A Look into Sex-Equality
and Other Aspects of Stable Matchings

Kathryn J. Kent
Western Maryland College

with Significant Contributions by
Erik Winfree
University of Chicago

REU Summer Program
1990

A Look into Sex-Equality
and Other Aspects of Stable Matchings

"I. Abstract

In this paper we hope to outline the basic Gale-Shapely
algorithm for finding stable matchings and make apparent the
need for an algorithm for finding a sex-equal stable matching.
Sex-equality will be defined, and different weightings proposed
to most efficiently find such matchings. We propose one
possible algorithm that is effective in many cases, and illustrate
it with a computer program. Lastly, we will take a look at
"stable marriages" for more than two "sexes". The basic source
book that we have used is The Stable Marriage Problem -
Structure and Algorithms by Dan Gusfield and Robert W. Irving,
which seems to be a comprehensive, thorough, and up-to-date
overview of what is widely (and not so widely) known about
stable marriages. In order to make things less confusing, we
often alter the notation used by Gusfield and Irving.

Il. Introduction

To begin, we will have to go over a few definitions and
examples. For our purposes, a matching is a one-to-one, onto
mapping from one group, or sex, to another. In the cases we
will be looking at, there are some n "men" and n "women" (n a
natural number) that have certain lists denoting which members
of the opposite sex they prefer first, second, etc., as illustrated
below. The men are denoted by letters, and the women by
numbers. In this case, n=4.

Men's preferences Women's preferences
a 2314 1 adbc
b 123 4 2 dbca
c 3421 3 bcda
d 13 42 4 cdab

To interpret the tables, man "a" prefers woman "2" to all
of the others, and prefers woman "4" the least. An example of a
matching, then, is the four pairs a-2, b-1, ¢c-3, d-4 which is
clearly one-to-one and onto.

A stable matching, whose definition is "a matching that
is not unstable"”, is a matching in which there are no two people
who would strictly prefer being together to being with their
current partner. An matching is unstable if there exists such a
pair.

The example above is unstable, because "d" would rather
be with "1" than with "4", and "1" would rather be with "d" than
with "b". The pair d-1, then, is called a blocking pair, or a pair
which makes the matching unstable. A pair blocks only if BOTH
parties prefer each other to their current partner. figain looking
at the example, "3" prefers "b" to her current partner "c", but
"b" would rather stay with his partner, "1", than switch to "3",
and thus b-3 does not block the matching.

To check for instability, one need only look at the
preference list of one sex, say the men, and then look only at
the women that each man prefers to the person he is currently
matched with. In our example matching (current partners bold
shadowed)

Men's preferences IWWomen's preferences
a 2314 1 d b c
b 12 3 4 2 dbec
c 3 421 3 bcgda
d 1 3 4 2 4 ¢ @d ab

one would only need to check d-1 and d-3, because none of the
other men would be willing to switch, seeing as they prefer their
current partners to any of the others. Checking d-1 (outlined),
we find that they both prefer each other to their partners. At
this point we would be done, having found a blocking pair. To
illustrate further, though, let's check d-3 (underlined). Itis
quite clear that "3" prefers her partner to "d", so this pair does
not block. From here on we will general use the terms
"matching" and "stable matching" interchangeably.

I1l. The Gale-Shapley algorithm

In 1962, Gale and Shapley introduced their algorithm for
finding a stable matching. They proved that there is always at
least one stable matching, and that their algorithm will always
terminate in a stable matching. It is easiest to understand the
algorithm if one sees it in action, so rather than simply explain
it, we will execute it on the first egample.

Men's preferences Women's preferences
a 2314 1 adbec
b 1 2 3 4 2 dbc a
c 3421 3 bcda
d 1 3 42 4 cdab

Begin by pairing "a" with the first woman on his
preference list, "2". Next, pair "b" with the first woman on his
preference list, "1". Continue in this manner, pairing c-3. One
would continue to match d-1, but "1" is already matched, so
first we must decide who she prefers. Looking at her
preference list, she prefers "d" to "b", so she breaks her pairing
with "b" in favor of "d". Let's see where we are so far:

Men's preferences Women's preferences
a 2314 1 adbec
b 123 4 2 dbec
c 3421 3 becda
d 1 3 42 4 cdab

So, "b" is free, and we try to match him with the next woman on
his preference list, since the first one rejected him. Weman "2"
is already paired, but she prefers "b" to her current partner "a".
So we break the pairing of a-2 and then pair b-2 together.

