Department of Mathematics
 Qualifying Examination
 Fall 2005

Part I: Complex Analysis and Linear Algebra

- Do any two problems in Part CA and any two problems in Part LA.
- Your solutions should include all essential mathematical details; please write them up as clearly as possible.
- State explicitly including all hypotheses any standard theorems that are needed to justify your reasoning.
- You have three hours to complete Part I of the exam.
- In problems with multiple parts, the individual parts may be weighted differently in grading.

Part: Complex Analysis

1. Let \mathcal{C} denote the entire complex plane. Suppose f is an non-constant entire function, meaning that f is analytic in the entire complex plane, from \mathcal{C} to \mathcal{C}. Show that the range $f(\mathcal{C})$ is dense in \mathcal{C}.
2. Suppose $z=x+i y$ is a complex number where x, y are real numbers. Denote $\operatorname{Im}(z)=y$. Find a conformal map from the upper half open disk $\{z:|z|<$ 1, $\operatorname{Im}(z)>0\}$ onto the open unit disk $\{z:|z|<1\}$.
3. (a) Suppose a function f is analytic everywhere in the complex plane except for a finite number of singular points interior to a circle $\Gamma,|z|=r, r>0$, which is transversed once in the counterclockwise direction. Suppose $\operatorname{Res}\left\{f(z), z_{0}\right\}$ denotes the residue of $f(z)$ at z_{0}. Prove the equality

$$
\oint_{\Gamma} f(z) d z=2 \pi i \operatorname{Res}\left\{\frac{1}{z^{2}} f\left(\frac{1}{z}\right), 0\right\} .
$$

(b) Suppose $P(z)$ and $Q(z)$ are two complex polynomials with degree n and m respectively. Suppose Γ is a simple closed contour that encloses all zeros of $Q(z)$. If $m \geq n+2$ show that the contour integral

$$
\oint_{\Gamma} \frac{P(z)}{Q(z)} d z=0
$$

Continued on next page

Part: Linear Algebra

1. Let $f: V \times V \rightarrow \mathbb{R}$ be a bilinear form on a finite-dimensional real vector space V. Thus f is linear in both variables:

$$
\begin{aligned}
f(a x+b y, z) & =a f(x, z)+b f(y, z) \\
f(x, c y+d z) & =c f(x, y)+d f(x, z)
\end{aligned}
$$

Suppose that $v \in V$ is such that $f(v, v) \neq 0$. Let $\langle v\rangle$ be the subspace of V generated by v and let v^{\perp} be the following subset of V :

$$
v^{\perp}=\{x \in V: f(x, v)=0\} .
$$

(a) Prove that v^{\perp} is a subspace of V.
(b) Prove that $V=\langle v\rangle \oplus v^{\perp}$.
(c) The function $R: V \rightarrow V$ given by:

$$
R(x)=x-2 \frac{f(x, v)}{f(v, v)} \cdot v
$$

is a linear transformation of V. What is the Jordan canonical form of (a matrix representation for) R ?
(d) What is the determinant of (a matrix representation for) R ?
2. An $n \times n$ matrix A is nilpotent if $A^{m}=0_{n}$ for some $m \geq 1$, where 0_{n} is the $n \times n$ zero matrix.
(a) Find $\operatorname{det}\left(I_{n}+A\right)$. Here I_{n} is the identity $n \times n$-matrix.
(b) Show that if A is a nilpotent $n \times n$ matrix, then $A^{n}=0$.
3. Let A and B nonsingular square complex matrices and suppose that $A B=$ $B A^{2}$.
(a) Prove that if λ is an eigenvalue of A, then $\lambda^{m}=1$ for some m.
(b) Prove that for some $n \geq 1, A$ and B^{n} have a common eigenvector.

Department of Mathematics
 Qualifying Examination
 Fall 2005

Part II: Real Analysis

- Do any four of the problems in Part II.
- Your solutions should include all essential mathematical details; please write them up as clearly as possible.
- State explicitly including all hypotheses any standard theorems that are needed to justify your reasoning.
- You have three hours to complete Part II of the exam.
- In problems with multiple parts, the individual parts may be weighted differently in grading.

1. Assume that f and g are in $L^{1}(\mathbf{R})$ and $\int_{E} f d \mu=\int_{E} g d \mu$ for every Lebesguemeasurable set $E \subset \mathbf{R}$. (Here, μ denotes Lebesgue measure.) Prove $f=g$ almost everywhere in \mathbf{R}.
2. Let $F(t)=\int_{-\infty}^{\infty} f(x, t) d x$ for all t in some interval I. It would then be useful to say

$$
F^{\prime}(t)=\int_{-\infty}^{\infty} \frac{\partial f}{\partial t}(x, t) d x
$$

for all $t \in I$. State hypotheses for which this statement is true, and prove this statement. Use hypotheses and a proof that have a "real analysis", or "Lebesgue", flavor. Partial credit will be given for using "advanced calculus" concepts such as uniform continuity and uniform convergence. (Give hypotheses which apply to a broad class of functions; for example, do not just assume something like $\partial f / \partial t=0$.)
3. (a) Let f be a continuous real-valued function on $[0,1]$. Show that there exists a sequence of polynomials p_{1}, p_{2}, \cdots such that

$$
\lim _{n \rightarrow \infty} p_{n}\left(x^{2}\right)=f(x)
$$

uniformly on $[0,1]$.
(b) Show, by way of example, that no such sequence of polynomials may exist if the interval $[0,1]$ is replaced by $[-1,1]$.
4. (a) State a sequence $f_{1}, f_{2}, f_{3}, \ldots$ of Riemann-integrable functions on $[0,1]$ which is a Cauchy sequence in $L^{1}[0,1]$ but does not converge in L^{1} to any Riemann-integrable function. Prove that your example has the required properties.
(b) Prove or give a counterexample of the following statement. Suppose f_{1}, f_{2}, f_{3}, \ldots is a sequence of of Lebesgue-integrable functions on $[0,1]$ which converges pointwise to a function f on $[0,1]$, almost everywhere. Then

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} f(x) d x
$$

If you give a counterexample, prove that your counterexample has the required properties.
5. Let $\langle X, \rho\rangle$ be a compact metric space and $\beta>0$. A real-valued function f on X is said to be uniformly β-continuous if f has no jumps greater than β. To be precise, for each $\epsilon>0$ there is a $\delta>0$ so that $\rho(x, y)<\delta$ implies $|f(x)-f(y)|<\beta+\epsilon$. Suppose that $f_{n} \rightarrow f$ uniformly on X and that f_{n} is β_{n}-continuous with $\beta_{n}=1 / n$, for each $n \geq 1$. Must f be continuous? Prove your assertion.
6. The differential equation $y^{\prime}(x)=f(x, y(x))$ for $0<x<1$, together with the initial condition $y(0)=y_{0}$, can be written in the integral form

$$
y(x)=y_{0}+\int_{0}^{x} f(t, y(t)) d t
$$

for $0 \leq x \leq 1$. Assume that there exists a constant L, with $0<L<1$, such that $\left|f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right| \leq L\left|y_{1}-y_{2}\right|$ for all $t \in[0,1]$ and all real y_{1} and y_{2}. Prove that, for given y_{0}, there exists a unique function y in $C[0,1]$ which satisfies the above integral form. (You may use, without proof, the fact that $C[0,1]$ is complete with respect to the norm $\|\cdot\|_{\infty}$ defined by $\|f\|_{\infty}=\max _{0 \leq x \leq 1}|f(x)|$.)

