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We will develop a theory of potentially infinite cardinal numbers, during the
process of which we will encounter several interesting and open-ended problems.
Although, we only mention the concept of potential infinity once, it is in light of

this concept that this paper should be read.
Part One

Introductory Definitions:
We define a set S of primitive functions recursively as follows:
Dx" isinS vn € Z¥;
2) if g(x) € S, then h(x) = ¢ + g(x) € S, Vc € Z¥;
3) if g(x) € S, then h(x) = c-g(x) € S, Ve € Z¥;
4) if g(x) € S, then h(x) = 2 ¢ g,

Note: each function in S is understood to be from RY into R+, or , with
restricted domain, from Z¥ into Z*%.

A function f is a primitive function if and only if it may be derived from rules 1-4
where each rule is applied at most a finite number of times.

We make the following observations:

Remark (1) Rules 2,3, and 4 produce ’larger’ functions, by which we mean that
in the definitions of rules 1,2, and 3, h(x) > g(x) for all x in R*. This is clear in
the case of rules 2 and 3 and it can be proved in the case of rule 4 simply by
observing that 2X > x if x > 1 and that if x < 1 we have 0 < x < 1 < 2%,

Remark (2) As a result of (1) we know that the function f(x) = x is the
smallest function is S, i.e., if g(x) € S, then g(x) > x for all x in RrRY.
Furthermore, the set Tl of functions in S which are derived using rule 4 once and
only once has as its minimal member the function f(x) = 2X.  And, in general, the

set T, consisting of all functions in S which are derived using n and only n



applications of rule 4 has as its minimal member:
‘zx
f(x) = 222" where there are n 2’s. For brevity we will give this
function the following simpler notation: f(x) = ®p(x). Thus, Py(x) = x, ?,(x)
= 2% etc.

Motivated by the fact that we are interested in the number of applications of
rule 4 required to form a function f in S, we make the following definition:

definition: let f be a function in S, then O(f) = n where n is the number of
applications of rule 4 required to derive f. We also define the following sets
related to the function O: Dy = {f € S: OF) = 0}, Dl ={f € S: VN = 1}, ...,
On = {f € S: Of) = n},....

Remark (3): There is no maximal function in On. To see this, it suffices to
observe that x" € Dy for all n in Z' and that these functions increase as x
increases. The cases for Dl, 02, ... follow immediately.

Finally, in proving many of the theorems which follow, we make ﬁse of
I’Hopital’s rule and hence we make:

Remark (4): all functions in S are differentiable on R*. This follows from the
fact that rules 1, 2, and, 3 produce differentiable functions on R* and from the fact
that if g(x) is differentiable on RY , then h(x) = 2g(x) is differentiable on R™Y

(h’(x) = In(2)-g'(x) .28

).
We now define the relation f is equivalent to g (written f ~g) as follows:
Let f and g be primitive functions. Then f~g if at least one of the following

three conditions hold:

1) lim f(x) _ k wherek € R+;
x—poo g(x)

2 lim %)
x—oo g(x)

> 1 and lim f(x) < 1 for some n € Z+;

X—40 [g(x)]"

Yo



f(x) <1 and lim [rGo1?

3) lim > 1 for some n € zt.
x—po g(x) x—oo  g(x)

Note: in each of these limit statements, we consider the symbol +oco to be greater

than 1. In addition, since every limit we consider in this paper 'is a limit as x tends

2 b

to infinity, we will abbreviate the symbol Xl_ir’ré‘> by the simpler ’lim.’

We observe that by the definition of the relation ~ , f ~f, f ~g « g ~
f,and lastly, f ~ g & g ~h — f ~ h. Thus ~ is an equivalence relation on
S.

We make one more definition to facilitate the expression of certain theorems;
definition: Let f be a primitive function. Then we define the series of functions
f, f5 f3 ..o, fn as the individual steps in the construction of the function f from
rules 1 through 4; f,, is obtained from f, by an application of rule 2, 3, or 4.. For,
example, if g(x) = 4 + 20*3, then we have the following: g,(x) = x, g,(x) =x + 3,
gy(x) = 20 and g (x) = 4 + 23 We notice, however, that we ha\}e not
established that this series of functions is well-defined. And, in fact, it is not.
For instance, if f(x) = 12 + 6x, we have f(x) = 3(4 + 2x) = 2(6 + 3x) = 6(2 +x). But,
we can see that this indeterminecy only concerns the constant terms and that (1)
f,(x) is always uniquely determined (It will simply be the power of x occurring in

f(x).] and (2) the number of applications of rule 4 is also uniquely determined.

These two invariants are sufficient for establishing the desired results.

81

If f,g € DO, then f ~ g.

Proof: It suffices to observe that lim fx) _ k-limg—(i) "where k € RY and then
g(x) g,(x)

just apply I’Hopital’s rule. -

One implication of this theorem is that rules 2 and 3 preserve the property of

A



similarity. The general result that f ~ g — fn ~ gn where f, is derived form
f by using rules 2 and 3 and gp is derived from g using rules 2 and 3 may be

proved from the definition of similarity by straightforward algebraic means.

§2
If f € Og, (m > 1) then there exist unique natural numbers ny, ny ... Nm
such that:

(*) lim —-—L(—g—)-—r"'m— = k € R+o

22nl2n2'
Since this is too awkward to write out, we introduce the following abbreviation

for the denominator: 2(n1,n2_ o )
The theorem is stated for m > 1 but can be extended to m = 0. For this special
case, we say that if f € Do then there exists a unique natural number ng such

that lim I_I%Q -k € RY.
<0
Proof: The case where m = 0 is trivial for we simply let n, be the exponent of
~f.(x). Uniqueness follows from the comments which proceed the definition of f(x).

We prove the general result by mathematical induction.