Men's preferences Women's preferences
a 2314 1 adbc
b 12 3 4 2 dDbca
c 421 3 bcda
d 1 3 42 4 cdab

Looking at the next woman on "a"'s list, we find that "3"
would rather stay with "c" than break her match in order to pair
with "a", so "a" tries the next woman on his list. "1" prefers
"a" to "d", so we make a-1 a pair, and "d" is once again free.

Men's preferences Women's preferences
a 2314 1 d bc
b 1t 2 3 4 2 dDbca
c 3 421 3 becda
d 13 42 4 cdab

He tries "3", but she again prefers her present partner, so "d”
tries "4". Since she is not matched with anyone, we can
immediately pair her with "d", since being paired with anyone on
the list is considered preferable to not being paired at all. So we
end up with the final matching a-1, b-2, c-3, d-4.

Men's preferences Women's preferences
a 231 4 1 d bc
b 1 2 3 4 2 dDbca
c 3421 3 bcda
d 13 42 4 ¢ d ab

If one checks for stability, it is quite evident that all of the pairs
that must be checked are ones that have already been tried
during the execution of the algorithm. If we look at a-2, for
example, we know that it does not block the matching, because
"2" already rejected "a" for someone she prefered more.

There are some interesting properties that result from the
performance of the Gale-Shapley algorithm. As it turns out, the
matching that results from going through with the men's
preferences first, culminates with each man having the best
possible match he can have in any stable matching, and each
woman having her worst. This is called the man-optimal stable
matching. Likewise, obviously, if you start the algorithm looking
at the women's preferences, the women get their best matches,
and the men their worst, thus resulting in the woman-optimal
stable matching. One could see, as the algorithm progressed
through the example, that the men were going lower down on

their preference lists, and the women were simultaneously
getting higher.

Gusfield and lrving also illustrate what they call the
extended algorithm, in which the preference lists are reduced as
the algorithm is executed, eliminating pairs that would not be
stable, no matter what the matching. We will once again use the
original erample

Men's preferences Women's preferences
a 2314 1 adbc
b 1 23 4 2 dboc a
c 3421 3 bcda
d 13 42 4 c¢cdab

We will go through in steps:
1) pair a-2 and eliminate any pairings that occur after "a"
on "2"'s preference list (in this case there aren't any)

2) pair b-1 and eliminate any pairings that occur after "b"
on "1"'s preference list (c-1) so the lists now look like this:

Men's preferences Women's preferences
a 2314 1 adb
b 1 23 4 2 dbec &
c 3 42 3 bcda
d 13 42 4 cdab

The idea is to delete "c" from "1"'s list and "1" from "c"'s list
because it would be useless for "c" to propose, since "1" would
automatically reject him.

3) pair c-3 and eliminate d-3 and a-3, and the lists are:

Men's preferences Women's preferences
a 2 1 4 1 adbD
b 1 23 4 2 dbc @
c ¥ 42 3 be
d 1 4 2 4 cdab

4) pair d-1 (note: if "1" is still left on "d"'s list, then 1"
automatically prefers "d" to her present partner, or else the pair
would have been eliminated already.) eliminate b-1

5) pair b-2 eliminate c-2 and a-2

Men's preferences Women's preferences
a 1 4 1 a d
b 2 3 4 2 d D
c 3 4 3 be
d 1 4 2 4 c¢cdab

6) pair a-1 eliminate d-1

7) pair d-4 eliminate a-4 and b-4
We are now done, and have the following lists left:

Men's preferences Women's preferences
a i 1
b 2 3 2 dD
c 3 4 3 be
d 4 2 4 ¢ d

It is quite clear that in this case the extended algorithm speeds
up the process (not having to try pairings that won't work), and
makes the final lists quite a bit smaller.

The extended algorithm is continued, so that it is
performed again, this time with the women choosing first on
their lists. For this purpose, we will switch their positions on
the page.

Women's preferences Men's preferences
1 a a 1
2 db b 23
3 bec c 3 4
4 c¢cd d 4 2

So we start by pairing 1-a, then 2-d, 3-b, and 4-c, eliminating 2-
c from the lists. We have now found the woman-optimal stable
matching. What is left of the preference lists is refered to as
the 6S-lists, which, as it turns out, contain all of the possible
stable matchings. Note that in this case, a-1 is the only possible
pairing for either "a" or "1". They are called a fixed pair. The

first matching on the men's G-S lists is the man-optimal, and the
last is the woman-optimal.

In this particular case, there are only two stable
matchings. If the man-optimal and woman-optimal matchings
had been the same, there would only the one stable matching
would have existed. On the other hand, some preference lists
are such that no pair is eliminated, and the GS-lists are the same
as the complete preference lists.

