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Fibonacci Sequences

Introduction

We first give some definitions and notation, and then we shall

describe the objectives of our project.

We define a function G: Zp -> Zp given by G(n) = [Fib(n) mod p] where

p is a prime in Z, Zp is the field of least residues of p (integers from zero

to p-1), n is an element of Zp, and Fib(n) denotes the nth Fibonacci number.

_Recall that the Fibonacci numbers are given by the recurrence relation
Fib(n) = Fib(n-1) + Fib(n-2), where Fib(0) = 0 and Fib(1) = 1, or
equivalently by the Binet formula Fib(n) = ( an —an)/(o—-a ) where a
represents the golden mean 1/2 (1 + ¥5) and q is its conjugate 1/2(1 -

V5).
A sequence derived from our function G can be found in the following

way. Suppose the prime is 29 and we want to find the sequence beginning

with 17. Referring to the values found in appendix A, we find Fib(17) =

1597, which is 2 (mod 29). Fib(2) = 1 =1 (mod 29). Since Fib(1) = 1 =1
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(mod 29), we have a fixed point of the function G, and the sequence
continues as a series of ones. This sequence is written {17,2,1} and is

among the series listed in appendix B.

The following definitions are borrowed from Fractals Everywhere by

Michael Barnsley.

a) Def.- A dynamical system is a transformation F:X -> X on a

metric space (X,d). It is denoted {X;f}. The orbit of a point x

in X is the sequence {Fon(x)}n=0 . [pg 134]

b) Def. - Let {X;f} be a dynamical system. A periodic point of f
is a point x in X such that Fon(x) = x for some positive

integer n. Any positive integer n for which Fon(x) = x is

called a period of x, and the least such n is called the

minimal period of x. The orbit of a periodic point of f is

called a cycle of f and the period of a cycle is the number of

distinct points it contains. [pg 136]

c) Def. - Let {Xif} be a dynamical system. A point X in X is

eventually periodic if Fom(x) is a periodic point of f for
some positive integer m. [pg 137]
d) Def. - We call x a fixed point of a function f if f(x) = X.
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Our original goal was to study the dynamical system {Zp; G}, to
examine the orbits of points from Zp to look for cycles and fixed points,
to formulate a description of these cycles and fixed points, and, finally, to
~ predict when they might occur. Two early questions we had were:

1) Does there exist any prime p such that a cycle of period n > 2
occurs in the dynamical system {Zp; G}? (i.e. are there any ivnstances of
‘cycles which are nbt merely fixed points?)

2) It is clear that 0,1, and 5 are always fixed points of G, since they
are fixed points of the Fibonacci function; does any prime p yield other
fixed points?

The answer to both questions, we found simply through data
collection, was "yes." There exist primes for which {Zp; G} has 1 or more
cycles, one or mére new.fixecj points, both, orAne'ither. So far, we haven't
been able to determine any way to predict the occurance of cycles, nor
~can we predict most of the fixed points, but we were able to explain one
fixed point which is part of a Iarger pattern shown in the table below.

Notice that we distinguish between two types of primes: those congruent

to £1 (mod 5) we will call p-primes or simply denote by p, and those



congruent to +2 (mod 5) are g-primes, denoted by g. The reason for this

distinction will be explained later.

Table 1
Fib(n) G(p - k), k in {1,2,3,...) G(q - k)
Fib(0) = 0 Gp-1)=0 G(g- 1) = 1
Fib(1) = 1 Glp-2) = 1 Gg-2) = g2
Fib(2) = 1 G(p -3) = p-1=-1 G(g-3)=3
Fib(3) = 2 Glp-4) =2 G(g-4)= g-5
Fib(4) = 3 G- 5) = p-1=-3 G(q-5)=8
Fib(5) = 5 G(p-6)=5 G(q-6) = g-13

*this is the fixed point that we were able to show would always occur.