Suppose that the theorem holds for all functions f in Op. Then we need to
show that this implies the theorem for O_,,. Let f be functions in O,,,. We
prove the result by examining the series of functions f, f, ..., fn.. By the

definition of O_,,, we know that rule 4 is applied exactly m + 1 times during the

mel
construction. Let k be the unique natural number with the following property: f,.;
is obtained from f, by applying rule 4 for the (m + 1)st time during the construction

(o = 2'9). We know, by the definition of Om that f, € On. Thus, there exist

unique natural numbers n,, ny ..., nm such that 2[n1 ips o ) satisfies (*).
£ (x)

(nl,nz, [ P

Let lim -k, € Rt -

2



»*

fk+l(x)

Then, we have (1) lim 1 € RY. This statement is not clearly

(ky,nq,np, ..., D)
true; in fact, for general functions it would be false. For example, let
£(x) ofx)
f(x) = x + vx and g(x) = x. Then, we have lim == = 1, but lim S—— =
g(x) 21 -g(x)

The reason why it holds for primitive functions is that there is only one term in

f (x) which tends to infinity as x — +oo, namely, the term which contains the x.

All other terms are merely constants. Hence, we have:
f,..(x)
: k+1 :
lim s—=——— = olimfiog,tfy, 100 — 109,(24 . s, .., )}
("1v"1'“2v .-y D)
= nlogy@) tim[f 0 — K200y 0, .. ]

But, from what has been said earlier it is clear that the above limit is equal to
some constant ¢ € RY. This constant will be equal to the sum ¢ of the constant
terms in f K Thus, the entire limit is equal to 2° which is clearly in RY. From
here, the rest of the proof is straight forward. The functions f,, f _,, ... f,,, are
each obtained from their predecessor by an application of either rule 3 or rule two.

But rule 2 will not effect the validity of (1) while rule 3 merely multiplies the limit
f(x)

("1'"1-"2' ..y N}

by a natural number. Therefore, we have the desired result that lim

=p € R where k, and n; are uniquely determined.

§3
. . f(x)
Theorem I: O(f) > O(g) — lim 20 = 400,
We prove this result, like the last, by mathematical induction.

Suppose O(f) =1 and O(g) = 0. Then lim % > 1 by remark (2). Also, there

n
exists a unique natural number n such that lim 22— = k € RY. Thus we have the

g(x)
following:
X X
lim 2_%3 > lim g%_x) = k-lim }%ﬁ = +oo by I’Hopital’s- rule.

Next, suppose O(f) = m + 1 and O(g) = m. Then, by §2, we know that there



exist natural numbers n,;,n,, ..., Np.p,k;ky, ... , km such that:

lim f(x) =p € R* and lim g(x) =q € RY.
2 2
("1-n2' s M 1) (kl’kz' P km)
We further have:
2 n. n,
lim %—% - g-lim g" 2 Mmaed)
gix <y, Kor ooe v km)d
(xx) p lo (2)'lim[n 2 — k,;-2 ]
q- 298 1 %tnging nm o ) V%%, kg, ooy kmd)®

But, we know that 2(n2. ng y € O, and that 2(k2' Kar e s k) € O, _ 1 and hence

v oo Npnel

2y ngs e s men)

lim +c0, But this implies that (»x) — +oc. This establishes,

2(k2, Kgs <o s km)

by mathematical induction, the fact that if f € O, and g € O, then lim ;E—:g =

+co, The general case, where g € O, and f € O, . follows by choosing functions

h; € Oner s he € Opns oo s Wy € Op,.; and observing that lim—t¥)__ = 4oo and
hp (%)
that the h’s decrease as i decreases until we reach h_,, which has the property
that limhL‘(X) - 400, 1]
g(x)
84

Theorem | tells us that there might be a relationship between the equivalence
classes of S under ~ and the sets O,, O,, ... since, if f € O, and g € O, . then
it is not the case that f ~ g (This follows from the definition of ~ and from the
fact tha@ if f € Om then (f)" € Om.). It would be nice if the equivalence classes of
S were precisely Oy , 0, , 92 , .... Unfortunately, this is not the case as can be
seen in following example: -

Let f(x) = 2* and g(x) = 2%, Then clearly f,g € O,. But,f A g since

g‘\



2 2
2" . lim2— = 400 V +
T lim = © ne€Z’.

Thus, if we want the equivalence classes of S to be D, O, D,. .. we have to

lim

change the definition of our equivalence relation. One way to do this would be to

allow the insertion of arbitrary natural numbers at places other than the exponent

x

of the entire function. For ez;ample, if f(x) = 222 , we could allow the following
4-x

sort of change: f/(x) = 2°°7 . . This would eliminate the problem alluded to in

the above example. Thus, we formulate the following revised definition of

similarity:

Definition II: f ~ g iff one of the following three conditions holds:
(1) f ~ g under the first definition definition of similarity;
(2) lim g(x) _ +o0 and lim 8x) _ 0 where f'(x) is defined as follows:

f(x) fi(x)

Let 2( ) be such that lim 2# =k € RrR*. Clearly, this is only
Ny, Ay ooy -on N (n n nm)
1: N2y oo s

possible when O(f) > 1, but the case where D(f) = 0 is not a problem since the in
this case there is nowhere else to insert natural numbers other than as exponents
of the functions. We define fX(x) as follows: fX(x) = 2k, ny, kp'np .. . kmenm)

where k, are arbitrary natural numbers;

(3) lim L};) = +o0o and lim -tl(—xl = 0 where g'(x) is defined in a similar manner.

g(x) g (x)

We can now state:

Theorem II: The equivalence relation ~, using its second definition, partitions S
into the following equivalence classes: O, O, D, ...
Proof: The proof has two steps. We prove (1) f ~ g — O(f) = O(g) and
(2) O(f) = O(g) = f ~ g.

