A Pictorial Exploration of an

Exponential First-Order Difference Equation
via Complex Iterations

Daniel D. Read
219 1/2 SW 7th
Corvallis, OR 97333

Abstract

In this paper 1 report the results of my exploration into the dynamics of a real, first-order difference equation. The exploring was done by looking at the function over the complex numbers and the for diffeerent values of a parameter having a computer plot points in different colors depending on whether they converged to a fixed point, converged to a cycle of some period or diverged. As much as possible, these pictures are verified mathematically and possible results with respect to the appearance of cycles and their change of period are discussed.

INTRODUCTION

The dynamics of real difference equations. both poynomiai and exponential, is well documented with respect to stablity (1) and also to the appearance of, and change in period of, oces (2, E) ou seathe models as a parameter is varied Whar is not mom is how these same functions are behaving in the fieid of compies rumbers. Presumably there could be cycles in \mathbb{C} before there are any in A : and perhaps at some point these cycies expand to include intervals of the real line.

This paper relates some computer graphic based reseanch that I did on this possibility as well as the eesults 1 came up with it is organized into three sections. 1: How I generated the pictures. 2. A mathematical verification of the pictures. 3: What do the pictures show?

For the sake of clarity, Pve included my definitions of some terms used in the paper. A fixed point of a function is a point \bar{Z} such that $\bar{z}=f(\bar{z})$. A cycle of period n is a sequence of n disthet points $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ such that $z_{2}=f\left(z_{1}\right), z_{3}=f\left(z_{2}\right), \ldots, z_{1}=f\left(z_{n}\right)$. The iteration of a function means composing the function with itself; i.e. $:(f(z))$ is the second iterate of f. A fixed point is stable (locilly stable) if successive iterates of all points "near" the fixed point approach it. it is unstable if the iterates do not approach the fined point.

How I generated the pictures

I started out with an exponential model suggested by (1); it $\mathrm{t} F(\mathrm{x})=\mathrm{x} \exp \left(\mathrm{G}(\mathrm{x})\right.$) where $\mathrm{G}(\mathrm{x})=-1.9(\mathrm{x}-1)+\alpha(\mathrm{x}-1)^{3}$. In the farer
the is an example of a function that is locally but not ghobally stable igionally stable means at ponts approach or converge to a thed pont). Rornuse there 15 not global stablity there should be cyces for some values of r. Fecause of the computer facilities (with color arophet avaliabe and my lack ot experance m ompox anatys,
 the tunction as a compley one instead of a real one and then to save executhon time 1 expanded it into real and imaginary parts in the way i ended up with $\left(z_{t}=x_{t}+i y_{t}\right) z_{t+1}=f\left(x_{t}, y_{t}\right)+i y_{t}, y_{t}$, aner

$$
\begin{aligned}
& f(x y)=\exp (f)(x \cos T-y \sin T \\
& d(x, y)=\exp (\theta)(x \sin T+y \cos T, \text { and } \\
& E=-\left(x-1\left(1.9+3 o y^{2}\right)+\alpha(x-1)^{3}\right. \text { and } \\
& \Gamma=y\left(3 \alpha(x-1)^{2}-1.9\right)-\alpha y^{3}
\end{aligned}
$$

The program i wrote would get as mput a value for the parameter α and a rectangular region and partition size in for For each of the points in the partition of the region. successive iterations of the function were calculated until either convergence to a ixad pont or cycie occurred or the vaiues for x of y got beyond machme capabilities (either too big or too close to zerol. The starting x, y posithon was then ploted m a color corresponding to what happened when the point was iterated.

