Department of Mathematics OSU
 Qualifying Examination
 Fall 2009

PART I : Real Analysis

- Do any four of the six problems in Part I. Indicate on the sheet with your identification number the four which you wish graded.
- Your solutions should contain all mathematical details. Please write them up as clearly as possible.
- Explicitly state any standard theorems, including hypotheses, that are necessary to justify your reasoning.
- You have three hours to complete Part I.
- On problems with multiple parts, individual parts may be weighted differently in grading.

1. Use the contraction mapping theorem to prove that, under suitable hypotheses, the equation

$$
\phi(x)=f(x)+\int_{a}^{b} K(x, y) \phi(y) d y, \quad a \leq x \leq b
$$

has a unique solution ϕ. Here, f and K are known functions, and the function ϕ is to be determined. As part of your analysis, develop appropriate hypotheses, including properties of K and f and the specification of the space of functions. Your hypotheses should include a reasonably broad class of functions f and K; for example, do not simply assume $f=0$ and $K=0$.
2. Let $\|\cdot\|$ be a norm on \mathbf{R}^{n}. Do not assume any properties of $\|\cdot\|$, other than those that follow from the general definition of norm on a vector space.
(a) Let $f(x)=\|x\|$ for all $x \in \mathbf{R}^{n}$. Show that f is continuous on \mathbf{R}^{n} with respect to the metric ρ defined by $\|\cdot\|$, i.e., $\rho(x, y)=\|x-y\|$ for all x and y in \mathbf{R}^{n}. (Use the triangle inequality.)
(b) Now define a different norm $\|\cdot\|_{1}$ by $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$ for all $x \in \mathbf{R}^{n}$. Prove that the function f defined in part (a) is continuous with respect to the metric defined by $\|\cdot\|_{1}$. (You do not need to prove that $\|\cdot\|_{1}$ satisfies all of the axioms of a norm.)
(c) Show that the norms $\|\cdot\|$ and $\|\cdot\|_{1}$ are equivalent. That is, show that there exist positive constants M_{1} and M_{2} such that $M_{1}\|x\|_{1} \leq\|x\| \leq M_{2}\|x\|_{1}$ for all $x \in \mathbf{R}^{n}$. (Hint: Consider what happens when f is restricted to the set $\left.S=\left\{x \in \mathbf{R}^{n}:\|x\|_{1}=1\right\}.\right)$
(d) Give an example of a linear space (vector space) X and two norms on X that are not equivalent, in the sense defined in part (c).
3. Define the convolution of two functions f and g by

$$
(f * g)(x)=\int_{\infty}^{\infty} f(x-y) g(y) d y=\int_{\infty}^{\infty} f(y) g(x-y) d y
$$

assuming that the integrals exist. Let ϕ be a continuous function on \mathbf{R} that satisfies $\phi(x)>0$ for $-1<x<1, \phi(x)=0$ otherwise, and $\int_{-\infty}^{\infty} \phi(x) d x=1$. For each integer $n \geq 1$, let $\phi_{n}(x)=n \phi(n x)$ for all real x. Then $\int_{-\infty}^{\infty} \phi_{n}(x) d x=1$ for all n, ϕ_{n} is nonzero on the interval ($-1 / n, 1 / n$), and as n increases the graph of ϕ_{n} becomes narrow and tall. The convolution $\left(f * \phi_{n}\right)(x)$ is therefore a weighted average of values of $f(y)$ for y near x.
Prove that if $f \in L^{1}(\mathbf{R})$, then $f * \phi_{n} \rightarrow f$ in $L^{1}(\mathbf{R})$ as $n \rightarrow \infty$. (That is, $\| f * \phi_{n}-$ $f \|_{1} \rightarrow 0$ as $n \rightarrow \infty$.)
(Hint: First consider the case where f is continuous and has compact support, and then extend to $L^{1}(\mathbf{R})$. You may use the fact, without proving it, that the set of continuous functions with compact support is dense in $L^{1}(\mathbf{R})$.)
4. For both parts of this problem consider the metric space consisting of the interval $[0,1]$ equipped with the usual metric $\rho(x, y)=|x-y|$.
(a) Show that there are no nowhere dense subsets of $[0,1]$ that have Lebesgue measure equal to 1 .
(b) A set whose complement is a countable union of nowhere dense sets is called a residual set. Show that there exist non-empty residual subsets of $[0,1]$ with zero Lebesgue measure.

Hint: You may use without proof that for any $0 \leq \alpha<1$ there exists a nowhere dense subset E_{α} of $[0,1]$ with Lebesgue measure equal to α.
5. Let $1 \leq p<\infty$ and $f_{n} \in L_{p}(\mathbf{R}), n \in \mathbf{N}$, a sequence of functions that converges pointwise almost everywhere to a function $f: \mathbf{R} \rightarrow \mathbf{R}$. Assume that there is a nonnegative function F with $\|F\|_{p}=\left(\int_{\mathbf{R}}|F(x)|^{p} d x\right)^{1 / p}<\infty$ such that $\left|f_{n}\right| \leq F$ for all $n \in \mathbf{N}$.
(a) Show that $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{p}=0$.
(b) Show by means of a counterexample that the conclusion in part a) need not hold if the hypothesis $\left|f_{n}\right| \leq F$ is omitted.
6. Let f be a nonnegative function defined on a measurable subset E of \mathbf{R}. Show that f is measurable if the region $\{(x, y): x \in E, f(x) \geq y\}$ is a measurable subset of \mathbf{R}^{2}.
Hint: Consider Tonelli's theorem.

