# Department of Mathematics OSU <br> Qualifying Examination <br> Fall 2008 

## PART I : Real Analysis

- Do any of the four problems in Part I. Indicate on the sheet with your identification number the four which you wish graded.
- Your solutions should contain all mathematical details. Please write them up as clearly as possible.
- Explicitly state any standard theorems, including hypotheses, that are necessary to justify your reasoning.
- You have three hours to complete Part I.
- On problems with multiple parts, individual parts may be weighted differently in grading.

1. Suppose that the real valued function $f$ is Lebesgue integrable on $[0, \infty)$. Use techniques from Lebesgue theory to prove

$$
\int_{0}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{0}^{b} f(x) d x
$$

Here, $b$ is a continuous variable, not a discrete sequence $\left\{b_{n}\right\}$.
Note. In a calculus class, the given relation is a definition of an improper integral. In the present problem, the integrals are Lebesgue integrals, and the relation is a theorem instead of a definition.
2. Prove that if the real valued function $f \in L^{1}(\mathbf{R})$, then

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} f(x) \cos n x d x=0
$$

(In other words, prove the Riemann-Lebesgue lemma.)
Hint. You may use, without proof, the fact that the set of all step functions with compact support and finitely many steps is dense in $L^{1}(\mathbf{R})$.
3. Suppose that $f$ is a bounded, real valued function on the closed interval $[a, b]$.
(a) Define the Lebesgue integral of $f$ on $[a, b]$. Your answer should contain a definition of whether the integral exists.
(b) Modify your answer to part (a) so as to yield a definition of Riemann integral of $f$ on $[a, b]$. (You should need to change only a few words.)
(c) Give an example of a function $f$ on the interval $[0,1]$ for which the Lebesgue integral exists but the Riemann integral does not exist. Prove that your example has the required properties.

## Continued on next page ...

4. Suppose that $f$ is a real valued function on $\mathbf{R}$ and $\left\langle f_{n}\right\rangle_{n=1}^{\infty}$ is a sequence of continuous functions converging pointwise to $f$. Prove that there exists a nonempty open subset $U$ of $\mathbf{R}$ and a real number $M$ such that $\left|f_{n}(x)\right| \leq M$ for all $x \in U$ and all $n \geq 1$.

Hint. For every positive integer $M$, let $E_{M}=\left\{x \in \mathbf{R}:\left|f_{n}(x)\right| \leq M\right.$ for all $\left.n \geq 1\right\}$.
5.
a.) State the Contraction Mapping Theorem.
b.) Let $X$ be a complete metric space. Suppose that a map $A: X \rightarrow X$ is such that there is a natural number $n$ for which the $n$th power of $A, A^{n}=\underbrace{A \circ \cdots \circ A}_{n}$, is a contraction. Prove that $A$ has a unique fixed point.
6. Let $H$ be a Hilbert space with inner product denoted by $\langle x, y\rangle$. Suppose that $f, f_{n} \in H, n=1,2, \ldots$, are such that for every $g \in H$ one has $\left\langle f_{n}, g\right\rangle \rightarrow\langle f, g\rangle$ as $n \rightarrow \infty$.
a.) Show that if $H$ is finite dimensional this implies that $f_{n} \rightarrow f$, that is, $\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|=0$.
b.) Show that the conclusion of part (a) need not hold if $H$ is infinite dimensional.

