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Linear Algebra

• Do any of the four of the six problems. Indicate on the sheet with your identification
number the four which you wish graded.

• Your solutions should contain all mathematical details. Please write them up as
clearly as possible.

• Explicitly state any standard theorems, including hypotheses, that are necessary to
justify your reasoning.

• You have three hours to complete this examination.

• On problems with multiple parts, individual parts may be weighted differently in
grading.

• When you are done with the examination, place examination blue book(s) and
selection sheet into the envelope in which the exam came. You will hand in all
materials. If you use extra examination books, be sure to place your code number
on them.
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1. Let A be a complex n× n matrix and b be a complex n× 1 vector.

a.) Suppose that y is a nonzero complex 1 × n vector. Show that there is a
nonzero polynomial q(x) and an eigenvalue λ of A such that y q(A) is nonzero, and
( y q(A) )A = λ ( y q(A) ).

b.) Prove that
Rank[b Ab A2b · · · An−1b] = n

if and only if

Rank[A− λI b] = n, for every eigenvalue λ of A.

Here, the matrix I denotes the n×n identity matrix. Notice that the first matrix of
the statement to be proven is an n×n matrix, and the second one is an n× (n+ 1)
matrix.

2. Let A and B be nonsimilar n × n complex matrices with both the same minimal
polynomial and the same characteristic polynomial. Show that n ≥ 4 and that the
common minimal polynomial does not equal the common characteristic polynomial.

Exam continues on next page ...
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3. Let A(t) be a real-valued, continuous n × n matrix function, defined for all t ∈ R,
and Φ(t) be a real-valued, continuously differentiable n × n matrix function, such
that

Φ′(t) = A(t) Φ(t), for all t ∈ R.

Here, Φ′(t) is the matrix function obtained from Φ(t) by taking the derivatives of
each of its entries. Show that

d

dt
( det( Φ(t) ) ) = tr(A(t)) det(Φ(t)), for all t ∈ R,

where det(Φ(t)) denotes the determinant of Φ(t), and tr(A(t)) denotes the trace of
A(t).

You may use that for any n× n matrix, the determinant of M is given by

det(M) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

Mi,σ(i)

where Sn denotes the set of permutations of {1, 2, . . . , n}; a transposition is a permu-
tation that interchanges exactly two distinct elements of {1, 2, . . . , n} while leaving
all other elements fixed, any σ ∈ Sn is the composition of transpositions. The
sign function on Sn is given by sgn(σ) = ±1, with value 1 exactly when σ is the
composition of an even number of transpositions.

4. Let A be a nilpotent matrix (Ak is the zero matrix, for some positive integer k).
Prove that the trace of A is zero.

Exam continues on next page ...
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5. Let A be a nonsingular real n×n matrix. Prove that there exists a unique orthogonal
matrix Q and a unique positive definite symmetric matrix B such that A = QB.
(Recall that B is positive definite if it is self-adjoint and 〈Bx, x〉 > 0 for all nonzero
x ∈ Rn.)

6. Let T : V → V be a linear operator on a complex finite dimensional vector space.
Let V ∗ denote the dual space of V , and T t the transpose linear operator for T . Using
component-wise operations, form the external direct sum vector space V ⊕ V ∗; let
T̃ : V ⊕ V ∗ → V ⊕ V ∗ be given by T̃ (v, `) = (Tv, T t`). Determine, with proof, the

minimal polynomial of T̃ .
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