IV. Weight functions

It is quite evident that although the Gale-Shapley
algorithm works, it is almost always to the advantage of one
sex over the other. One way of looking at this phenomenon is to
assign weights to each matching. The most obuvious way of
doing this is through a direct weighting. 1f a man gets
matched with the first woman on his list, the weight for that
man is one, if they get the second, the weight is two, and so on.
The same is true for the women. You then take the sum of these
weights to get the total weight. We shall define sexd-equal as
the particular matching or matchings (there may be a tie) that
are closest to having or have the sum of the weights for just the
men equal to that of just the women. ‘

In the esample we used earlier, if the sum of the weights
for just the men is compared to that of just the women, itis
clear that the man-optimal matching (9 vs ?) is more equal than
the woman-optimal one (12 vs 4). Looking at the total weight,
though, discloses nothing, because the total weight for both of
these is 16.

We will now introduce another erample, again with n=4.

Men's preferences Women's preferences
a 1234 1 dcba
b 2143 2 cdab
c 341 2 3 badc
d 43 21 4 abocd

We shall refer to this as the total lattice example for n=4,
because it produces the highest number of stable matchings for
n=4, which is 10 matchings, that form a full lattice using the
relation of men prefering one matching to another. In other

words, a matching is higher on the lattice than some other
matching if the sum of the weights for the men is less than that
for the other matching. If it is the same, then the matchings are
on the same level. In the lattice, we list only the women's
numbers, in the order such that the first listed is paired to man
"a", the second to man "b", the third to "c", and the fourth to
"d". The lattice is:

1234

1243 2134
2143

2413 3142
3412

4312 3421
4321

where the men have the lowest sum of weights from a-1, b-2,
c-3, d-4 (man-optimal sum of weights is 1+1+1 +1=4) and the
highest sum of weights from a-4, b-3, c-2, d-1 (woman-optimal
sum of weights is 4+4+4+4=16). The women's sum of weights is
the exact reverse. On the center of the lattice the men’'s
weights equal the women's (both are 10). The result of this
symmetry is that the total sum of weights for all of these
matchings is the same (20). Itis quite evident that using the
total sum of weights reveals very little.

The next attempt at a better weight function was to
square the individual weights, and then sum them. In this case,
the male-optimal sum of squares would be 1+1+1+1+
16+16+16+16=68, the next level down 60, the next, 52, the
center would be 52, and the rest increase again symmetrically.
Apparently, this at least differentiates the most unequal
matchings from some of the more equal ones. The next step
then would be trying the sum of the cubes of the weights, right?
Well, it sounds good theoretically, but let's look at what
happens. If we look towards the center of the lattice, say 2143
and 3142, the matchings are a-2, b-1, c-4, d-3, and a-3,b-1, c-4,
d-2. These are easier to see if we go back to the preference
lists.

9

Men weight Women weight

al1234 2 1 dcba 3
b21T43 2 2 cdab 3
c 3412 2 3 badc 3
d 4321 2 4 abcd 3
sum: 8 12
al234 3 1 dchba 3
b2143 2 2 cdab 2
c 3412 2 I3 badc 2
d 4321 3 4 abcd 3
sum: 10 10

It is quite obvious now that no matter what power one takes of
the weights, their sums will be the same, because even though
the second is clearly sex-equal, and the first isn't, they still have
the same numbers for their weights. So the sum of any powers
of the original weights will still be equal.

So we suppose that if we happen to find one matching with
a total weight, or sum of squares, that is strictly less than all of
the others, then it is the sex-equal one. Unfortunately, this is
not true. A counter example is:

weights squares weights squares

a 1432 1 1 1 @adcb 1 1

b 3412 2 4 2 badc 3 9

c 4123 4 16 3dcab 2 4

d 2143 1 1 4 adbc 3 9
sums: 8 22 9 23

total sum of weights = 17 total sum of squares = 3595

a 1432 1 1 1 @dcb 1 1

b 3412 1 1 2 badc 3 9

c 4123 1 1 3 dcab 4 16

d 2143 A 1 4 adb¢e 4 16
sums: 4 4 12 42

total sum of weights = 16 total sum of squares = 46

10

In both the sum of weights and the sum of squares, the second
matching had the lower totals. It is quite apparent, though, that
the first is the more sex-equal of the two matchings, therefore,
the conjectures are false.

The next step is to try a different weight function. Since
the sum of powers did not reveal anything, let's try the power of
a sum.

If we take the square of the sum of the men's weights and add
that to the square of the sum of the women's, does this tell us
anything?