We prove the contrapositive of (1), namely that Of) 2 O(g) —» f ~ g.

Suppose that O(f) x O(g). Assume, for the sake of argument, that O(f) > ©O(g).

Then O(g) = m and O(f).= m + k for some mk € Z*. Thus, by Theorem I,

flx) _

2(x) +so. Furthermore, g!(x), by its definition, belongs to Om and hence:

lim



tim £2) _ too.  Finally, (g (n € Z*) is also in Om and hence lim f(X)n -
g'(x) [g(x)]
Thus, I A g.

For (2), suppose O(f) = O(g) = m. Then, by §2 we know that there exist

natural numbers k,, ko, ... , Kmy C;, Coy ... , Cm Such that:

@ lim —X®) - 5 ¢ R* and (b) lim ~—8% - ¢ ¢ R*.
2 2
(kl' k2' . km) (cl, Cor -o- cm)
.Suppose that lim fix) _ j € RY. Thenf ~ g. Suppose lim fx) _ +o0. Then we
g(x) g(x)
have the following: let gl(x) = 2( . Then lim fx) _ o and hence,
c1 Ky Co Ko oy 2°Cm Km) g,(x)
by the second definition of ~, f ~ g. The case where lim ;E—);; = 0 is analogous to
this last case. Hence O(f) = O(g) — f ~ g and the theorem is proved. O
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In this section we will make a few generalizations of the set S of primitive
functions. The first and most natural such extension is to the function space S,
which is defined as follows:
(1)if f € S, then f € S;;
(2)if f,g € S, thenf + g and f-g are also in S,.
We make the observation that if f ~ g, then (f +g) ~ (fg) ~f ~ g. The
* proof of this fact is straight forward: it involves simple algebraic manipulations

in each of the four case for which similarity is defined. We demonstrate one of

them for clarity: suppose lim flx) _ +c0 and lim f(X)n = 0 for some n € R*. Then,
g(x) [g(x)]

im —1X) im — LX) im 1) _

llm_f(x) + o) +o0 and lim GO + GOl < lim () 0. Therefore,

f ~ (f + g). The case for f.g and the other remaining categories of similarity use
a closely analogous method.
Since we want Theorem Il to hold in S,, we make the following definition for

the D/’s:



definition: If f,g € On then (f + g) and (f-g) also belong to On.

Another simple observation is that if f A g, then both (f + g) and (f.g) are
similar to the larger of the two functions. We make the analogous definition for
the O/’s:

definition: If f € Om and g € O where m < n, then (f + g) € O, and (f-g) € On.

Another extension of S which proves interesting is one which we call S, and it

is defined as follows:

(1)if £ € S, then f € S,;

(2) the following group of functions belongs to S,: x%, X, x< , .4
(3) if f,g € S,, then both (f + g) and (f-g) are likewise in S,.

The reason why this function space is interesting is that it contains a model of
transfinite cardinal arithmetic (TCA). This, incidentally, was the motivating force

for this work. We pursue it in the following section.

86

* To see why S, is closely related to TCA, we make a few observations. First,
we notice that the equivalence relation ~ (under its second definition) imposes a
natural on the sets S, S,, and S,. This order corresponds to at least two distinct
notions: (1) the number of applications of rule 4 in generating our functions and (2)
the sets Z+, P(Z+), (P[P(Z"')], ... where ® means ’'power set of. The intuitive
justification for (2) consists in forming a correspondence between the functions in
S, (or S or S,) and certain sets which may be constructed in Zermelo-Fraenkel set
theory. This correspondence is as follows:

1) f(x) = x" ~ z", -

@ ) = x<  ~ ZZ

(3) h(x) = [c + f(x)] = ¢ U f(x) where ¢’ represents a set of cardinality c;

4) h(x) = ¢-f(x) =~ ¢ X f(x);



(5) hix) = [f(x) + g(x)] = f(x) U gx);

(6) hix) = f(x)-g(x) =~ f(x) X glx);

M bt = 2/ ~ el

The equivalence classes g, D;, ... correspond nicely with sets of cardinality

Rg, 8y, .... In light of this fact, we define the cardinality of a function f € S,:
definition: the cardinality of f, written as f and card(f), is equal to the subscript

of the equivalence class to which f belongs, i.e. f € Do — f = 0, f € O, — f =

1, ...

Using the remarks in §5, we can see how closely related this concept of
cardinality is to TCA. In particular, we know that if f > g then card(f+g) =
card(f-g) = card(f): in TCA, we have the similar statement, namely, if &« > B, then
(@ + B) = (x-B) = a, where o« and B are any two transfinite cardinal numbers. The
laws which govern TCA, . such as commutativity of multiplication and addition,
distributive property of both addition and multiplication, etc. are all valid for the

cardinalities defined in S,. Thus S, is a model of TCA.

§7
Employing this close relationship between TCA and the O’s, we prove the
following:
f(N
Theorem III: Let f,g € S,. Then, if g—i—l*l:; > 0, lim g—’;—; = +c0 where ;((::‘3 is

defined as follows : fg:-(z% = {0, if g(g) = PIFR,) or L{PIf(RY]} or ...
)
f(R,), if T(R)) = #lg(N)] or PiPlg(NY]} or ..

The fraction is undefined when ;) = g(NRo).
Proof: The proof is an immediate consequence of Theorem ] and the observation

that the O’s form a model of TCA.



