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A Note to the Reader

During the summer of 1990, | had the opportunity to work in graph
theory at Oregon State University trying to solve a conjecture concerning
Hamiltonian uniform subset graphs. This paper is the culmination of that
work. | would like to take this opportunity to express my sincere thanks
to anyone and everyone who either made such a summer program possible
or helped me to become part of such a program. | would also like to give a
special thanks to Jim Simpson for telling me about this problem, being at
what seemed like my beck and call, and showing patience above and
beyond the call of duty.

Thanks,

Taid 2 Ui
¢ Lol

Daniel L. Viar

undergraduate
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Introduction

Chen and Lih first developed the concept of a uniform subset
graph in 1987 [1]. A uniform subset graph G(n,k,t) is defined to have all k-
subsets of an n-set as vertices and edges joining k-subsets intersecting
at t elements. They showed that G(nk,t) had already appeared in the
literature with special values of n, k, and t. (see for instance, [2], [3], [4],
or [5] ) They also conjectured that except for the Peterson graph,
(G(5,2,0) or G(5,3,1)) G(nk,t) is Hamiltonian. In this paper we give a
summary of their resuits and discuss a way of approaching the conjecture
from a purely combinatorial point of view.

Defining G(n,k,t)

To define the uniform subset graph G(n,k,t) we consider the n-set
V(n)={1,2,...,n} and define
G(n,k,t) = (V(G), E(G)) where
V(G) = V(nk) = {x [ x =V(n) and |x| =k } and
E@G) = { (xy)]|xyeV(nk) and | xay|=1t}.
Clearly, V(n,k) is just all the subsets of V(n) with k elements and we see
that there are (Q) of these. The way E(G) is defined, it simply says take
two elements of V(nk) (They are k-sets) and if they have t elements in
common then there is an edge connecting them. So far we have not
specified a way to choose appropriate n, k, and t. Define the triple (n,k,1)
to be admissible for G(nk,t) if
n>k>t and n> 2k if t=0
n2k-t if t>0
This guarantees that G(n,k,t) always has cycles and is always connected.

Examples
Perhaps the most trivial example is G(3,2,1). Here V(3) = { 1,2,3 }

and V(3,2) = { 12, 13, 23 }. Clearly this makes sense since (3) = 3. Note
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that E(G) = { (12,13),(12,23),(13,23) }. Hence the graph makes a triangle.
(fig. 1) Another example is G(5,2,0) or G(5,3,1) which gives the Peterson
graph. (fig. 2) Note: One reason that these two graphs can be the same is

that they have the same number of vertices or (Q) = (nex

N What is Known

As we stated earlier, the restriction to admissible triples not
only makes sense for | V(nk) | = (Q> but it also guarantees that G will be
connected. Chen and Lih were able to show that G is regular of degree
(n(ﬂ': which ‘is also its connectivity. G(n,k,t) is both vertex and edge
transitive. In dealing with hamiltonian cycles Chen and Lih became
interested in finding out information about the length of the longest cycle
of G(n,k,t). Let c(nkt) denote the length of the longest cycle in G(nk.t).
This is also called the circumference of G(nk,t). Table 1 contains a
summary of known facts about c(n,k,t). Chen and Lih were able to find two
functions e(k) and f(k) such that G(n,k,0) and G(n,k,1) are Hamiltonian if
n > e(k) and n > f(k) respectively. Table 2 list some facts about e(k) and
f(k). Using the properties of e(k), f(k), and c(nk,t) Chen and Lih were able
to prove the facts presented in Table 3. Notice that from (10) we have
that G(n,k,k-1) is Hamiltonian and in particular G(n,2,1) is Hamiltonian
when k = 2. In the following discussion of how the problem can be
formulated in terms of combinatorics we give a proof of G(n,2,1) and then
G(n,k,k-1), which differs from the way Chin and Lih prove it.

Uniform Subset Graphs and Combinatorics

The problem: "Prove that except for the Peterson Graph G(n,kt) IS
always Hamiltonian" can be reformulated in the following way. Define a
triple (n,k,t) to be admissible in exactly the same way as it was for
G(n,k,t). The problem then becomes: "Find an algorithm or way of
constructing all the members of (V;) so that the it member of (?‘) has t
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elements in common with the (i + 1)i of (Q) and do it in such a way that
the last member has t elements in common with the first." For example,

the members of (3{,3 in order are 12, 13, and 23.
PROPOSITION The graphs G(n,2,1) and G(nkk-1) are Hamiltonian.