As a matter of fact, the square of the sums does indeed
differentiate between these different matchings. Using the
same eramples, for the first, the square of the sums is
64+144=208, for the second, sex-equal one, it is 100+100=200.
Lets look at this for the total lattice:

sum of squares square of sums

1234 68 272

1243 2134 60 232
2143 52 208
2413 3142 52 200
3412 52 208
4312 3421 60 232
4321 68 272

So the conjecture to make is:

If you find the matching(s) with the strictly lowest square
of the sum of weights, then that is the sed-equal matching.
Proof: Take the sum of the weights of the men, a, and the
sum of the weights of the women, b. | believe that without loss
of generality we can say a<b-1. (If a=b or a=b-1 then thatis
the sex-equal matching).

a<b-1 , the original inequality

a-b+1<0 move everything to left
2@-b+1)<0 multiply both sides by 2
2(@a-b+1) +a2 *b2< a2+ b2 add and subtract a2 + b2

(a2 +2a+1)+(b2-2b+1)<a2+b2 regroup

11

(@a+1)2+(b-1)2<a2+b2 write in terms of squares

So the square of the sum of the weights decrease as a and
b get closer together (more equal), whether a is less than or
greater than b. Therefore, if you find the lowest square of
sums, it is the sex equal one.

U. The RAlgorithm and Program

In order to devise an algorithm to find sex-equal stable
matchings using the properties of the different weight
functions, it was necessary to write the preferences in a
different form. Instead writing the preferences in the usual
way, we transform them into a two valued or compley matris,
with each entry representing the position, or weight, of each
individual on another's preference list. To illustrate, let's take

the original example again:

Men's preferences Women's preferences
a 2314 1 adbec
b 123 4 2 dbc a
c 3421 3 bcda
d 1 3 42 4 cdab

change this into a 4 ® 4 matrix, with men along the rows, i, and
women along the columns, j. The firstij entry is where woman j
is on man i's preference list, and the second entry is where man i
is on woman j's preference list. So in transforming the above
lists, the first entry in position (a,1) is 3, since woman "1" is
third on man "a"'s preference list. The second entry in (a,1) is
then 1, because man "a" is first on woman “1"'s list. So filling
out the matrix in this manner, we get:

1 2 3 4

| J | | |
a | 3 01 | 1 4 | 2 4 | 4 3 |

| - | | ,t
b | 1 31 22 1 3 1 | 4 4 |

| | | | .l
c |l 4 4 | 3 3 | 1 2 | 2 1 |

| - | | |
d l 1 2 | 4 1 | 2 3 | 3 2 |

| | | | L

12

A third value can then be assigned to each double entry,
namely one of the different weights that can be applied. In the
case that we have worked with most, we applied the sum of
squares weight, so that the value of each double entry is equal
to the sum of the squares of the two individual entries. The
third value for (a,1) in our example would then be 32 +12 = 10.
The general idea of the algorithm is to then choose a matching
(eractly one entry in any given row or column) using the
preferences and the weights. The choices are made by
determining which entries, when added on, contribute the least
to the total sum of squares, while still maintaining a matching
(no more than one pair highlighted in any given row or column)
that only throws out the pairs which are prefered less than the
chosen ones, thus ensuring stability when finished.

The first step in the algorithm is to find the/a pair with the
lowest sum of squares, in this case, there are three, (c,3), (c,4),
and (d,1). So we choose one of these randomly, say (c,4). Now,
look across the "¢" row, and cancel out any of the pairs that are
less preferable according to "c". These are (c,1) and (c,2). Man
"c" still prefers "3" to "4". Next, we look at the "4" column, and
cross out all of the other pairs, because "4" prefers "c" to all of
the others.

1 2 3 4
| | | | |
a | 3 01 | 1 4 | 2 4 |—4—3—|
] | |] |
b | 1 3 | 2 2 | 3 01 |—4—4—|
e - | |
¢ |—44—|—33— 12 | 2 1|
| | | | }
d | 1 2 | 4 1 | 2 3 |—3—2—
| I | | 1

Now, we choose another "open" square which contributes
the least to the total weight function. The options are (c,3) and
(d,1). Both of these are suitable, so we might as well choose one
that does not rule out (c,4), our already existing pair. So we

13

choose (d,1), and strike out (d,2), (d,3), and (b,1). We would also
cross out (d,4) and (c,1), but they are already crossed out.

1 2 3 4

I | | | |
a |l 3 1 | 1 4| 2 4 |—4—73—|

| | | | |
b |—t3—] 2 2 | 3 1 |—4—4—|

| | | | ol
c |—4—4——3—3 | 1 2 | 2 1|

I | } | }
d | 7 2 |—4—+ |—2—3——3—2—]

I I l l |

The next choice might be (c,3), but seeing as that does not
lower the total sum of squares, we can avoid the contradiction
of (c,3) us (c,4) by choosing another pair, so we go on to choose
(b,2).