Rather than mindessly generate pictures, i made a few rostrictions. First i only looked at nonnegative X and y startint positions. i chose nonnegative x because in \mathbb{k}, negative x values approach $-\infty$. That is, negative x values don't converge, so naturaly there can be no negative reals that converge to a cycle Ondy nonnegative y values were used because plotures generated were symmetric when negative y values were used. This can be shown from the function: \mathcal{B} is ari even polynomat in y so its vaiue is

 so y cos!' and $x \sin I^{\prime \prime}$ will both have opposite signs, so if $g(x, y)=y_{T+1}$ then $g(x,-y)=-y+1$ Thus terating the complex conugete ot any pont , fot yelds the sequence of convuates, i.e. wher a pont aycis. it's conjugate whi aso cycle A natura question her is "what Bappens to real starting points?" Naturaily we expect them co remair in \mathbb{R} because our function is fust the complex expansion of a reat function. but lets verify the anyway, ust to be safe Settric y $=$ o
 $\tan =a$.

Bedaus I was interested ir what was bappenias as ien points began to eycle, f focused my attention on these a vaides. I was able to rule out a 0 (my second restriction) with the use of anoter progran. This program took α as input and then plotted the rea: function $F(x)$ and it's second iteration for $x \in[0,3]$. When the second ferate first crosees the line $y=x$ at any point other than the faed point, there will be a cycle of period 2 appearing. I ran the program For many positive α values and found none that would have read cycles; since the function is continuous, I expect there are no positive apha with real eycles of period 2 . To find the a 0 where rea eycles appear and change period, I ran the first program on just the real interval [0,3] (imaginary part $=0.0$) for $\alpha=0.0,-0.1,-0.2, \ldots,-1.9$ ard noted the color changes. As an aside, 1 also wed the second progani to verify the x at which a period 2 cycle does appear.

The third restriction I imposed was to limit the regior of that iterated the function over. I Now from (1) that a fixed port at

Abstract

the model is $1+10$, 0 generated the mital protures to molude the pont, chooing $0 \leq \operatorname{Pe}(z) \leq 25,50$ and $0 \leq \operatorname{lm}(z) \leq 20$ as the matat regon because it fit the graphics scroen well and ontems the oxpected "interesting" region of the model. As a point of interest, there are intinitely mony other fived ponte which beleve are unetare mamistan.

Uning these restrictions, 1 et out explering and tound that period 2 cyres appear between $x-114$ and -1.15, and perod 4 cyele appear betweon $x=134$ and -135 Natur-in then : generated pictures m these regions, as well as others to get a genera Idea of the dynamict Besides these "large scale" pictures, ato renerated some "close-ups" of smallor regions whose hehstror wa" unclear at the partition size (001) or which lonked self-amiar. Additionally, 1 generated a couple pictures for $2.5,30 \leq P e x \leq 5$ os soe the general torm "farther out."

A Mathematical Verification of the Pictures

With all of that as background, let $4 s$ proceed to the pictures themselves. The majority of thoe generated durme my study have been included and are sorted according to sire of a and, when necessary, size of region portrayed. All pictures have been properly labelled. Here is and explanation of the colors seen. The darkest blue/purple color is plotted at all points that converged to the fixed point $1.0+10.0$ (to within 0.000001). The lighter blue/purple 15 for points that converged to the fixed point $0.0+10.0$ (again, wither 0.000001). The red, green and pink/purple colors aro points that converged to a cycle of period 2, 3 and 4 respectively. White points inside the region are those that "diverged." Here "diverged" means
that the nezt iteration would cause an overflow error. Fixpermentally \mid found that if either $|R e(a)|$ or $\operatorname{Im}(x)|>50|$ could get an error, so 1 used this as a limit. Yellow points are those that after the indicated number of iterations had not yet converged (again to within 0000001) or diverged.

At this point lat me mention why there are two distinct sets of pictures. Before plotting many of these pictures. I double-checked the algebra involved in forming the equations for $f(x, y), g(x, y), E$ and Γ and found it to be correct. However, what i talled to verify was that my code correctlly reflected these. There was a small, but significant, sign error in Γ - instead of "-ay". at the end, the program had "+oy ${ }^{3}$ " - which I didnt notice until later. Fortunately this had no ettect on the real line (where $y=0$, no that while I couldn't trust the previous pictures to be correct, I did know where to look, because cycles in D were still in the same intervals. it was "only" the behavior in \mathbb{C} that would be affected. These first "incorrect" pictures were included because of an interesting phenomenon that was noticed, which will be discussed later, and because of their general similarity to the "correct" ones. It is worth noting that the $\alpha=0.00$ picture is the same for both sets (this can be seen by observing that if $\alpha=0.0$, then $\Gamma=0.0$ regardless of the sign on the last term), and therefore is included only once.