§8

We have defined cardinality on the sets S, S,, and S, and we know when two
functions have the same cardinality and when one is less than another. We have
. not, however, formally defined the latter. Thus we have:

definition: Let f,g € S (or S, or S;). Then we say that f < g iff

. f(x) + . f(x) = .
AL v 1 = 400, that f

lim O © ¥Yn € Z7 and lim 2 . We say tha < g iff

lim gf——g; = +o0

Pursuing this definition, we produce the following sufficient and necessary

conditions for f > g: f > g iff there exist functions f; € O, and g, € Om where

fi(x) _ . ogilx) _
0x) 0 and lim —_g(x)

This reformulation of f < g points in the direction of another extension of

+co

n > m such that lim

the set S. We state this formally as follows:
(Dif f € S, then f € S

(2) if 3 two functions f, and f, in S; which both belong to O, for some n with the

fl(X) fz(X)

g(x) (%) > 1, then we say that (a) g(x) € S; and

< 1 and lim

property that lim
(b) g(x) € On.

It is clear that Theorem I as well as most of the comments in §5 and §7 still
hold in S;. But, it is not at all clear that, for instance, theorem II holds in S;. In
fact, it does not. To see this, we produce a counter-example.

Let g(x) = x2 — In(x). The functions f,(x) = x and fx) = x> are both in S,
and are both in ©O,. Furthermore, they satisfy the requirements of (2) in the
definition above. Therefore g{x) € S; and g(x) € O,. But, there is no integral
gx(—:]:) =k € RY. Itis easy to produce similar examples

for the other orders of functions.

power m of X such that lim

In addition, the nice correspondence between functions and sets is lost because

such functions as g(x) = x> — In(x) cannot be set in any reasonable correspondence



with sets. The reason for this is that in our function spaces ’cardinality’ is defined
more or less in terms of the rate of growth of functions, and hence functions like
In(x) which grow at slower rate than powers of x but which nevertheless tend to
infinity as x tends to infinity have a cardinatlity between finite and the ’smallest’
infinite cardinality, namely 0. With sets, it makes no difference how sparse a set is
in the integers: as long as it is not finite, it will be equivalent to the entire set of
integers-- sets are considered as wholes whereas our functions are considered only
in relation to their growth. Our functions represent potential infinity while the
sets of Zermelo-Fraenkel set fheory are actually infinite. The second half of this
paper will be concerned with the behavior of these potentially infinite cardinalities;
but before concluding this first part, we mention a few more properties which hold

in §, S,, and S,, but which fail to hold in S,.

8§10
All functions in S, S,, and S, are bounded below by 0. This is not the case in

S, since the function h(x) = f(x) — n isinSs; Vf €S, and Vn € Z*. Hence,

fn(X)
fm(X)

= +o0, when n > m, then it is not clear that there exists a well-defined function

if we let f,, f,, f;,... be an infinite sequence of functions in S; such that lim

g(x) such that lim g(x} = +o0 and lim f;(Lf)) = +o0, ¥Vn € Z¥. (Any function space in
which this is true we will call pseudo-complete. The property itself will be termed
‘pseudo-completeness;’ the justification for this name will emerge later.) When we
say well-defined, we mean a closed general form which will be valid for all infinite
sequences of functions which satisfy the hypotheses of the theorem, or if this is
not possible, a general procedure for producing the function g(x).

An example of a pseudo-complete set of functions is the following: let S, be

the same as S, except that we allow all real powers. of x greater than one rather

than only integral powers. Let f,, f,, ... be an infinite sequence of functions in S,



which satisfies the property delineated above. Then, we can define g{x) as follows:
Let A, - lub{yl y = fi(x;) for some i & Z+}; we know this exists because the

functions in S;, are bounded below by h(x) = x. If we let g(x,)) = A, , Vx, € R,

fn(X)

then g(x) > x and hence lim g(x) = +oo. Also, we know that limf " +oco and
n+1
that g(x) < f,(x), Vx € R*; therefore liml‘}—;}? = 40 Vn € Z*. Thus Sy is

pseudo-complete. [t is clear that the method used above to show that S;; is pseudo-
complete is inapplicable in the case of S;. We leave it as an open problem whether
of not S; is ﬁseudo-complete.

We observe that the functions whose cardinality is between n and n + 1 are
excluded by the definition of S3. (We haven’t yet shown that there are such
cardinalities and ask the reader to take it on faith until reading Part Two.). The
reason why we selected the name pseudo-completeness is that the function spaces
which we know to be pseudo-complete lack certain cardinalities-- exactly which
‘ cardinalities must be excluded is not entirely clear. It would be nice to prove a
general theorem about the cardinalities of a function space and pseudo-completeness,
but, it is not clear that such a general relationship exists; we leave this as another

open problem.

PART TWO

§11

We will now attempt expand upon the comments in §9 and §10. We start this
process by introducing another extension of S. Let S, be defined as f ollows:
(1)if f € S,, then f € S
(2) logy(x), log,llog,(x)], log,{log,llog,(x)l}, ... € S, (We will write log™(x) for
logzllogz....logz(x)] where there are n log’s; this is not to be confused with [log(k)]");'

() if f € S,, then ()°" ¥ €S,, Vn € Z*;

N



(4) if f € S,, then (c + f) and (c-f) are also in S,, V¢ € Z+;

5)f,g €S, > (f-g)and (f + g) € S,.

This, in practice, is extremely difficult to sort out and to avoid the problem of
finding the general form of a function in S,, we prove the following important

theorem:

Theorem IV: Part A: card(f) = card(g) ~ card(f") = card(g") where f,g,h are
arbitrary functions in S,.

Proof:

Suppose card(f) = card(g). There are four ways in which this can happen:

[N _f_(x_)]h(x) _ 0 ifk<1

(a) limf—(-}—()=k € RY. In this case lim——————=lim[()
gix {kE]R*orwo,ifk:l

g(x) T [g(x))ne
400, if k > 1

[fGPR ™ _ e [fz(x)]h(x) -

Suppose k < 1. Then Lim{S9"™ = 0 and 1im LG ey

+o0; thus, if k < 1, card(f™) = card (g"™).
Suppose that k > | (when k = 1 we are only concerned with the case where the

limit is +o0). Then we have :

[f(X)]h(X) +o0 and lim HLLC) hal lim LGP 0; and thus card(f") = card(g").

