-1 '} in a similar way. Let phii is the symbol corresponding to the

k-length binary conversion of the base ten number i, where i=0,..,2k-1.
Explicitly, the conversion is

rho . rho )
(idiv2)  (imod2K™ 1)

Table 3 illustrates this conversion.
All that remains is to define the portions of the rule G which depend
on the rule F.
Given the original rule F:
F(0,0,0,..,0,0,0) = 8
F(0,0,0...,0,0,1) = a4

F(0,0,0,..,0,1,0) = a,

F(1,1,1,.,1,1,1) =2
( ) K1

Create the additional portion of the rule G in the following way.
B(rhoo,rhoi) = 80
G(rhol,rho') = OI
G(rhoz,rhoi) = 02

k-1
G({rho ,_4,rho )-a , fori=0,.2
(rho y-.rho ) =8, |
So for any 2-state, n-window cellular automata, there exists an
equivalent m-state, 2-window cellular automata, wherem = oM+ o1,

2"'2 + ..+ 2‘ and royw t of the 2-state cellular automats matches row t*n
of the m-state cellular automata.

EXAMPLE: The rollowing is an example of how a 2-state, 3-window
cellular automata can be converted to a 14-state 2-window cellular
automata. Given the 2-state, 3-window (right-hand window) rule F:



Page 20a

EQUIVALENT EQUIYALENT SYHBOL
SYMBOL FAIRING (REFRESENTING A BLOCK OF
IN ROw K-3 (K-1) CELLS) IN ROW K-2

EQUIYALENT BLOCK
OF (K-1) CELLS IN ROW O

Table 2
REPRESENTATION OF CONVERSIONS

The conversions are from a pair of symbols, each representing a block of (K-2) cells to a symbol representing a
a block of (K-1) cells. Take, for example, the shaded table entry. The first (K-2) sumbols in column 1 cor-
respoend to 7] o Mow shift to the right 1 symbol; this black of (k-2) symbols corresponds to ' {-

MNow consider the pair 1 0 1 1. This pair is converted to P . Note that P corresponds to the block of
(K-1) cells in the firzt column, which is as it should be. 1 1



Page 20b

EQUIVALENT EQUIVALENT SYMBOL
SYMBOL PAIRING (REPRESENTING A BLOCK OF K
IN ROW K-2 CELLS) IN ROW K-1

EQUIVALENT BLOCK
OF K CELLS IN ROW O

0°000...000 11

Table 3
REPRESENTATION OF CONVERSIONS

The conversions are from a pair of symbols, each representing a block of (K-1) cells to a symbol representing a
a block of (K) cells. Take, for example, the shaded table entry. The first (K-1) symbols in column 1 cor-
respond to F‘l . Now shift to the right 1 symbol; this block of (K-1) symbols corresponds to F2 i

Now consider the pair F" ':2 . This pair is converted to ]| _ . Note that ([  corresponds to the block of
(K) ceNis in the first column, which is as it should be. 2 2



Page 21

000 |
001 |
010 |
o011 |
I
I
I
|

100
101
110
111

An arbitrary initial row and three applications of the rule (with

wrap-around) give the following.

101101001011 10 Row?©
00100110001100 Row 1
1011011110111 1 Row2
001001110011 11 Row3

The rule F can be converted to the 2-window (right-hand window),

14-state rule G which follows.

00 | dy dg dg | 1o to &
o1 | d dg dy |ty ty ¢
10 1 dp dy dy |ty t
111 d3 dy d3 | t3 tz t;
dy dg |ty ty b
dy d; | tg t5 t;
dz dy | tg tg ¢
dsds | t3  tp 4

I
|
I
l
I
l
l
I

i
1
0
0
1
0
1
1

for i=0,...,7

The idehticol initial row and nine applications of rule G (with

yrap-sround) give the following.

1 01 10 100 10 1 1 1 1
dp dy d3 dy dy dp dg dy dy dy d3 d3 d, d,

Row O
Row 1



Page 22

ts t3 tg ts by tyty by ts i3 17 g tg by Row 2
001 00 1100601 100 Row 3
dg dy dy dy dy d3 dy dg do dy d3 dy dy dy  Row 4
ty t) taty ts tgtg to ty tz tg tg ty tg Row S
1 01 10 1 1 10 1 111 Row 6
dy dy d3 dy dy d3 d3 d3 dp dy d3 dg d3 ds Row 7

o 0ot 00 t1 1o O 1 1 11 Row 9

Note that row O of the 14-state cellular automata and row 0 of the
2-state match; row 3 and row 1; row 6 and row 2; royr 9 and row 3,
respectively.

This reduces two-state machines of any window length to machines
with only two windows that are computably equivalent with the
appropriate increase in the number of states needed in the new machine.
The two-state automata prove to be the pivoting ground from which we
may twist from higher state, multiple window machines to two-state then
back to higher states with only two windows. The following corollary ties
this up.

Corollary: For every m-state, n-window one-dimensional cellular
automata there exists a 2-window, p-state one-dimensional cellular
automata that is computably equivalent.

Proof: Given any m-state, n-window one-dimensional automata,
theorem 2 yields a 2-state machine with window length [2(m}-2 +
(n-1)m] = y, and this machine is computably equivslent to the origional.
With this new machine apply theorem 3 to it to get a one-dimensional
cellular automata with window length 2 and the number of states being

y

D:Zf&k

k=1
where y is the number of windoys in the first converted two-state. This
machine by the theorem is computably equivalent to the two-state but this
impies that it is computably equivalent to the origional by the nature of



Poge 23

the functional inverses. Hence, by construction there exists a computably
equivalent two-window machine. 0

In conclusion, the one-dimensional cellular automata displays
characteristics similar to those of the Universal Turing machine in as far
as the automata can be shown to exibit a trade-off phenomena for the
number of states and the length of the window. In particular, any
one-dimensional cellular automaton with finite states and finite window
length may be simuilated by an automaton with just two states or by an
automaton with a window length of just two.

That the two-state machine was the connecting point for these two
different forms of computing should not come as a large surprise, for the
simple analogy is easily drawn between the modern binary computer and
the computational power it contains (i.e. the ability to code in arbitrary
programs.)

Another important point to consider for future inquiries, is that of
equality of computing power. i1t has been shown here that the two-state
contains the computing power of any higher state cellular automaton, it is
obvious that this containment runs the other direction, for given any |
higher state machine, simply do not use a1l but two of the symbolis to run
the equivalent of the two-state machine. It would then seem natural that
all the finite-state, finite window length automata have the potential of
equal computing power. Continuing in this vein, if any particular
automaton can be shown capable of Universal Computation, then every
m-state, n-window automata class contains a Universal Turing machine.



Acknowledgements

We are grateful to several peaple that provided important motivation,
ideas, direction and encouragement for this research project, in particular
Dr. B. Burton, Dr. P. Cull, and Dr. R. Robson.

References

[1] S. Wolfram, “Universality and complexity in cellular automata",
Physica 10D (1984)
{2] Paul Cull, Department of Computer Science, Oregon State University.



