Department of Mathematics OSU
 Qualifying Examination
 Fall 2009

PART II : Linear Algebra and Complex Analysis

- Do any two of the three problems in each section of Part II. Indicate on the sheet with your identification number the four problems which you wish to be graded.
- Your solutions should contain all mathematical details. Please write them up as clearly as possible.
- Explicitly state any standard theorems, including hypotheses, that are necessary to justify your reasoning.
- You have three hours to complete Part II.
- On problems with multiple parts, individual parts may be weighted differently in grading.

Linear Algebra Problems

1. Let V be a finite-dimensional vector space over a field F. A non-zero linear operator T on V is a called a projection if there exist subspaces W_{1}, W_{2} such that $V=W_{1} \oplus W_{2}$ and $T\left(w_{1}+w_{2}\right)=w_{1}$ for all $w_{i} \in W_{i}$.
The trace of any matrix is the sum of its diagonal entries. For this problem you may assume the standard result that trace is invariant under similarity.
Prove: If T is a projection on a finite-dimensional vector space then the trace of any matrix representation of T equals the rank of T.
2. Let V be a finite-dimensional (Hermitian) inner product space over \mathbb{C} of dimension $2 n$. Let W be an n-dimensional subspace of V, and W^{\perp} be its orthogonal complement. Let $\left\{a_{1}, \ldots, a_{n}\right\},\left\{b_{1}, \ldots, b_{n}\right\}$ be orthonormal bases for W, W^{\perp}, respectively. Consider the linear operator T defined by $T\left(a_{i}\right)=b_{i}, T\left(b_{i}\right)=$ a_{i} for all $i=1, \ldots, n$.
(a) Find the Jordan Canonical Form for T.
(b) Find the orthogonal complements of all eigenspaces of T.
3. (a) Let T be a linear operator on the complex space \mathbb{C}^{n}. Prove: If $\operatorname{ker}(T-\alpha I)^{n}=\operatorname{ker}(T-\alpha I)$ for all $\alpha \in \mathbb{C}$ then T is diagonalizable.
(b) For $A=\left[\begin{array}{cc}3 & -2 \\ -2 & 3\end{array}\right]$, find all real constants c such that the (entrywise) limit $\lim _{k \rightarrow \infty}(c A)^{k}$ exists and is nonzero.

Complex Analysis Problems

1. (a) Find all entire functions $f(z)$ such that $f(x)=\cos x$ for all $x \in \mathbb{R}$.
(b) Construct analytic functions $f(z), g(z): \mathcal{D}_{1} \rightarrow \mathcal{D}_{1}$, where \mathcal{D}_{1} is the open unit disk centered at the origin, with $f(1 / 2)=3 / 4, f^{\prime}(1 / 2)=7 / 12$, and $g(1 / 2)=3 / 4, g^{\prime}(1 / 2)=3 / 4$, or show that such a function does not exist. Discuss the uniqueness of $f(z)$ and $g(z)$ (provided they exist).
2. (a) Let f be a continuous complex-valued function defined on an open, connected set $\Omega \subset \mathbb{C}$ such that the (complex) integral $\int_{\gamma} f(z) d z=0$ for all closed piecewise smooth curves γ in Ω. Show that f is analytic in Ω. (Note: you may use the fact that the derivative of an analytic function is analytic without proof.)
(b) Let

$$
f(z)=\int_{0}^{1} \frac{\exp (t z)}{\sin \sqrt{t}} d t, \quad z \in \mathbb{C}
$$

Show that f is entire.
3. Use the calculus of residues to compute the following integrals:
(a)

$$
\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \frac{\sin z}{z^{4}} d z
$$

where γ is the unit circle traced in the counterclockwise direction.
(b)

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{1+x^{4}} d x
$$