[g(x)IMt) 2 [g%(x)r™
h(x)
(b) lim 1) _ +o0 and lim _fe) 0. In this case, we have lim [f(X)]h( 5 =
g(x) [g(I (g™
’ h(x)
lim [f(X)]h(X) +o0 and lim _[_f;n(__x_)_]____ - 0; hence, we again have card(f") = card(g").
( ) [g (x)]h(x)
1
The cases where (c) lim f(x) _ 0 and lim fx)_ +oo and (d) lim gx) _ +o00 while
g(x) g(x) f(x)
lim % = 0 may be proved in the same manner as (b). Thus, we have proven

that card(f) = card(g) — card(f") = card(g") and we now prove the reverse
implication.

-Suppose card(f") - card(g"). Again, there are for bways in which this can be
true and we will give the direct proof of two of these.

(a) lim [f;?(-—;]h(X) =k € R*. In this case, since lim h(x) = +o, we know that
0 < lim % < 1 and hence card(f) = card(g).



(b) lim @]h(X) = +c0 and lim [-f,,(i)]h(X) = 0. The first of these two limit
g(x) g"(x)

f(x)
g"(x)

statements says that lim g%—;g > 1, while the second tells us that lim

< 1;
hence card(f) = card(g). Again, cases (c) and (d) follow the method applied in (b).
Therefore, part A of the theorem is proved and we now proceed to:
Part B: card(f) < card(g) « card(f") < card(g".
First, suppose that card(f) < card(g). From part A we know that it cannot be

the case that card(f") = card(gh). Suppose, then, that card(f”) > card(g"). This
f(x)

says that lim [M]h(X) = 400 and hence that lim —= > 1. But, since card(f) <
g(x) g(x)
card(g), lim fg% = 0. This is a contradiction and hence it is not the case that

card(f") > card(g"). But the only possibility left is that card(f’) < card(gh).
Strictly speaking of course, we have not proved anything since we are assuming
that one of the three following hold:

(1) card(F)} < card (G);

(2) card(F) = card(G);

(3) card(F) > card(G), where F and G are arbitrary functions in S,. Equivalently,
we have not shown that the limit statements occurring in the formulation of ~
always exist. This is left as another open problem. One way around the difficulty
would be to use a constructive proof rather than the reductto ad absurdum
employed here. Again, we leave this as an open problem. At any rate, what we
have established is that /f the specified limits exist, then card(f) < card(g) —

card(f") < card(gh).

Now suppose that card(f") < card(g"). Then lim [&x—)]h(X) = 0 and thus lim f(x)
g(x) g(x)
< 1. Suppose that card(f) > card(g). Then Ilim fé—((—f{—; = +o0 and we have a

contradiction. By part A, we know that it cannot be the case that card(f) =
card(g). Hence, subject to the same restrictions indicated earlier, we may conclude

that card(f) < card(g).



The purpose for this theorem which almost necessarily appears to be a
digression is to avoid considering separately the cardinal numbers between 0 and 1,
between 1 and 2, between 2 and 3, etc. This theorem tells us, in an indirect way,
that the structure of the set of cardinalities between n and n + 1 is the same, for
an arbitrary natural number n. More specifically, the structure of the set of
cardinalities /ess than 0 is equivalent to the set of cardinalities between 0 and 1.
We will try to elucidate this idea as we develop the cardinal numbers less than 0.

Closely related to this theorem is the following: card(f®) < card(f") iff card(g)
< card(h). This can be proved constructively in a straight forward manner and

hence we will not prove it here.

§12
We begin this section by showing that the cardinality of f(x) = log(x) is less
than 0. To do this, we select a function of cardinality 0, the simplest choice being

g(x) = %, and use the definition of cardinality.

li X = + s . : X = 13 1 =
im Tog(o) o and thus f < 0. We also have lim TogGOT lim AogTF i
lim —2 = [ X = wee. = lim £ = +co. ,
im nllog(I im D) ogGOT 2 lim by =) Therefore, by
definition, card[log(x)] < card(x) = 0.
(n)
Next, we show that card[log[")(x)] < card[log["'”(x)]. We have lim IO?—H(J}Q =
N1 log " (x)

1/ x-JTiog"00
lim ——=1—— . lim log"(x) = +oo by I’Hopital’s rule. L’Hopital’s rule applied m

1/% [ Tog®

i=]l
log!™(x)

o |
[log™ V()™

+00

n)
times will also give us: lim im l_ogm.(x) =

Thus, we know that card[log("](x)] < card[log(m](x)] iff n > m.

Using the fact that card(x) > card[log(x)] > card(n) for n € Z*, and using the

log(x)

result related theorem IV we see that card(x") = 0 < card(x ) < card(x™) = 1.

C (m)
We can also see, by a similar argument, that 0 < .... < card[x'°gm(x)] <



card[x'°9(m-l)(x)] < e < card[x'°g‘x’(x)] < card(x) = 1. And it is in this way that we
understand the statement that the structure of the set to cardinalities less than O
is equivalent to the set of cardinalities between O and 1.

In concluding this section, we write in closed form the cardinalities of S, which

are less than 0: 0 > card[log(x)] > card[log[log(x)]] > card[log“’(x)] > el

§13

Before extending S,, we make the comment that it is not pseudo-complete. Let
fi(x) = log(x), fy(x) = log¥(x), fy(x) = log®(x), .... This infinite sequence of
functions clearly satisfies the hypotheses for pseudo-completeness. There exists

no function g(x) € S, such that lim g(x) = +o0 and lim 2"((;{)) =+0o V € Z¥. We

also show that there is indeed such a function g(x).