Having exposed one error, the logical thing to do is to verify mathematically, as much as possible, what is seen in the pictures. The existence of points which converged to zero (other than sero itself) was a surprise. Numerical investigation of many of these points (for example Re(7) $4.0, \alpha=1.85$, "incorrect" pictures) thowed that what really happens is that a lack of computer precision makes very small numbers look like zero. The nature of the model (1)
indicatos that the population dying out won't happen in R. and showng that this cant happen in if pretty simple for a pont $x+1 y(x, y)$ to converge to 0,0 we nead:

$$
\begin{aligned}
& 0=x_{t+1}=\exp (B)(x \cos \Gamma-y \sin \Gamma) \text { and } \\
& \left.0=y_{t+1}=\operatorname{sxp}(D)(x \sin !+y \cos \Gamma) \text { Eacause exp } Z\right)=0
\end{aligned}
$$

we cancel it. Ther consider the iohowing cases. First in ay and
 each equationl. Let $r=x / y$, then the equaities inoly $=$ ur or $r^{2}=-1$. which has no reai solutions, so no $x . y$ can zo to 0.0 under these conditions. Second. if $\cos \bar{I}=0$ we nave $v \sin \bar{\Gamma}=0=x 0 s i=$ $y=0=x \operatorname{since} \sin \bar{I}=0$. Similariv in $\sin \bar{\Gamma}=0 \cdot x \cos \bar{I}=0=y \sin \bar{T}=$ $x=0=y$. Thirdiy, if $x=0,-y \sin \Gamma=0=y \cos \Gamma=y=0$. Simidary $:$ $y=0, x \cos \Gamma=0=x \sin \Gamma \Rightarrow x=0$. So we see that the onv point rint can converge to 0.0 when iterated is 0.0 .

The alternating between regions that converee to the insed point and to a cycle ($-1.1402 \leq \alpha \leq-1.35$ in the pictures) verifies behavior expected from a popuiation model, at least aiong the reai ine (See Figure 1). So the continuation into \mathbb{C} of this pattern is not surprising. Another pattern that is "easy" to account for is best observed for $\alpha=-1.15$ (in the "correct" pictures), aithough the start of it can be seen in most "full scale" pictures. These alternating 6 white "hearts" (on their sides) and biue/purple and red balls which start about $\operatorname{Re}(z)=2.0$ and continue for larger $\mathrm{Re}(z)$ are most likely the result of the periodicity of the sine and cosine functions.

As a final point, let's verify divergence for "big enough" x and y, as seen by the white portion in the upper, riginthand part of the "full scale" pictures (for both sets). We have that

$$
B=(x-1)\left[-1.9-3 \alpha y^{2}+\alpha(x-1)^{2}\right]
$$

Figure 1: The graph of $F(x)=x \exp (G(x))$ and $y=x$ which is commonly used to 'trace' the successive iteration of $F(x)$. The dashed lines represent the cycle of period 2. Blue areas on x are those that converge to the fixed point, \bar{x}, and pink areas are those that converge to the cycle; note that the repeating pattern near zero continues (see "incorrect," $\alpha=-1.145$). The boxes help clarify where each region maps to; note that boxes of the same color are at the same height.

$$
\left.-(x-1)\left[-19+x-3 y^{2}+(x-1)^{2}\right)\right] \text {. For "bug enough" } y \text { and }
$$

