# Department of Mathematics <br> Qualifying Examination <br> Fall 2007 

Part I: Real Analysis

- Do any four of the problems in Part I.
- Your solutions should include all essential mathematical details; please write them up as clearly as possible.
- State explicitly including all hypotheses any standard theorems that are needed to justify your reasoning.
- You have three hours to complete Part I of the exam.
- In problems with multiple parts, the individual parts may be weighted differently in grading.

1. Suppose $f \in L^{p_{0}}\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$ holds, for some $1 \leq p_{0}<\infty$.
(a) Prove that $f \in L^{p}\left(\mathbb{R}^{n}\right)$ for $p$ with $p_{0}<p<\infty$.
(b) Prove that $\lim _{p \rightarrow \infty}\|f\|_{p}=\|f\|_{\infty}$.
(c) Give an example of a function in $L^{p_{0}}\left(\mathbb{R}^{n}\right)$, for some $1 \leq p_{0}<\infty$, but which is not in $L^{p}\left(\mathbb{R}^{n}\right)$, for some $p$ with $p_{0}<p<\infty$.
2. Let $m^{*}$ denote Lebesgue outer measure on $\mathbb{R}$. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
|f(x)-f(y)| \leq C|x-y|
$$

for all $x, y \in \mathbb{R}$ (here $0<C<\infty)$.
(a) Prove that $m^{*}[f(A)] \leq C m^{*}(A)$ holds for every $A \subset \mathbb{R}$.
(b) Prove that if $A \subset \mathbb{R}$ is a Lebesgue measurable set, then so is $f(A)$.
3. (a) Show that the metric space of continuous functions on the interval $[0,1]$ equipped with the $L^{2}$-metric is incomplete.
(b) By the diameter of a subset $A$ of a metric space $X$ is meant the number

$$
d(A)=\sup _{x, y \in A} \rho(x, y) .
$$

where $\rho$ denotes the metric. Suppose $X$ is complete, and let $\left\{A_{n}\right\}$ be a sequence of closed nonempty subsets of $X$ nested in the sense that

$$
A_{1} \supset A_{2} \supset \ldots \supset A_{n} \supset \ldots
$$

Suppose further that

$$
\lim _{n \rightarrow \infty} d\left(A_{n}\right)=0 .
$$

Prove that the intersection $\bigcap_{n=1}^{\infty} A_{n}$ consists of a single point.

## Continued on next page

4. Let $M$ be a bounded subset of $C([a, b])$. Consider the set $S \subset C([a, b])$ of all functions $F$ such that

$$
F(x)=\int_{a}^{x} f(t) d t
$$

for some $f$ in $M$. Show that the closure of $S$ is a compact subset of $C([a, b])$. When solving this problem, state precisely the hypothesis and conclusion of any major theorem that you are using.
5. (a) Let $f:[-1,1] \rightarrow \mathbb{R}$ be continuous. Suppose $\int_{-1}^{1} f(x) x^{n} d x=0$ holds for $n=0,1,2, \ldots$. Prove that $f(x)=0$ holds for all $x \in[-1,1]$.
(b) Let $\varphi_{n}, n=1,2, \ldots$ be a sequence of functions in $L^{2}([0,2 \pi])$ such that $\int_{0}^{2 \pi} \varphi_{n}(t) \varphi_{m}(t) d t$ is equal to 1 for $n=m$ and vanishes for $n \neq m$. If $A \subset[0,2 \pi]$ and $A$ is measurable, prove that

$$
\lim _{n \rightarrow \infty} \int_{A} \varphi_{n}(x) d x=0
$$

6. Let $\left\{q_{i}\right\}_{i=0}^{\infty}$ be an enumeration of the rationals in the unit interval $[0,1]$. Suppose that $q_{0}=0$ and $q_{1}=1$. Define a function $f$ on the rationals in the unit interval by setting $f\left(q_{0}\right)=0$, setting $f\left(q_{1}\right)=1$, and, for $n \geq 2$, recursively setting

$$
f\left(q_{n}\right)=\frac{f\left(q_{n}^{-}\right)+f\left(q_{n}^{+}\right)}{2}
$$

where

$$
\begin{aligned}
& q_{n}^{-}=\max \left\{q_{i}: i=0,1, \ldots, n-1 \text { and } q_{i}<q_{n}\right\}, \\
& q_{n}^{+}=\min \left\{q_{i}: i=0,1, \ldots, n-1 \text { and } q_{n}<q_{i}\right\} .
\end{aligned}
$$

So for instance, $q_{2}^{-}=q_{0}, q_{2}^{+}=q_{1}$, and $f\left(q_{2}\right)=\left[f\left(q_{0}\right)+f\left(q_{1}\right)\right] / 2=1 / 2$.
(a) Prove that $f$ is monotone on the rationals in $[0,1]$.
(b) Prove that $f$ is continuous on the rationals in $[0,1]$.
(c) Can $f$ be extended continuously to all real numbers in $[0,1]$, and why or why not?

## Department of Mathematics <br> Qualifying Examination <br> Fall 2007

## Part II: Complex Analysis and Linear Algebra

- Do any two problems in Part CA and any two problems in Part LA.
- Your solutions should include all essential mathematical details; please write them up as clearly as possible.
- State explicitly including all hypotheses any standard theorems that are needed to justify your reasoning.
- You have three hours to complete Part II of the exam.
- In problems with multiple parts, the individual parts may be weighted differently in grading.


## Part: Complex Analysis

1. Suppose $f$ is an analytic function on the unit disc, $D \equiv\{|z| \leq 1\}$. Suppose $f(0)=0$ and $|f(z)| \leq 1$, for all $z \in D$. Show that $\left|f^{\prime}(0)\right| \leq 1$ and $|f(z)| \leq|z|$, for all $z \in D$.
2. Let $P_{n}(z)=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots+\frac{z^{n}}{n!}$. Show that for every given positive real number $r>0$, there exists a positive integer $M$ such that for every $n \geq M$ all zeros of the polynomial $P_{n}(z)$ lie outside the circle $|z|=r$.
3. Suppose $f$ is a complex function defined on the open unit disc, $|z|<1$.
(a) Show or give a counterexample: If $f^{2}$ is analytic on $D$, then $f$ is analytic on $D$.
(b) Show that if $f^{2}$ and $f^{3}$ are analytic on $D$, then $f$ is analytic on $D$.

## Part: Linear Algebra

1. Let $F$ be a field. For $m$ and $n$ positive integers, let $M_{m, n}$ be the vector space of $m \times n$ matrices over $F$. Fix $m$ and $n$, and fix matrices $A$ and $B$ in $M_{m, n}$. Define the linear transformation $T$ from $M_{n, m}$ to $M_{m, n}$ by $T(X)=A X B$. Prove that if $m \neq n$, then $T$ is not invertible.
2. Let $S$ be the subspace of $M_{n, n}$ (the vector space of all real $n \times n$ matrices) generated by all matrices of the form $A B-B A$ with $A$ and $B$ in $M_{n, n}$. Prove that $\operatorname{dim}(S)=n^{2}-1$.
3. Let

$$
M=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

(a) Find the minimal and characteristic polynomials of $M$.
(b) Is $M$ similar to a diagonal matrix $D$ over $\mathbb{R}$ ? If so, find such a $D$.
(c) Repeat part (b) with $\mathbb{R}$ replaced by $\mathbb{C}$ and also by the field $\mathbb{Z} / 5 \mathbb{Z}$.

