Department of Mathematics Qualifying Examination Fall Term 2000

Part I: Real Analysis

Do any four of the problems in Part I. Your solutions should include all essential mathematical details; please write them up as clearly as possible. You have three hours to complete Part I of the examination.

1. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a nonnegative, Lebesgue integrable function.
(a) Define functions $f_{n}: \mathbf{R} \rightarrow \mathbf{R}$ by

$$
f_{n}(x)=\left\{\begin{array}{cc}
f(x) & \text { if } f(x) \leq n \\
n & \text { otherwise }
\end{array}\right.
$$

Suppose that E is any measurable set in \mathbf{R}. Show that

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n}(x) d x=\int_{E} f(x) d x
$$

Note: If you use any major theorems in your solution, clearly state the hypotheses and conclusion of the theorems, and indicate how your use of the theorem is justified.
(b) Let $F: \mathbf{R} \rightarrow \mathbf{R}$ be given by

$$
F(x)=\int_{[-\infty, x]} f
$$

Show that F is continuous. (Do not assume that f is bounded.)
2. Show that every convergent sequence of measurable functions on a set of finite measure is almost uniformly convergent. That is, show the following:
Let E be a Lebesgue measurable subset of R with finite measure. Let $\mu(A)$ represent the Lebesgue measure of A. Let $\left(f_{n}\right)$ be a sequence of
measurable functions defined on E. Suppose that f is a real valued function such that $f_{n}(x) \rightarrow f(x)$ almost everywhere on E. Then given $\epsilon>0$, and $\delta>0$, show that there is a measurable set $A \subset E$ with $\mu(A)<\delta$ and an integer N such that for all x not in A, and for all $n \geq N$

$$
\left|f_{n}(x)-f(x)\right|<\epsilon
$$

Note: State clearly any properties of measurable sets that you use.
3. Consider the relation on $I:=[0,1]$ defined by $x \sim y$ if and only if $x-y \in \mathbf{Q}$.
(a) Show that this relation is an equivalence relation.
(b) By an application of the axiom of choice, form a set \mathcal{S} of distinct equivalence class representatives, one for each class of the relation. Prove that \mathcal{S} is not Lebesgue integrable.
4. (a) Prove that the (improper) Riemann integral

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x
$$

exists.
(b) Prove that the (improper) Riemann integral

$$
\int_{0}^{\infty}\left|\frac{\sin x}{x}\right| d x
$$

diverges.
5. Recall that a metric space X is called separable if it has a countable (or finite) dense subset. Show that if a metric space X is separable then every subset Y of X is also separable.
6. (a) Let I denote the unit interval, $[0,1]$. Consider a function f from I to itself. Suppose the the graph

$$
\Gamma_{f}=\{(x, f(x)) \mid x \in I\}
$$

is a closed subset of $I \times I$. Prove that f is continuous.
(b) Give an example of a discontinuous function $f: \mathbf{R} \rightarrow \mathbf{R}$ whose graph is closed.

Department of Mathematics
 Qualifying Examination
 Fall Term 2000

Part II: Complex Analysis and Linear Algebra

Do any two problems in Part CA and any two problems in Part LA. Your solutions should include all essential mathematical details; please write them up as clearly as possible. You have three hours to complete Part II of the examination.

Part CA

1. Let \mathcal{C} be the boundary of the square of vertices $\pm 2 \pm 2 i$, oriented counterclockwise. Let $\alpha=1+i$. Evaluate

$$
\oint_{\mathcal{C}} \frac{z^{3}}{(z-\alpha)^{2}} d z
$$

2. Suppose $f(z)$ is a non-constant entire function. Prove, without appealing to Picard's theorem, that there exists a $z_{0} \in \mathbf{C}$ such that $f\left(z_{0}\right)$ is a positive real number.
3. Suppose $f(z)=\frac{a z+b}{c z+d}$ be a fractional-linear transformation of the complex plane. Here a, b, c, and d are complex numbers and $\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \neq$ 0 .
(a) Show that $f(z)$ can be written as the composition of maps of the following three types: (i) $f_{1}(z)=z+z_{0}$, for some $z_{0} \in \mathbf{C}$, (ii) $f_{2}(z)=\alpha z$ for some $\alpha \in \mathbf{C}$ and (iii) $f_{3}(z)=1 / z$.
(b) Show that if A is a line and B is a circle then $f(A)$ is either a line or a circle and $f(B)$ is either a line or a circle.

Continued on back

Part LA

1. Let A be a 4×4 matrix with entries in \mathbf{C} such that $\operatorname{rank}(A)=1$. Show that either A is diagonalizable (over \mathbf{C}) or $A^{2}=0$, but not both.
2. Consider the complex numbers \mathbf{C} as a vector space over the reals \mathbf{R}; note that $\mathcal{B}=\{1, i\}$ is a basis for this vector space. For each $\alpha \in \mathbf{C}$, let

$$
l_{\alpha}: \mathbf{C} \rightarrow \mathbf{C}
$$

be defined by $l_{\alpha}(z)=\alpha z$ for all $z \in \mathbf{C}$.
(a) Given $\alpha \in \mathbf{C}$, find the matrix M_{α} representing the linear operator l_{α} with respect to the basis $\mathcal{B}=\{1, i\}$; that is, $M_{\alpha}=\left[l_{\alpha}\right]_{\mathcal{B}}$.
(b) Determine the exact set of $\alpha \in \mathbf{C}$ such that M_{α} is diagonalizable over \mathbf{R}.
(c) For which $\alpha \in \mathbf{C}$ is the characteristic polynomial of l_{α} equal to its minimal polynomial?
(d) Let $\rho: \mathbf{C} \rightarrow M_{2}(\mathbf{R})$ by sending α to M_{α}. Show that ρ is an injective \mathbf{R}-linear map.
3. (a) Prove that if V is a finite dimensional inner product space over a field F and $\phi: V \rightarrow F$ is a linear functional then there exists a unique vector v_{0} in V such that for any $v \in V, \phi(v)=\left\langle v, v_{0}\right\rangle$.
(b) Consider the real vector space of polynomials with real coefficients, with the inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x
$$

Fix $x_{0} \in \mathbf{R}$ and let L be the linear functional given by $L(f)=$ $f\left(x_{0}\right)$. Show that there is no polynomial $p(x)$ such that for all polynomials $f, L(f)=\langle f, p\rangle$.

