Department of Mathematics
 Special Qualifying Examination
 Spring 2007

Part I: Real Analysis

- Do any four of the problems in Part I.
- Your solutions should include all essential mathematical details; please write them up as clearly as possible.
- State explicitly including all hypotheses any standard theorems that are needed to justify your reasoning.
- You have three hours to complete Part I of the exam.
- In problems with multiple parts, the individual parts may be weighted differently in grading.

1. Let H be a (not necessarily separable) Hilbert space, with inner product \langle,$\rangle .$ Let $\left\{e_{\alpha} \mid \alpha \in \Lambda\right\}$ be an orthonormal collection of elements in H; that is

$$
\left\langle e_{\alpha}, e_{\beta}\right\rangle= \begin{cases}0 & \text { if } \alpha \neq \beta ; \\ 1 & \text { if } \alpha=\beta .\end{cases}
$$

Show that for every given $x \in H,\left\langle x, e_{\alpha}\right\rangle \neq 0$ for at most countably many α.
2. Let f be a Lebesgue integrable function on R^{n} i.e. $\int_{R^{n}}|f(x)| d \mu(x)<\infty$ where $\mu(x)$ is the Lebesgue measure on R^{n}. For every $x \in R^{n}$, define

$$
G(x)=\int_{\left\{y \in R^{n}| | y-x \mid<1\right\}} f(y) d \mu(y) .
$$

Show that G is a continuous function on R^{n}.
3. Suppose f is a nonnegative function defined on a Lebesgue measurable subset E of R^{n}. Show that the set

$$
\{(x, t): 0 \leq t \leq f(x), x \in E\}
$$

is Lebesgue measurable on R^{n+1} if and only if f is a Lebesgue measurable function on E.
4. A sequence $\left\{f_{k}\right\}$ in $L^{2}\left(R^{n}\right)$ is said to converge weakly to a function f in $L^{2}\left(R^{n}\right)$ if

$$
\lim _{k \rightarrow \infty} \int f_{k}(x) g(x) d \mu(x)=\int f(x) g(x) d \mu(x)
$$

for all $g \in L^{2}\left(R^{n}\right)$ where $d \mu(x)$ is the Lebesgue measure on R^{n}.
(a) Show that if a sequence $\left\{f_{k}\right\}$ is convergent in $L^{2}\left(R^{n}\right)$, then the sequence is weakly convergent.
(b) Give a counterexample to show the converse of (a) is not true.
5. Suppose f is a measurable function on $[0,1]$ and $0<f(x)<\infty$ for all $x \in[0,1]$. What is the least upper bound of the set of all A such that for all f as above

$$
A \leq\left(\int_{0}^{1}|f(x)| d x\right)\left(\int_{0}^{1} \frac{1}{|f(x)|} d x\right) ?
$$

Hint: Start from the simple function. You may need the following inequality. Let $a_{k}, k=1,2, \cdots, m$ be a finite sequence of positive real numbers and let $\epsilon_{k}, k=1,2, \cdots, m$ be a finite sequence of real numbers satisfying $0 \leq \epsilon_{k} \leq 1$, $k=1,2, \cdots, m$ and $\epsilon_{1}+\epsilon_{2}+\cdots+\epsilon_{m}=1$. Then

$$
a_{1}^{\epsilon_{1}} a_{2}^{\epsilon_{2}} \cdots a_{m}^{\epsilon_{m}} \leq a_{1} \epsilon_{1}+a_{2} \epsilon_{2}+\cdots+a_{m} \epsilon_{m} .
$$

6. Let $\mathcal{C}([0,1])$ denote the collection of all continuous functions on $[0,1]$. A realvalued function f on $[0,1]$ is said to be Hölder continuous of order α if there is a constant C such that $|f(x)-f(y)| \leq C|x-y|^{\alpha}$. Define

$$
\|f\|_{\alpha}=\max _{x \in[0,1]}|f(x)|+\sup _{x, y \in[0,1]} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}} .
$$

Show that, for $0<\alpha \leq 1$, the set

$$
\left\{f \in \mathcal{C}([0,1]):\|f\|_{\alpha} \leq 1\right\}
$$

is a compact subset of $\mathcal{C}([0,1])$.

Department of Mathematics
 Special Qualifying Examination
 Spring 2007

Part II: Complex Analysis and Linear Algebra

- Do any two problems in Part CA and any two problems in Part LA.
- Your solutions should include all essential mathematical details; please write them up as clearly as possible.
- State explicitly including all hypotheses any standard theorems that are needed to justify your reasoning.
- You have three hours to complete Part II of the exam.
- In problems with multiple parts, the individual parts may be weighted differently in grading.

Part: Complex Analysis

1. Let $p(z)$ denote the complex polynomial $\sum_{k=0}^{n}(k+1) z^{k}$, of degree $n, n \geq 1$. Let α be a positive real number. Evaluate the integral

$$
\int_{|z|=\alpha} z^{n-1}|p(z)|^{2} d z
$$

2. Let S_{r} denote the circle centered at 0 with radius r in the complex plane, i.e. $S_{r}=\{z \in \mathbb{C}| | z \mid=r\}$. Show that there does not exist an analytic function which maps the annulus $\{z|8 \leq|z| \leq 27\}$ onto the annulus $\{z|2 \leq|z| \leq 3\}$ with $S_{8} \rightarrow S_{2}$ (mapping inner boundary to inner boundary) and $S_{27} \rightarrow S_{3}$ (outer boundary to outer boundary).
3. Suppose that f is analytic in the open unit disc D and $f\left(\frac{1}{n^{2}}\right)=f^{\prime \prime}\left(\frac{1}{n^{2}}\right)$ for all $n \in \mathbb{N}$. Show that f is the restriction to the disc of an entire function.

Continued on next page

Part: Linear Algebra

1. Let A be an $n \times n$ matrix with real entries. Suppose A is nilpotent, i.e. A^{m} is the zero matrix for some $m \geq 1$, and $B=c_{0} I_{n}+c_{1} A+\cdots+c_{m-1} A^{m-1}$, where $c_{0}, \cdots, c_{m-1} \in \mathbf{R}$ and I_{n} is the $n \times n$ identity matrix. Show that $\operatorname{det}(B)=0$ if and only if $c_{0}=0$.
2. Let A be a normal matrix. Show that there exists a polynomial p such that $A^{*}=p(A)$ where A^{*} is the conjugate transpose (i.e. Hermitian adjoint) of A.
3. Suppose A is a complex $n \times n$ matrix which satisfies the matrix equation $A^{k}=I_{n}$ for some positive integer k. Prove that A is diagonalizable.