This gets rid of (b,3) and (a,2). The next choice would be (a,3),
crossing out (a,1).

1 2 3 4

| | | | |
a —3—t+——+—4— 2 4 |—4—3—|

| | | | |
b | —+—3—| 2 2 | 3—1+—| 4—4—]|

| | _ | |
c —44—+—3-3 | 12 | 2 1|

| b | |
d [7 2 | 4— | 2—3 | 3—2—|

| | | | 1

This would be our desired matching, but we still have one
"open" pair, (c,3), which makes the matching unstable, seeing as
(c,3) would rather be together than with their present partners.
So we choose (c,3), and cross out (c,4), and (a,1). But we still

have to reopen (a,1), (a,4), (b,4), and (d,4) since (a,3) and (c,4)
are no longer prefered to these other pairs. We then have:

1 2 3 4

| I | I I

a | 3 1 |—4+—4—|—2 4| 4 3 |
| | — | .1

b —4+—3 | 2 2 |—3%—1+—| 4 4 |
| | | | |

c —44—4+—3 3 | 1 2 |—2—+—]|
I ! } | |

d I 1 2 |—4—t+—]—2-3—| 3 2 |
| | | I |

The process continues in the same manner, until we end up
with:

1 2 3 4
| | | | |
a | 3 1 | +—4— | 2—4—| 4—3—
| | — | 4
b |—+—3— 2 2 | 3——| 4—4—I|
| | | | ;
c —4—4——33 | 1 2 |—2—+]|
| | | | |
d — 4+—+—2-3—| 5 2 |
| | | |

This is obviously stable, because we canceled out only
those pairs that were mutually less prefered than the chosen
ones, and since there are no open spaces, there are no pairs that
could block this matching. As for sex-equality, we know that
there are only two matchings for this example, (a,1), (b,2), (c,3),
(d,4), which is what we have above, with a man to woman
weight ratio of 9 to 8. The other matching is (a,1), (b,3), (c,q),
(d,2) with a ratio of 12 to 4. Therefore, this IS the sex-equal
matching.

IWe have included a copy of the program that runs this
algorithm at the end of the paper, which has all of the details
for those so inclined. We believe, but have not proved, that this

always terminates. We do know thatif it does terminate, it
does so with a stable matching.

The problem, as discussed earlier in the section on weight
functions, is that the sum of squares does not always yield the
sex-equal stable matching. In most cases, it does, but in the
more structured ones, such as the full lattice, each erecution
may result in a different matching, not necessarily the sex-
equal one. It appears, though, that in most cases, which are
more random in terms of preference lists, the algorithm does
find the sex-equal matching. The next step is to try altering the
program so that the algorithm makes it's choices of which
entries to include based on the effect the entry makes on the
square of the sum, rather than the sum of the square. In that
case, we know that we are more likely to get a sey-equal
matching. This demands that we recalculate quite a bit every
time we try to add a new pair. Better yet would be to alter it so
that decisions are made scolely on the contribution the entry
makes to the DIFFERENCE in the weights of the men and the
women, since this is what the definition of sex-equality hinges
on. This, again, would need more calculations than the algorithm
illustrated above. Unfortunately, this type of algorithm may
require trying all of the possible stable matchings before making
a choice, thus not improving on any already existing algorithms.
These possibilities are yet to be probed.

Ul. A quick peek at N-dimensional matchings

Our last inquiry into stable matchings involues a side trip
from sex-equality. While studying stable matchings in general, a
colleague, Stephanie Wukovitz, asked what would happen if we
were on a planet where there were three sexes, and a
"marriage" was formed by three people, one of each seH. |
found this question extremely intriguing, and decided to look
into it. To explain eractly what | am looking at, let's try an
erample. First, if working with three sexes, we need six
preference lists, two for each sex, showing the order in which
they prefer the other two sexes.

al23 a ACB A 231 A cab 1 abec 1 ACB
b 321 b BAC B 132 B cba 2 bca 2 BAC
c 312 c BCH c 213 C bac J achb 3 CAB

