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1. Introduction.

The Fibonacci sequence has been studied ever since its discovery
in the 12th century. Only in the last thirty years, however, have
there been any attempts made to answer questions about the
Fibonacci sequence mod m. For example, it was only in the mid 70's
that the question "When is the Fibonacci sequence uniformly
distributed mod m?" was answered. In this paper | will ask the
question “How many different residue classes actually appeair mod p,
where p is an odd prime?". 1 will then make a series of conjectures,
based on numerical evidence, answering this question. Finally, I will
give a heuristic argument for one conjecture and discuss the
remaining cases.

2. Notation and Conventions.

The nth Fibonacci number will be denoted by F(n). We let
o=(1+/5)/2, ¢ be the ring of integers in Q(/%), and ¢ the Fobenius
automorphism of !Fp2, the Galois field with p2 elements. Further,
( /p) will denote the Legendre symbol mod p and « will denote the
conjugate of «, ie. a=(1-/5)/2. N will denote the norm mapping
from Q(/5)—-Q or from F2—F, depending on the context.

3, A new proof of some results of D.D. Wg. 1N[1l

In [1] Wall proved that if p=3 or 7 mod 10, then the period of
the Fibonacci sequence considered mod p divides 2p+2, and if p=1 or
9 mod 10, then the period of the Fibonacci sequence considered mod
p divides p-1. 1 will give new proofs of slightly different theorems,
namely:

Theorem: If p=2,3 (mod 5) then the period of the Fibonacci
sequence mod p divides 2p+2. If p=1,4 (mod 5), then the period
divides p-1.

Proof: Since the sequence will repeat when 0 and 1 appear as
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consecutive terms, it suffices to show that F(2p+2)=0 and F(2p+3)=1. .

Since p=2,3 (mod 5) implies that (5/p)=1 and that p does not
divide the discriminant of Q(/5), it follows that the ideal (p) remains
prime in 6. Hence &/pe=Fp2=f p(/S'). Now, since conjugation is a
non-trivial automorphism of rrp(m which fixes F p’ and the order of
the Galois group of F I:,(./‘5")/ Fp is 2, it follows that o is equal to
conjugation. Hence oP=a and aP=a. Calculating:

F(2p+2) = (o2P*2 - 2P ) f(o - &) = (PoPa? - aPaPE2) /(o - &) =
(%22 - a25?) /(o - &) = 0.

F(2p+3) = (a2P*3 - &2P*3) /(& - &) = (aPaPod - PP ) /(o -
(ot = &) /(o - o) = 1.

&) =
If p=1,4 (mod 5), it follows that (5/p)=-1 and so (p) splits. Hence

8/po=F@F and so aP=ox and aP=a. We calculate:

F(p-1) = («P71 - &p'l)/_(oc -a)=0. F(p) = (P - aP)/(x - ) = 1. B

4. Some conijectures on the number of residues actually appearing

when p is an odd prime.

Conjecture A. If p=2,3 mod 5 and the period of the sequence mod p
is 2p+2, then the number of residues that appear is approximately
pC, where C=.75.

Conjecture B. If p=1,4 mod 5, p=3 mod 4, and the period of the
sequence mod p is p-1, then the number of residues that appear is

approximately pK, where K= .625.

Conjecture C. If p=1,4 mod 5, p=1 mod 4, and the period of the
sequence mod p is p-1, then the number of residues that appear is

approximately pL, where L=.43.

These conjectures are based on numerical evidence; calculations
were made for all primes less than 5000. Now in the case of
Conjectures B and C, the analysis seems to be harder than the
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analysis of Conjecture A, for which I will now provide a heuristic
argument.

5. The case p=2.5 od 5

The residue m appears mod p iff F(n)=m (mod p) for some n, i.e.
iff a?-aP=m(x-a) (mod p) for some n. Multiplying through by «®
and simplifying we obtain: (a™)?-m/5o?-N(a™)=0 (mod p8). Now,
consider the polynomial £(x)=x2-mJ/5? x+c, where c¢=1 or -1. Suppose
this polynomial has a root in IFPZEIF p(f5' ). An easy calculation
shows that the (local) norm of any such root is c.

We claim that o generates N"1({-1,1}) if and only if the period of
the sequence is 2p+2. We note that [Ker Nl=p+1 since N is surjective
(this because 5 is a nonresidue mod p and hence {a2-5b2 | a,beZ}
runs through all residues mod p) and hence IN"1({-1,1})|=2p+2. If
a™=1in Fp, then F(n)=0 and F(n+1)=1 by direct calculation. Hence if
the period of the sequence is 2p+2, a has order at least 2p+2 and
since it has norm 1, it must generate Ker N. If the period of the
sequence mod p is n, F(n)=0 implies a®=a®. We have 1=F(n+1)=o®.
Hence, if « has order 2p+2 the sequence has period 2p+2.

Hence, in our case we know that if the polynomial f has a root
inF (/'5') it has a root of the form o®, so a residue shows up in the
sequence iff the polynomial f has a root in F (/'5)

The question has become "How many such polynomials f have
roots in Fp(/5)?" Clearly such a polynomial has a root iff Sm2+4c is
a quadratic residue mod p. If we could prove the following lemma,
we would then have a proof of Conjecture A, since it would imply
that about 75 per cent of the polynomials have roots in Fy(/5), and
hence approximately 75 per cent of the residues will appear:

Lemma Let NR be the set of quadratic nonresidues mod p. Then the
set T(A)={ktA | keNR} contains either (p-1)/4 or (p-3)/4 quadratic
nonresidues, where AeZ.
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6. The case p=1.4 (mod 5)

Since in this case 9/pe=F@F,, we have no nice results on the
way in which the polynomial x%-mJ/5x+1 behaves and hence cannot
carry out the above analysis. '

(1] D.D. Wall, Fibonacci Series Modulo m, American Mathematical
Monthly, 67, (1960), pp. 525-532. '