Let g(x) be defined as follows:

togtx), if 0 < x < 24
logllogxl, if 29 < x < 22

6
5 2
g(x) togllogllog(x)}, if 22 < x < 22

{ - .n*2 .n+3
tog™pa), if 22° < x < 2% where there are n 2’s. el

n

We can see that lim g(x) = +oo since, on any interval of the form [22° 22" |, we

have (n — 2) < x < (n — 1). Thus as n — +oo, g(x) — +co. It is also clear that
i+3

lim fix) _ +00, since Vx > 227 g(x) < f.,(x). Thus, the reason why S, is pseudo

g(x)

complete is that it does not contain this limit cardinal. This limit cardinal is in
some sense similar to the ideal number -—oo; if we say that card(log(x)) = —1,
card[log(z’(x)] = —2, ... this statement becomes a bit more believable. Of course,
there is a slight problem with this modification, namely that we do not know
whether or not lim h(x) = +oc implies that card[h(x)] > cgrd[g(x)] for an arbitrary
function h. We leave this as an open problem. One other difficulty with this

introduction of a limit cardinal is that it excludes finite cardinal numbers from our



system; indeed, any finite cardinal will have the property that card(a) < card[g(x)].
If the situation is viewed in a certain light, however, this latter difficulty may be
avoided. @ We are considering the cardinalities of potential /nfinities and hence the
finite case is excluded from our consideration from the start. The concept of a
minimal potential infinity is rather intriguing, but we leave this for the moment and

continue to build our set of cardinal numbers.

8§13

We now extend S, to S4, which is defined as follows:

(1)Iff € S, then f € S4, ;
@I f €S, then D™ ¥ e S, vneZ*.

As in §12 we will only consider those cardinalities which are less than 0.
Thus, we will be considering functions of the form [log‘"’(x)]'°9(m)"" for some m, n €
zt. We will abbreviate this as fmn. Before introducing the order of the new
cardinals thus introduced, we make a few simple observations which will help to
clarify the somewhat complicated situation.

In the first place, it is clear that card(fmn.) > card(f,,,,)) > card(fn,.n) > ....
Equally clear is the fact that card(fmn) > card(f,,,,) > card(f,.,) >.... Butitis
not clear, at first sight, what the order of these two sequences will be when they
are combined. In fact, the actual result is somewhat counter-intuitive. We state
the result and then proceed to justify it: fmno > f, ., > 0, > oo > 1, >0 00
> enifm >n and fon, >, 0 > Tppe > o0 D> f0 > fign > e if m < .
To see why this is true, we present a specific example whose generalization is
sufficiently clear.

We have: f,5 > f35 > f,q ... and similarly f,5 > f, o > f,, > ... Now,
putting these toéetﬂer, we show that card(f 2,n) > card(f, ;) where m > 3.

f .
lim ﬁ = 2lim[log‘3’(x)-log‘"’(x) - n-log"“‘”(x)'log‘s’(x)]. But since m > 3 it is
m,5



clear that lim[log‘3’(x)~log[")(x) — nolog(m*n(X)-loz‘s’(X)] = +oo ; the log"®(x) term
dominates the others (To be strictly precise, we need to show that f, - dominates

n-{log"®(x)1"

[log™(x)] , but the extra natural number m does not effect the limit).

Thus we have the following ordering: f,5 > f,o > f,; > oo >35>, > 155 >

When we step back to see what exactly is happening here, the behavior
becomes somewhat simpler. Given two ordered pairs of natural numbers (a,b) and
(x,8), we make the following definition: let k, = min(a+1,b) and k, = min(a+1,8).
Then, we can say that card(f,,) > card(f,,s) if k; < k,: this follows from the

imllog(f, - %o g)]

method used above of looking at 2 , in fact, this method is used in the

remainder of this paper. If k;, = k,, then we look at I, = max(a+l,b) and 1,

max(a+1,8). If I; < |1, then again we have card(f,,) > card(f,,s). If we have |,
l, and k, = k, then clearly f,, = f, 4. Thus we have a general procedure for
determining the order of the cardinalities of S4, which have the form f,, with
mn € Z* and deriving the order given above is merely an exercise in the
application of this procedure.

Implicit in this argument is the following: it is not the case that
fop = foa,s -2 =a & b=pH. We demonstrate this as follows: f,, =f, 5 « 1, =1,
& k, = k,. There are numerous ways in which the latter half of the implication can
be valid. We list them:
(@ k,=(a+1)=(x+1)and 1, = b= [case where a = o« and b = 8];
M k,=(@+1)=8 and |, =b =(x + 1)
ek, =b=p8 and ], = (a + 1) = (0 + 1) [same as case (a);
dk;=b=(x+1)and |, =(a + 1) = 8 [same as case (b)].
Hence we have f,, =f, 5 « (@a=a and b =75) or(a =B —1 and b=oa +1).
And, as may be anticipated from the fact that there -are no other cases when f,, =

fo,s » applying (b) twice gives us a = a and b = 8. An example of this



transformation is the following: [log‘3’(x)]'°9[3)"" - [log‘z’(x)]'°g(4)("]. Although perhaps
not at first apparent, this equality is clarified by taking the log of both sides.
One apparent consequence of this transformation is that card(f,,) = card(f,s) «~
foo(x) = g 4(x).
§14

Although we have a procedure for generating the order of the functions f,, ,
we do not know where the functions g,(x) = log!"(x) occur in this ordering, nor
have we given the general structure in a closed form. These two subjects will
occupy us in this section.

