Department of Mathematics Qualifying Examination
 Fall 2002

Part I: Complex Analysis and Linear Algebra

- Do any two problems in Part CA and any two problems in Part LA.
- Your solutions should include all essential mathematical details; please write them up as clearly as possible.
- State explicitly any standard theorems that are needed to justify your reasoning.
- You have three hours to complete Part I of the exam.
- In problems with multiple parts, the individual parts may be weighted differently in grading.

Part CA

1. Let C_{r} be the circle in the complex plane with center at the origin and radius r traversed once in the counterclockwise sense. Let $r>0$ and $r \neq 2$. Find all possible values of the integral

$$
I_{r}=\int_{C_{r}} \frac{z^{2}+e^{z}}{z(z-2)^{2}} d z
$$

2. Let $f(z)=u(x, y)+i v(x, y)$, where $z=x+i y$, be a complex function on a open set U in the complex plane.
(a) If $f(z)$ is analytic in U show that the Cauchy-Riemann equations hold at each point in U.
(b) State but do not prove a reasonable converse of part (a).
(c) Using the Cauchy-Riemann equations prove: If $f(z)$ is analytic and real-valued in a connected, open set U, then f is constant in U.
3. Let $f(z)=\cot z$.
(a) Determine the region in the complex plane where f is analytic.
(b) If f has any singularities find them all and state their types (removable, pole, or essential singularity) and in the case of poles find their orders.
(c) Explain briefly why $f(z)$ has a power series expansion about $1+i$ and find the radius of convergence of the power series.
(d) f has a Laurent series expansion $f(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}$ in the annulus $\pi<|z|<2 \pi$. Evaluate a_{n} for $n=-1,-2,-3, \ldots$.

Part LA

1. A matrix B is said to be a square root of a matrix A if $B^{2}=A$. A matrix is Hermitian if it equals it transpose conjugate: $\overline{A^{T}}=A$.
(a) Give an example of a complex matrix A which does not have a square root. Be sure to show that your example has the desired property.
(b) Prove that every complex Hermitian matrix has a square root.
2. Determine, up to similarity, all 3×3 complex matrices A such that $A^{3}=A^{2}$.
3. Let V be a finite dimensional complex vector space and let A and B be subspaces of V. You may use the following three standard (and easily proven facts) in what follows: (i) $A+B=\{a+b: a \in A, b \in B\}$ is a subspace of V, (ii) $A \cap B$ is a subspace of V, and (iii) $\operatorname{dim}(A+$ $B)=\operatorname{dim} A+\operatorname{dim} B-\operatorname{dim}(A \cap B)$. Now suppose that $A, B, A^{\prime}, B^{\prime}$ are subspaces of V such that $\operatorname{dim} A=\operatorname{dim} A^{\prime}, \operatorname{dim} B=\operatorname{dim} B^{\prime}$, and $\operatorname{dim}(A \cap B)=\operatorname{dim}\left(A^{\prime} \cap B^{\prime}\right)$. Prove that there exists a one-to-one linear operator T on V such that $T(A)=A^{\prime}$ and $T(B)=B^{\prime}$.

Department of Mathematics Qualifying Examination
 Fall 2002

Part II: Real Analysis

- Do any four of the problems in Part II.
- Your solutions should include all essential mathematical details; please write them up as clearly as possible.
- State explicitly any standard theorems that are needed to justify your reasoning.
- You have three hours to complete Part II of the exam.
- In problems with multiple parts, the individual parts may be weighted differently in grading.

1. Let (X, ρ) be a metric space, D be a dense subset of X, and let f : $D \rightarrow \mathbb{R}$ be a uniformly continuous function on D.
(a) Prove: There exists a uniformly continuous function $g: X \rightarrow \mathbb{R}$ such that $g(d)=f(d)$ for all $d \in D$. In other words, f can be extended to a uniformly continuous function on all of X.
(b) Proof or counterexample: The extension g of f in (a) is unique.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Show that if A is a Borel set in \mathbb{R}, then its inverse image $f^{-1}(A)$ is a Borel set in \mathbb{R}.
3. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a Lebesgue measurable function with

$$
\int_{-\infty}^{\infty}|f(t)| d t<\infty
$$

Prove that

$$
h(x)=\int_{x}^{1+x} f(t) d t
$$

is a continuous function of x.
4. Let X be a metric space.
(a) Define the term X is compact.
(b) Define two properties of a metric space X that are equivalent to compactness. (Do NOT give any proofs.)
(c) Let C_{n} be a sequence of nonempty closed sets in a compact metric space X such that $C_{n+1} \subset C_{n}$ for $n=1,2,3, \ldots$. Prove or disprove: $\cap_{n=1}^{\infty} C_{n}$ is nonempty.
(d) Let $f_{n}(x)=\sum_{k=0}^{n} \frac{x^{k}}{k^{2}}$ for $x \in[0,1]$. Show that the sequence of functions $f_{n}(x)$ converges pointwise on $[0,1]$ to a limit function $f(x)$.
(e) Prove or disprove: The limit function $f(x)$ from (d) is continuous.
5. Let ϕ be a positive, smooth (i.e., C^{∞}) function. Suppose ϕ vanishes outside a compact subset of $\{x \in \mathbb{R}:|x|<2\}$ and satisfies $\phi(x)=1$ if $|x|<1$. Let f be a function in $L^{2}(\mathbb{R})$. Define the convolution operator

$$
f * \phi(x)=\int_{\mathbb{R}} f(x-y) \phi(y) d y
$$

(a) Prove or disprove $f * \phi \in L^{1}(\mathbb{R})$ for all $f \in L^{1}(\mathbb{R})$.
(b) Prove or disprove $f * \phi \in L^{2}(\mathbb{R})$ for all $f \in L^{2}(\mathbb{R})$.
6. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a bounded Lebesgue measurable function that vanishes (is equal to zero) outside a compact subset of \mathbb{R}. Prove that

$$
\int_{-\infty}^{\infty}|f(x+t)-f(t)| d t \rightarrow 0 \text { as } x \rightarrow 0
$$