16

I chose to use only three individuals of each se¥, because more
people makes it more complicated. The first question that |
looked at when trying to find a stable matching, is how to define
stability in the first place. There are a number of possibilities.
The first, a very strict definition, is to make threesomes, and
then define as unstable any threesome in which there exists at
least one pair that is not on the G-S lists of the two seyxes
involved. In this case, it is very difficult to find a stable
matching, and in fact, one may not exist for all eramples. This is
true for the case above. Take it's G-S lists:

al a f A 231 A a 1 a 1 AC
b 2 b C B 32 B c 2 b 2 BA
c3 cB cC13 Chb 3¢ 3 CAB

Looking at these, it is quite clear that there are many fixed
pairs, and thus many pairs that must be together. Trying to
make threesomes, we first pair up a-1, b-2, c-3, since these
must be together because of the definition. Then, for the same
reason, we must pair a-A, b-C, and c-B. So let's ook at what this
makes in terms of threesomes; a-1-A, b-2-C, and c-3-B. The
pairing 1-A is all right, as is 3-B, but 2-Cis not in the G-S lists, so
the matching is unstable. One can see that with this definition,
it may be very difficult, if not impossible, to find stable
matchings.

A looser definition, then, is to say that a matching is
unstable if there are any three individuals who would rather be
with each other than the people they are already matched with.
This concept seems to be a little harder to visualize, in that itis
not quite clear how to check for stability, or how to come up
with stable matchings. This seems to be an interesting path to
follow, and | plan to continue looking into this question.

17

Acknowledgements

My primary source book has been The Stable Marriage
Problem - Structure and Algorithms by Dan Gusfield and Robert
V. Irving, 1989, MIT Press, Cambridge, Massachusetts.

| would like to give my sincere thanks to the entire staff of
the REU summer program, in particular Jim Simpson and Mary
Flahive, who gave me many suggestion, not all of which worked,
but many of which led me on the right track.

18

o ,[)‘_xu_\ LR
/* Marg.c by Erik Winfree

currently this can find stable marriages for up to 16 couples.

“hange the definition of ’BIG’ to a greater value if desired - but I don’t
juarantee either the IBM will have enough memory or that the screen will
be big enough to display the matrix.

'A’...’2’ are considered the males. ‘a’...’z’ are considered the females.
In the matrix, the male preference is listed first:; it operates on the row.
yellow is unallocated and open (i.e. an engagement disruptive to the

current partial matching)

blue is unallocated and stable

white is an allocated engagement.
Thus if the matrix is just white and blue, we have a stable marriage.
In the preference list, for each letter,
grey means we know nothing about this as a possible matching
blue means that we know there exists a stable matching that includes this
white indicates the most recently found matching
- after finding the GS list -
grey means the matching is impossible
vellow means the matching is in the GS list (i.e. COULD be in a matching).

then entering the preference lists, CAPITALIZATION COUNTS! .
[f you simply press <enter> rather than entering a list for a particular
berson, then a random preference list is chosen for that person.

Jhen entering the a,b for the weight function, 0,0 requests a random
veight distribution. This usually causes the algorithm to get into a loop.

'he algorithm is still deterministic - that is, when there are several
squally good choices, it chooses just the first one it gets to.

'he numbers on the right side are the most recent sums of weights of the
bairs in the partial matching of 1,2,..,n couples, next to which pair
Jas chosen to get to that partial matching.

5= (sum male prefs)~2 + (sum of female prefs)"2

= (sum female prefs) - (sum of male prefs).

[f things die, Jjust try again...
</

tinclude <graphics.h>
tinclude <math.h>
tinclude <stdio.h>
tinclude <time.h>
1include <stdlib.h>

idefine BIG 16

int n,match, showweights=0;

har Mp[BIG][BIG],Wp[BIG][BIG]:

int Pm{BIG] {BIG],Pw[BIG][BIG]:

Lnt SW,sm;

int wt[BIG] [BIG],a,b,sum;

Lnt al[BIG][BIG],nal; /* O=open l=engaged 2=impossible */

int fc[3]={YELLOW,WHITE, BLUE};

jrawal (int i, int 3Jj)

(char t([10]:
setcolor(fcf{al(i](j]]):
if (showweights) sprintf(t," %44d",wt([i][]
else sprintf(t," %2d4%24",Pm[1
outtextxy (8* (3+5%3),16*(n+2+1) ,t);

[y —

)
(J1,Pw(i](3]):

drawMpWp (int i,int j) { char t[10];:
sprintf(t,"%c",Mp[i][Pm[i]([]J]-1]); outtextxy(8*(3+Pm[1i
sprintf(t,"%c" ,Wp[J][Pw[i][J]-1]); outtextxy(8*(43+Pw(

1031),16%1,¢);
} i1031), 6*] t)'
drawmatch (int c)
{ int 1i,3:
setcolor(c) ;
for (i=0;i<n;i++) for (j=0;j<n;Jj++) if (al(i][j]==1) drawMpWp(i,Jj):