We begin by showing that g, < fmn < 8u,-2) (To make this statement general
one may define g, -x and g.; = x°9), The first inequality is self-explanatory

while, for the second, if is sufficient to show that fi x, < 82- We know that lim

fk K imlge .19 — 9.-1)

ﬁ - 2 artk T 2 oo This gives us a general orientation of the
-

relationship between the f,, and the g,. This information is not, however,

sufficient to give the entire ordering because it does not pinpoint the location of
the g,. The derivation of this location is somewhat tedious and for this reason we
simply state, without proof, the order of the cardiﬁals less than or equal to f,, in
Sy
card(f,,;) > card(f,,) > card(f;;) > ... > card(f,;) > card(f, ;) > .... > card(g)
> card(f,3) > card(fs3) > card(f,3) > ... > card(gy) > card(f,,) > card(f,s) > ..
> card(gs) > card(fag) > .eeeeeeee > card(f,,, ) > card(f ,, .,) > card(f ;) > ...
> card(g,) > card(f_,, .,) > «ccceceeeeenn.. It takes some time before one’s intuition
can become a trustworthy guide in these orderings and if this order is not clear to
the reader, we suggest that he or she experiment with the limits involved until it
does become clear.

We note that it appears as if all ordered pairs {(m,n) do not occur on the list,

for example, (2,2) is not on the list. But, (2,2) = (1,3) which does appear on the



ordering. In fact, it is possible to show that if (m,n) does not occur on the list,
then (n-1,m+1) does.

One important thing to notice in the ordering is that each g becomes a limit
point in the sense that to the /eft side there is no adjacent cardinality. In other
words, there is no minimal cardinal o with the property ‘that o > card(g).
Contrarily, we observe that there is a maximal cardinal o, namely f,, .., such that
o < card(g). This property will carry over when we further extend S, in the

following section.

8§15
We extend S,/ to S, as follows:
(Hif f € Sy, then f € S/
() if f € Sy, then (1)°9"¥ e S, vn € Z*.
We make the observation that [[log‘"’(x)]'°9(m)["’]'°g(k](") - [log‘”’(x)]'°9(m)("’"°g(k)("’,
which we will write as h,,,. Observing that h = h,, ., we will write both of

these as h where (m,k) is understood as an unordered pair. Thus, we are

nim,k)

interested in ordering the h together with the f,, and the g, (the symbols m,n,

n(m,k)
and k are used independently in the different sets of functions). Trying to
discover this order is much more tedious and difficult than in the case where we
only considered the g, and the fmn. As in the last case we will not show the
derivation. Rather we introduce a function which will tell us which of two
functions has a larger cardinality. The purpose of this is that this function will
provide us with a decision procedure for determining the relative size of any two
functions the further extensions of S,”.

Before defining the function, we first define the extensions of S,”” which are of

interest. S/’ written as S4(3] is defined as follows:

Mif f € S4u , then f € S4(3];



(Qif f €S, , then ("W €Sy, VneZ'
4

We can now define S4(n) for all n > 4. The definition is recursive:

Q)if f e S4(n_1) then f € S4(n, H
(m}
() if £ €S, then ()9 X €S (). Vm€Z

With this information we can now define a function F: Z — {—1, 0, 1}.

If n is the least integer for which f € S4(n, , then generalizing the comments made
earlier in this section, f = G, 4,0, ... 2y = [log(al)(x)]'°g(a2)(")"°9(a2)(")' - tog "0 for some
set {a)} of natural numbers where (a,, as, ..., an) is an unordered (n-1)-tuple.

Let (fy, f5 ... fn) be (a; + 1, a,, 83, ... an) in increasing order and let (g8, ... 8n) be

defined similarly.

+10f fye > gx
Then F; (x) = {0, if = g«

-1, 0f fy < gx

The one stipulation needed is that fy = 0 V¥x > n where in is the least integer
such that f € S4(n,. Let k.. be the /east integer for which F is not equal to
zero. Then we have the following important theorem:

Theorem V: card(f) < card(g) iff F(k) = 1, card(f) = card(g) iff F(x) = 0 Vx € Z+,
and card(f) > card(g) iff F(k) = —1.

We will not prove this since it is essentially a mechanical exercise using the
same methods which have been applied throughout part Il of this essay. We make
two observations. First, the definition of F implies that F, (x) = — F x) Vx €
y AN Secondly, we note that the theorem implies that two functions can have the
same cardinality if and only if they appear in S4(n, for the same set of n’s. We can,
in fact, list the set of functions which are equivalent to a given function f. The
transformations discussed in §13 carry over nicely for the general case of S4(n). The
following set of n functions are equivalent to faﬂaz.aa, et

af

‘1(‘2"3' ..., ap)



() f

a2-1(a1¢1,33,a4, .oy ap)
(3) fa3-1(alol,a2,a4, oy 2p)
(n-1) fan_l-llal+1,a2,a3, caBp_o.an)
(l‘l) fan(al*l,az,a:s, N A

The structure of S4‘3, is fairly complicated and we will give the ordering of its
cardinalities without proof (we omit the ’card’ notation as it is implicit that we are
discussing the functions’ cardinalities):

hl[l,l) > h2(1,1) > h3(1,1) > e > h1(2,1) > h2(2,1) > .. > fl,l > h2(3,1] > h3(3,1] > h4(3,1] >

wo >0 > By > By > heany > e > Doy > b oan > Do >

> for > Moz > e >fi2 > By > Ngga >hygy > >3 > hyg ) > hygy
> > B2 > Bromeza > o > fine > Booen > > 81 > hygg > Ny
> > o5 > Mgy > huug > 0 > 055 > hygy > Bgeg > > 82 > hy,, >
Byggy > oo > 80 > Bz -

As in the last case, this is at first extremely opaque but it becomes much
clearer with familiarity. We make the observation that, as in the last extension,
each cardinality of S4,, becomes a limit point to the left of elements in S4(3, but that
it has an immediate successor to the right. This behavior is in fact general and we
prove the general result in the following theorem:

Theorem VI: If n is the minimal integer for which f € S4[n) , then there is a maximal
function g € S4(n+1) such that f > g but there is no minimal function h € S4(m”
such that h > f.

