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PART I : Real Analysis

• Do any four of the six problems in Part I. Indicate on the sheet with your identifi-
cation number the four which you wish graded.

• Your solutions should contain all mathematical details. Please write them up as
clearly as possible.

• Explicitly state any standard theorems, including hypotheses, that are necessary to
justify your reasoning.

• You have three hours to complete Part I.

• On problems with multiple parts, individual parts may be weighted differently in
grading.



1. Use the contraction mapping theorem to prove that, under suitable hypotheses, the
equation

φ(x) = f(x) +
∫ b

a
K(x, y)φ(y) dy, a ≤ x ≤ b,

has a unique solution φ. Here, f and K are known functions, and the function
φ is to be determined. As part of your analysis, develop appropriate hypotheses,
including properties of K and f and the specification of the space of functions.
Your hypotheses should include a reasonably broad class of functions f and K; for
example, do not simply assume f = 0 and K = 0.

2. Let ‖ · ‖ be a norm on Rn. Do not assume any properties of ‖ · ‖, other than those
that follow from the general definition of norm on a vector space.

(a) Let f(x) = ‖x‖ for all x ∈ Rn. Show that f is continuous on Rn with respect
to the metric ρ defined by ‖ · ‖, i.e., ρ(x, y) = ‖x − y‖ for all x and y in Rn.
(Use the triangle inequality.)

(b) Now define a different norm ‖ · ‖1 by ‖x‖1 =
∑n

i=1 |xi| for all x ∈ Rn. Prove
that the function f defined in part (a) is continuous with respect to the metric
defined by ‖ ·‖1. (You do not need to prove that ‖ ·‖1 satisfies all of the axioms
of a norm.)

(c) Show that the norms ‖ · ‖ and ‖ · ‖1 are equivalent. That is, show that there
exist positive constants M1 and M2 such that M1‖x‖1 ≤ ‖x‖ ≤ M2‖x‖1 for
all x ∈ Rn. (Hint: Consider what happens when f is restricted to the set
S = {x ∈ Rn : ‖x‖1 = 1}.)

(d) Give an example of a linear space (vector space) X and two norms on X that
are not equivalent, in the sense defined in part (c).

3. Define the convolution of two functions f and g by

(f ∗ g)(x) =
∫ ∞
∞

f(x− y)g(y)dy =
∫ ∞
∞

f(y)g(x− y)dy,

assuming that the integrals exist. Let φ be a continuous function on R that satisfies
φ(x) > 0 for −1 < x < 1, φ(x) = 0 otherwise, and

∫∞
−∞ φ(x)dx = 1. For each integer

n ≥ 1, let φn(x) = nφ(nx) for all real x. Then
∫∞
−∞ φn(x)dx = 1 for all n, φn is

nonzero on the interval (−1/n, 1/n), and as n increases the graph of φn becomes
narrow and tall. The convolution (f ∗ φn)(x) is therefore a weighted average of
values of f(y) for y near x.

Prove that if f ∈ L1(R), then f ∗ φn → f in L1(R) as n →∞. (That is, ‖f ∗ φn −
f‖1 → 0 as n →∞.)

(Hint: First consider the case where f is continuous and has compact support, and
then extend to L1(R). You may use the fact, without proving it, that the set of
continuous functions with compact support is dense in L1(R).)



4. For both parts of this problem consider the metric space consisting of the interval
[0, 1] equipped with the usual metric ρ(x, y) = |x− y|.

(a) Show that there are no nowhere dense subsets of [0, 1] that have Lebesgue
measure equal to 1.

(b) A set whose complement is a countable union of nowhere dense sets is called
a residual set. Show that there exist non-empty residual subsets of [0, 1] with
zero Lebesgue measure.

Hint: You may use without proof that for any 0 ≤ α < 1 there exists a nowhere
dense subset Eα of [0, 1] with Lebesgue measure equal to α.

5. Let 1 ≤ p < ∞ and fn ∈ Lp(R), n ∈ N, a sequence of functions that converges
pointwise almost everywhere to a function f : R → R. Assume that there is a
nonnegative function F with ‖ F ‖p = (

∫
R |F (x)|p dx)1/p < ∞ such that |fn| ≤ F

for all n ∈ N.

(a) Show that limn→∞ ‖ fn − f ‖p = 0.

(b) Show by means of a counterexample that the conclusion in part a) need not
hold if the hypothesis |fn| ≤ F is omitted.

6. Let f be a nonnegative function defined on a measurable subset E of R. Show that
f is measurable if the region {(x, y) : x ∈ E, f(x) ≥ y} is a measurable subset of
R2.

Hint: Consider Tonelli’s theorem.