}

drawperms (int c)
{ 1int 1; char t[40];
setcolor(c); bar(0,0,8%(44+n) ,16*(n));
for (i=0;i<n; 1++) {
sprlntf(t "$3c %s",/A’+1i,&Mp[1][0]); outtextxy(8*0,16*i,t);
sprintf(t,"%3c %s",’a’+1i,&Wp[1][0]); outtextxy(8*40,16%*1i,t);

}

openp(int i,int j)
{ int k,ok=1;
if (al[i][31!=1)
for (k=0;k<n;k++) if (al[l][k
J

]==1 Pm[1][k]<Pm[1][j]) ok= O,
for (k=0;k<n;k++) 1if (al[k][]J]==1 & Pw[k][J]<Pw[i][]J]) ©
al(i][]j]=0k?0:2; drawal(i,J):

}

int Mopt[BIG],Wopt[BIG],Mdet[BIG],Wdet[BIG];
typedef char plist[BIG][BIG];
int conflict(int #*ii, int *3jj, plist P, int *0)
{ int ilj;
for (i=0;i<n;i++) for (Jj=i+1;j<n;j++)
if (P[i][0[i])])==P[]J][0O[31]) { *ii=1i; *Jj=]; return 1;)
return 0;
}
int rejected(int ii, int jj, char *P, char off)
{ 1int 1i;
for (i=n-1;i>=0;1i--) o
if (P[i])-off==ii) return ii; else if (P[i]-off==]jj) return jJj;

}
gsllst()
{ int i,3j;
drawperms(YELLOW);
for (i=0;i<n;i++) { Mopt[i]=Wopt[i1]=0; }
while (conflict(&i,&]j,Mp,Mopt))
Mopt([rejected(i,]j,&Wp[Mp[i][Mopt[i]]-"a’][0], A")]++;
while (conflict(&i,&]j,Wp,Wopt))
Wopt[rejected(i,],&Mp([Wp[i] [Wopt[i]]-"A"][0], a’)]++;
for (i=0;i<n;i++) { ' ‘
Mdet [Wp(i][Wopt[i]]-'A’]=Pm[Wp[i][Wopt[i]]-/A’])[1]-1;
Wdet[Mp[i][Mopt{i]]-’a’]=Pw[i][Mp[i][Mopt(i]])-'a’]l-1;

}

setcolor (LIGHTGRAY) ;

for (i=0;i<n;i++)
for (3j=0; j<Mopt[1] j++) drawMpWp(i, Mp[l]
for (j Mdet[1]+1 j<n; j++) drawMpWp(i, Mp[
for (j =0;Jj<Wopt(i];J++) drawMpWp (Wp (1] (]
for (3 Wdet(1]+1 j<n;j++) drawMpWp (Wp[1]

}

setcolor (BLUE) ;

for (i=0;i<n;i++) { ‘ .
drawMpWp (i,Mp[i] [Mopt[i]]-‘a’); drawMpWp(Wp[i][Wopt(i]]-'A’,1);

}

int rematch()
. int i,3j,k,bi,bj,bnal=0,tnal,bsum=0, tsum;
bi=-1;
for (i=0;i<n;i++) for (j=0;j<n;Jj++) 1if (al[i][]J]==0) {
tsum=sum+wt (1] [J]:; tnal=nal+l:;

for (k=0;k<n;k++) if (al(i](k]==1) { tnal--; tsum-=wt[1i][k]; }
for (k=0;k<n;k++) if (al[k][J]==1) { tnal--; tsum-=wt[K][]]’ }
if (bi==-1 || tsum*bnal*bnal<bsum*tnal*tnal)

{ bsum=tsum; bnal=tnal; bi=i; bj=j; }

)
if (bi==-1) { match=1; return 0; }
sum=bsum; nal++; al[bi][bj]=1; drawal(bi,bj):
for (i=0;i<n;i++) {
if (al{i][bj]==0 && Pw[i][bj]>Pw[bi](bj]) al(i][bj]=2;
if (al{i][bj]==1 && 1i!=b1l) ¢
al[(i][{bj]=2; nal--;
for (j=0;j<n;j++) openp(i,]):
)} drawal(i,bj):

for (j=0;j<n;j++) ¢
if (al[bi][j]==0 && Pm[bi][j]>Pm[bi][bj]) al[bi]([j]=2;
if (al[(bi][j]==1 && ji=bj) {
al(bi][]J]=2; nal--;
for (i=0;i<n;i++) openp(i,j):
} drawal (bi,Jj):

! .
gotoxy (45,n+nal); printf("%5d (%c,%c)",sum,’A’+bi,’a’+bj);
return 1;

]