Proof: f is of the form f ay 3 We look at the infinite series of functions

al(az,a3, cen
tm = b pag o anm It is clear that these functions are all larger than f and that t,
>t > ... Thus we need to show that there is no function p € S4(m“ such that

tm >p >f, Vm € Z*. We show this using the function F(x) defined earlier. If

there is such a function p(x) then we have that F_.(k,;) =1 and Foo (k) = —1



vm € Z%. But, by the definition of the tm , we know that F_ (x) = F,, (x) for

x = 1,2,3, ...n. Since p € S4(n,1) we also know that F (x) = F,, (x) Vx > n. From
this it follows that the only integer for which f ¢ and F , differ is n+l. But
since the (n+l)st term of t, grows arbitrarily large, it eventually will become larger
than the (n+l)st term of p and thus we will have, contrary to our assumption,
) = +1. Hence, no such function p exists and f is a limit point on its left

F, (k

tm,p T tm, P

side.
The second part of the theorem we show by a simple construction. We know

that f is of the form f Let (b,,b,, .... bn) be the a; in Increasing order.

. apl *

Then, let g(x) € S4(n+ll = hbn(bpbz: o bpel) 3 WE claim that this is the maximum function

hin S . ,,such that f > h. To see this, it suffices to observe that the only way
(e

to make h larger is to decrease one or more of the b, , but this alteration will

always make h > f.

§16

In this section we consider the transformations in the general case of S4[n]. We
remarked earlier that there are n functions which are in the equivalence class of a
given cardinality of S4(n, . unfortunately, it is not always the case that these
functions are distinct. For example, if we transform f,; we get g, , ., = {23
Hence there is only one function in this equivalence class. What we want is to
have a one-to-one correspondence between all n-tuples (a,,a;, ..., ap), a; € Z* and the
set of cardinalities of S4(n]. The reason why this is problematic is that each
function f € 54(,11 can represent more than one n-tuple. For instance, f, , = f;, and
hence this one function is related to two pairs of numbers. But, on the other
hand, we have f,, = f,, % f,, and thus, although the function f,, corresponds to
two distinct couples of integers, exactly two permutations of f, , occur on our list,

namely f,, and f,,. Hence, we have a one-to-one correspondence between the



distinct permutations of f, , and the and the distinct transformations of f,,. This
property, however is not universal. For example f;, has only one permutation
(itself) but fi5 = £, 4 Therefore, we may conclude that there is not, in general, a
one-to-one correspondence between the distinct permutations of f and its distinct
transformations.

Clearly, there is a one-to-one correspondence between the set of integral
n-tuples and the set of cardinalities of S4(n, since both are denumerably infinite, but
we leave it as an open question whether or not there is simple correspondence of
the sort we were attempting to give, one which will admit extension to S4(,,] which

we briefly consider in the next and concluding section.

817
The definition of S4(°_) follows along the lines of our other definitions. If
f € S&,, then f has one of the following two forms:

mf s, for some n € zt;

ay(apag, ...
Of course, we have not shown that this extension to infinite sequences in the
exponent of a function is legitimate. We need some sort of interpretation for what
the function f,,,, , corresponds to. One possible suggestion would be that it
represents f(x) = [log(x)]('°9""))‘ since the exponent is growing linearly in a sense, i.e.
we go from [log(x)I°*™® to [log(x)]('°g(x’)2 to [log(x)](mgw)s; there seems to be some
relationship between the function g(x) = x and the rate at which the exponent of
the exponent is growing. This will perhaps work in this case, but we must also deal
with functions such as 81(21212. + This should be less than the function f
discussed previously since it contains two’s where f contains one’s. One possible

(Iog(x])\/>< '(Iog[log(xJ])\/x.

interpretation here would be g(x) = [log(x)] But of course, this

sort of interpretation breaks down in a case such as h;,,,,;,,,, , Where each



natural number occurs infinitely often. Nor will we be able to deal with p,,,,5
where each natural number occurs only once. This is another open problem which
we leave for the reader.

We make the observation that # (1) there is a one-to-one correspondence
between all infinite sequences of natural numbers and /f (2) we can show that there
are functions with cardinalities not occurring in S4(m] but 'between’ two cardinalities
of S4(m, then we will perhaps obtain some insight into the structure of the real
number system, or more genreally, into what sorts of cardinal structures are

possible. As far as (2) is concerned, we make the suggestion that a function like

(4), ..
(3)(x)log (x)

f(x) = [log(x)]('°g'°gt"))log is probably between two cardinalities of S4(°°’ and
perhaps does not correspond to any function in S4(m) . This is another open problem
and is, of course, dependent on an interpretation of an infinite product as an
exponent, assuming that such an interpretation is possible.

Two more open problems concern by now familiar topics:
(1) What sorts of transformations leave a function unchanged?
(2) Is F(x) still valid for determining the relative size of two functions?
Again, we see that these questions are both dependent upon an interpretation of the
infinite sequence of natural numbers and thus this appears to be the fundamental
problem. But we can dismiss (2) without such an interpretation, for when we order
the elements of an infinite sequence according to their size, we change the ordinal
number of the sequence, and the reason why F(x) is valid in the finite case is that
ordering a finite set does not change its ordinal number. And with this purely
negative comment and with these unsolved problems we end this paper with the

hopes that the reader will pursue the questions where we leave off.