 $(x-1)^{2}<3 y^{2}$ or $x-1<\sqrt{3} y$. This ts the region above a line of positive slope (quite like the one seen in $\alpha=-1.15$). Now lets look at the dictance of successive iterates from the origin. Because exp(R) : 1, we can ignore it, and we have:

$$
\begin{aligned}
\therefore_{t+1}^{2}+y^{2} t+1 & =(x \cos \Gamma-y \sin \Gamma)^{2}+(x \sin \Gamma+y \cos \Gamma)^{2} \\
& =x^{2}\left(\cos ^{2} \Gamma+\sin ^{2} \Gamma\right)+y^{2}\left(\cos ^{2} \Gamma+\sin ^{2} \Gamma\right) \\
& =x^{2}+y^{2}
\end{aligned}
$$

Under these conditions then, we know that successive points are getting farther from the orgin (that is, diverging), 50 we believe the white areas we see. Ths sounds good, but unfortunately, it fals to show that points which satisfy the first conditions (on α, x and y, still satisiy those conditions after they have been iterated. i was unable to show this, or to show divergence another way. The protures do show this divergence though, so I haven't given up hope that it can be fhown mathematically.

The difficulty in definitely attributing these phenomena to a specific features lies in that Γ is a third-order mixed polynomial in two variables and we need to take (and understand) the sine and cosine of it for general x and y. This as well as the general complexity of the functions f and g are part of the reason the "incorrect pictures went unchecked for so long. They looked entirely reasonable, having the above mentioned patterns (see $\alpha=-185$ and others), but they alse had symmetry near the fixed point, which also seomed reasonable. Unfortunately, i wasnt able to show mathematically that it is incorrect, but later I will discuse what seems to be responsible for the difference between the two sets of pictures.

What do the Pictures Show

Now that the mathematical correctness of the plotures
has been verified to some extent, what can be discovered trom a carefu study of them" My man Gueston we "Are there regone m that ryrle that omohow expand' as or changes to molude untervat ot If and thereby gue real points which cuclec"; and the anower anmare to be "No, there are not." Something enturely difterent is harrening aron cycles appear. There seems to be a serter nt "valleys" of ponts that fiverge, and these valley get deeper, or closer to the reat me lie to each other berause the same thing is happentig for Imin. It At come point (between $\alpha-1.14015$ and -1.1402) the we where stan orowng, and then suddenty, for a slightly difterent value of x. entiro areas between valleys "turn red," that is, cycle instead of converging to a tixed point. This can be seen in the pictures for $\alpha=-0.55,-1.10$ and 1.15 (in this order). Note that the valleys occur everywhere that a red ball will appear and not just along the real hose An interesting observation that I'm not sure what to make of is that the valleys here don't grow straight, but tend to circle in (see especially $\alpha=-1.14015$, a close-up). We aren't done here though; as α continues to get more negative, the once "smooth" (from a full-scale view) ball show valleys too ($\alpha=-1.34$ vs. -1.15). But note this time ($\alpha-\cdots 1.348$ close"up) that just after the change to a period 4 cycle appears, the valleys are straight and the entire region that was red turned pink/purple instead of alternating with red. The lack of visible period 2. cycles once period 4 cycles exist is consistent with (2) which states that for "smooth and sensible" real functions, only one cycle is stable (! did not investigate what happens in \mathbb{C} when period 4 cycles double
to poriod 8, but in \mathbb{R}, again all points that converged to a poriod 4 cycle converge instead to a period 3 cyclel.