~andomperm (char *t,int n,char off)
(int i,3,0k:
for (i=0;i<n;i++) |{
do {
t[i]=off+random(n) ;
for (ok=1,j=1i-1;3j>=0;3j--) if (t[(j]==t[i]) ok=0;
} while (!ok):

}

int makeprefs()
 int i,3j,0k;
for (1=0;i<n;i++) for (j=0;j<n;Jj++) {
for (i=0;i<n;i++) for (j=0;j<n;j++) {
int x=Mp[i][j]-'a’,y=Wp[i][]]-'A’;
if (x<0 [| x>=n || y<0 [|y>=n) {ok=0; break;)
Pm{i][x]=]+1; Pw[y][i]=]+1;

Pm{i][J]=0; Pw([i][J]=0:;)}

if (tok) printf("- use ‘a’..’%c’ and 'AY L %c/\n",’a’+n-1,'A+n-1);
else {
for (i=0;i<n;i++) for (Jj=0;j<n;j++)
if (Pm{i)(j]==0 || Pw[i][]]==0) ok=0;
if (!ok) printf("- try a permutation next time\n");

return ok;
}

jetprefs ()
. int i;
for (i=0;i<n;i++)
gotoxy(1l,i+1l); printf("%3c ",’A’+1); gets(&Mp[i][O
gotoxy(41,i+1); printf("%3c ",’a’+i); gets(&Wp(i][O
if (Mp[i][0]==0) randomperm(&Mp[i](O],n,’a’);
if (Wp[i][0]==0) randomperm(&Wp[i]([O],n,’A");

1)
1)

)
drawperms (LIGHTGRAY) ;

etgoodprefs ()

setfillstyle(SOLID_FILL, BLACK); bar(0,0,getmaxx () ,getmaxy()):
do getprefs(); while (!makeprefs()):
match=0;

etweights ()
int i,3;
gotoxy(1l,n+1); printf("Weights: a Pm2 + b Pw2 ? "); scanf("%d,%d", &a, &b);
for (i=0;i<n;i++) for (Jj=0;j<n;j++) { o
wt(i](j)=a*Pm[i](J1*Pm[1][J)+b*Pw(i][J]*Pw[1]}[]];
if (a==0 && b==0) wt([i][j]=random(3*n#*n)+1;
al(1](3]1=0;
} sum=0; nal=0;
for (i=0;i<=n;i++) { gotoxy(45,n+i+1); printf (" "y)
match=0;

rawgrid()

int 1,37
setfillstyle(SOLID_FILL, BLACK) ; bar(0,16*(n+l),getmaxx(),getmaxy());
gotoxy (5,n+2); for (i=0;i<n;i++) printf(" 3cC "orar+i);

for (i=0:;i<n;i++) { gotoxy(l,n+3+1); printf("%3c "OUATHLY ;)
for (i=0;i<n;i++) for (j=0;j<n;j++) drawal(i,j);

alcsums ()
int 1,3
sw=sm=0;
for (i=0;i<n;i++) for (J

=0;j<n;j++) if (al(il({j1==1) |
sw+=Pw[i]([Jj]; sm+=Pm[1i] (]

0;
103103
}

isual ()
int i,j; char key=’' ’;
getgoodprefs(); setweights(): drawgrid () ;
do {
if (key==’s’ || key=='c’) if (l!rematch()) ¢{
calcsums () ; drawmatch(WHITE); key=’ ’;
gotoxy (45,2%n+1); printf("s=%d d=%d",sw*sw+sm*sm, SWw-sSm) ;
if (kbhit() || key!=’c’) key=getch(); o
if (key=='0’) for (i=0;i<n;i++) for (3=0;3<n;Jj++) openp(i,J):
if (key=='G’) gslist();
if (key=='P’) { getgoodprefs(): key='W’'; }
if (key=='W’) { if (match) drawmatch(BLUE) setweights(); key=’'D’'; }
if (key=='D’) drawgrid():;
if (key==’S’) { showweights=!showweights; drawgrid(): }
} while (key!=’q’):; :

iain()

int g _driver,g_mode,g_error; int key: char t[4];
randomize () ;

detectgraph(&g_driver, &g_mode) ;

initgraph (&g _driver, &g_mode, "a:\\")/

do {
gotoxy(1,1);
printf ("\ns=step c=continuous g=quit\n"):; _
printf ("O=recheck open spots D=redraw allocation G=light GS list\n");

2Je)

printf ("P=new preference lists W=new algqrithm weights\n");
printf ("S=switch from show preference/weights matrix\n");
printf ("Number of couples? "); scanf("%d",&n); gets(t);
visual(n);
gotoxy(1,24); printf("Another? "); key=getch():

} while(key=='y’);

closegraph()