Proof: Take for example G(5,2,1). Its vertex set is V(5,2) = { 12,13,14,
15, 23, 24, 25, 34, 35, 45 }. We can construct a Hamiltonian circuit by
writing down the V(5,2) in the following way:

12 > 13— 14 —> 15

\ /
23 «— 24 25
A4
34 35

N/
45

First we connect every element of V(5,2) that has a 1 in common and then
every element that has a 5 in common and then a 4 and then a 3 and finally
a 2 ending with 23 which connects to 12. To do the proof of G(n,2,1) we do
exactly the same thing. First write down all the elements of (‘2) in the
form above. Connect everything that has a 1 in common starting with 12.
The last of these is 1n. Next connect all of the n's. The last of these is
n-1 n . Next connect all of the n-1's and continue to work backwards.
Eventually one reaches 23 which connects to 12. The construction looks

like the following:*
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! /

334._- D4 e 2n-2 <— 2n-1 2n

: / J A VA
B4 3n-2 3 n-1 3n

A v
/

n-3 n-1 n-3 n

7S

n-2 n-1 n-2 n
n-1n

*There are actually two different cases, one when n is odd and one when n is even. However, the only
real difference in the diagram is at the end before 23 connects to 12. If n is odd then 24 connects tc 23

if n is even then 34 connects 10 23.
We can now do a similar construction for G(nk,k-1). First we write down

the elements of as shown below.

12 . k1k =12 k1k+t1 =12, k1 k2 =>. ... .. —1,2,...,k-1,n
0\ J
2,3,....kk+1 23,...kk+1 €= 23,..Kkk+3 ..o 2,3,....k,n
/‘\
A v N V4
3,4,... k+1,k+2 3,4,... k+1,k+3 3,4, . . k+1k+d .. .. 34,..k+1n
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Connect the (1,2,...,k-1)'s together until (1,2,...,k-1,n) is reached. Then
connect the n's together and since n - 1 =k + x for some x, connect the
n-1's and so on. The construction is essentially the same as before. QED

Summary and What's Next

We have given an overview of uniform subset graphs and shown
how the problem of solving Chen and Lih's conjecture can be formulated
into finding special ways of writing down the elements of (Q) . Using this
formulation we gave an alternate proof of G(nkKk-1). Unfortunately, at
present the combinatorial formulation has not given any new results, Its
only originality is that it gives us a new way of looking at G(n,k,t).

A Bipartite graph H(n,k,t) can be constructed from G(n,k,t). [6]
Whether or not our approach can be applied to learn something about
H(n,k,t) remains to be seen. It is the author's opinion that no one has found
the correct approach to solve the conjecture because of one unanswered
question. "Why is it possible that the Peterson Graph could be the only
G(n,k,t) which is not Hamiltonian?" Answering this question may be
equivalent to solving Chen and Lih's conjecture.

Daniel Viar page8



[1]

References

B-L. Chen and K-W. Lih, Hamiltonian uniform subset graphs,J.
Combin. Theory Ser.B 42 (1987), 257-263

G. H. J. Meredith and E. K. Lloyd,- The Hamiltonian graphs 04 to 07,
in "Combinatorics," (D. J. A. Welsh and D. R. Woodall, Eds.) The
Institute of Mathematics and lts Applications, Essex, U.K., 1972

M. Mather, The rugby footballers of Croam, J. Combin. Theory
Ser.B 20 (1976), 62-63

A. Moon, The graphs G(n,k) of the Johnson schemes are unique for
n > 20, J. Combin. Theory Ser.B 37 (1984), 173-188

A. T. Balaban, Chemical graphs, part Xlll: Combinatorial patterns,
Rev. Roumaine Math. Pures Appl. 17 (1972), 3-16

J. E. Simpson, Hamiltonian bipartite graphs, preprint

Daniel Viar page9



Table 1: Facts about c(n,k,t)

c(nk,t) < c(n+ikt)

cink,t) < c(n+l k+1,t+1)

c(nk,t) = c(n,n-k,n-2k+t)
(

c(n,k,t) + c(n+1,ki) < c(n+1,k+1,1+1)

Table 2: Facts about e(k) and f(k)

(/0 L

a(n,k) =

e(k) = min {n|n>2kanda(nk) <1}

F(K) - min{n|nx21and (})< 3k(:f:“}
for k = 2,3, . .‘ .,16

f(k) 3,6,10,15,22,29,39,49,61,74,88,104,121,139,159

for k > 16 a(n(k+1),k+1) < a(n(k),k)

Table 3: When G(n,k,t) is Hamiltonian (Ham.)

1. G(2k-1,k-1,0) Ham k = 2,4,56,7,8

/%
2. G(nk0) Hamif n2 K + (:} '>

3. G(n,k,0) Hamif k=1 n>3
k=2 n>6
k=3 n>7

4. Induction Theorem
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G(n,k,t) and G(n,k+1,t+1) Ham imply G(n+1k+1,t+1) Ham

5. n>ek imply G(nk0) Ham

6. ksi6and n> "<’;*'3 imply  G(n,k,0) Ham

7. n> f(k) imply G(nk,1) Ham

8. n > k2-k imply G(nk,<1) Ham

9. let ng and k be such that G(n,k,0) is Ham for all n > ne and
G(ng,k+r,r) is Ham for r=0,1,...,n0-2k. Then G(n,k+r,r) is Ham for
all n>ng and r=0,1,...,n-2k.

10. G(nk,k-1) Ham

11. G(nk,k-2) Ham

12. G(nk,k-3) Ham
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Figure 1: G(3,2,1)
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Figure 2: The Peterson Graph