What I find interesting is that these general patterns aloo occurred for the "incorrect" pictures. Here the phenomenon 15 more interesting: as x decreases past -1.10 we see a mushroom type shape appearing and wrapping around inside tselt by $\alpha=-1.14$. The cose ur for $x=\cdots 1.4015$ shows this most clearly and is quite facsinatire, if inexplicable. Then just $5 / 100,000$ ths later $(\alpha=\cdots 1.1402)$ we see in the picture that the entire region of the mushroom has turned red. There are no gradual changes here, as I anticipated finding, rather the reat points that cycle appear to "burst" into existence when α gets to a certan value. It is worth observing here that in order to get the fine detail of the pictures, the number of iterations was increased by a factor of ten, so that while this "burst" is sudden, it takes many Iterations betore it is "certain" (to within 0.000001) where a given pnint converges to. And notice there are still some yellow points where no convergence is found in 22,000 iterations. Here with the "incorrect" pictires we can also observe the successive valleco "eatheg away" the circles until cycles of period 4 arise ($\alpha=-1.34,-1.345$ close up, -1.35). Based on the observation of this pattern in two separate (though admittedly related) functions, I would speculate that these successive valleys are present in all exponential first-order difference equations. Why some of these valleys are straight (period? \rightarrow period 4) and some curve in more toward the end(fixed point \rightarrow period 2) is not clear to me.

While the answer to my main question turned out to be "No," in the course of investigating 1 did find some cycles of period 2 in 0) $(x-\cdots 0.20,-0.30)$. These cycles were a late discovery o they haven't been thoroughly examined; but they seem to appear between
$x=-018$ and -019 and then disappear between $\alpha=-0.35$ and -0.51
the two ponts being cycied between are not real notice all real ponts still converge to the fixed point) but are complex conjugates ithis was found by printing out successive iterates of the function and hasnt heon verified mathematrallyt. The exact points cyeled betweon seem to depend on ix, but not on the starting postion. The tabe retans expermental resuits (rounded to 4 digits) that were obtaned hor iterating the point $0.75+11.5$ until it clearly eycled to withe e 10 . about 600 iterations).

alpha	Real part	上Imagnary part
-0.18	1.0000	0.0000 (the tived point)
-0.19	0.7161	1.8331
-0.20	0.8026	1.7832
$\cdots 0.22$	0.9089	1.6975
0.24	0.9775	1.6245
-0.26	1.0000	1.5143
-0.23	1.0000	1.3766
-0.30	1.0000	1.2391
-0.32	1.0000	1.0882
-0.33	1.0000	0.9438
-0.34	1.0000	0.0000

What happens at the start (between -0.18 and -0.19) is unclear, except that the red regions seem to come out of (or go intol the valleys between humps ($\alpha=-0.20$). However, it appears that at the end (between $\alpha=-0.33$ and -0.34) α reaches some value so that the imaginary part gets small enough to be attracted to the fixed point. At this time all the points that cycled instead converge to the fixed point; the regions that were once red appear to have turned blue (compare pictures for $\alpha=-0.30$ and -0.55).

The other point of interest here is that none of this happens in the "incorrect" model. The complex cycles don't appear
and there innt the large increase in the number of convergent point (to the fixed point) between $\alpha-0.00$ and -0.55 that exist in the "correct" pictures. It seems that it is this cycle in the complexes that eventually converges to the fixed point that causer the lack of rymmotry aromed the fixed pont in the "correct" pictures. Why the happens in one model and not the other when they seem so smater in other respects is not known to me. Perhaps the answer to the question is part of a fundamental difference between the two tunctions or between two larger classes of functions that have this general difference.

Conclusion

So, we have seen that for the map studied, cyelos of period 2 do not slowly merge into the real line from \mathbb{C}; rather when they appear in \mathbb{R}, cycles also appear simultaneously in \mathbb{C}. Additionally, we tound that there are cycles of period 2 which oscillate between complex conjugate pairs for some interval of α values. But what happens at the ends of this interval to "start up" and "kill off" the cyole is not entirely clear pictorially and unexplored mathematically. How, and it, there results generalize to polynomial maps i have not investigated.

Reterences and Notes

1. Gull, !', Stabilty of brecete one Dimensional Population Models. Technical Report 36-20-1. Department of Computer Seience. Oregon State University.
\therefore May, M. M., Neture, 261, 459-467(1976).
2. May, R. M., Science, 185, 645-647(1974).
3. igratefully acknowledge the guidance and asostance of P. Gin in al stages of this project.