For example, G(p-1) = 0 tells us that, for the prime p = 41, G(40) = O;

0 (mod 41).

we see this is true since Fib[p - 1] = Fib[40] = 10,2334,155
The behavior of G shown in the above table is easily explained using

three theorems from Number Theory in the Quadratic Field with Golden

Section Unit by Fred Wayne Dodd, but before we present the theorems and

make use of them, a little background information is necessary to

understand their content.
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Let Q(V5) be the quadratic number field whose elements are of the
form a + bV5, where a and b are elements of Q, and let Z(c) be the set of
all c + doo where c and d are in Z. Z(«) is called the set of guadratic
integers of Q(V5), since every element of Z(a) can be written 1/2(2¢c +d) +

~1/2(d)Y5 in Q(¥5). The elements of Z(a) found in the intersection of

Q(V5) and Q are none other than the set of rational elements of Z. [Dodd,

pg 2].

An element B in Z(«) has the form ¢ + doo where ¢ and d are in Z.

Equivalently, B can have the form B3 = a + bVy5 where a and b are elements
of Z and a = b (mod 2). The conjugate of B, written B,is c+da or a-
bVv5. The norm of B, written N(B), is N(B) = BS. .Am inZ(a) is a
divisor of 1; vyis a unit iff y8 =}1 for some & in Z(a). [Dodd pgZ2]

B is an associate of B1 if B = yB1, for some unit ‘y. [Dodd, pg 16]. B
is a gﬁ_rnﬁin Z(a) if B is not a unit y and every time B = y0 with yand & in

Z(a) then one of yor dis a unit.

Important f

1) The units in Z(a) are tan where n is an element of Z. [pg4 21]
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2) For positive n, an = Fib(n-1) + aFib(n); anh = Fib(n+1) - oFib(n); and

a-n = (-1)n[Fib(n+1) - aFib(n)]. [pg 22]
3) The primes in Z(a) are of three types.

a) 2 + o and its associates
b) g-primes and their associates

c) every p-prime = [N(u)| = |uu| where g and u are nonassociates in

Z(o). W, w and their associates are primes in Z(a). [pg 25]

Here we see the reason for making a distinction between g-primes and
p-primes of Z's. In Z(a), g-primes are still prifne, while p-primes are
not. Hence, they behave differently.

4) o2=a+1; a+a=1; Na)=ag =-1; a2 =a+1; N(B) and (B + B)
are elements of Z for all B in Z(a)v. N(B) = 0 iff B=0. N(By) =
N(B)*N(y), and N(B/y ) = N(B)/N(y) if y=0. _B_i=ﬁ *v and B/y=B/y where
v=0. [pg 8,9]

5) B= vy (mad d)in Z(a) if (B—7v) = ud for some p in Z(a). [Pg 41]

Notice that we use "mod" when working in. Z(a) and "mod" in Z.

The following is an examplé of arithmetic in Z(x):

(6-a) = 2 + 2a (mod 3 - 2a) since 6 - o - (2 + 2a) = u(3 - 2a) for some [
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in Z(a). We find u like so:
L=(B-a-2+2x)/(3 -2a)=(4-3a)/(3-2a)=((4-3a)(3-2a))/((3-
2a)(3 - 2a)) = (12 - 8z - 9a + Baa )/(9 - 6a - 6 + 4aa ) = (12 - 8(1- «) -

9a + 6(-1))/(9 - 6(+1) + 4(-1)) = (12 -8 - a - 6)/(-1) =-1(-2 - a) =2 + «
Now, armed with these definitions and facts about number theory in

Z(a), we return to the problem of explaining the behavior of our function G
“as shown in Table 1. We use the following three theorems.

Theorem 1 If p and g are primes in Z such that p = £1 (mod 5), and g

= +2 (mod 5), and B is any element of Z(«), then P =f (mod p) and fd =8
(mod g). The proof involves more theory on Z(a) than we will give; see

Dodd pg 64.

Theorem 2 If mis an element of Z, m | Fib(n) iff on =k (med m) for
some k in Z. Also if m | F(n) then an= Fib(n -1) A(mg m).

Proof (=) If m| F(n) then an= Fib (n -1) + Fib (n) = Fib (n -1) (mod
m). (<) Suppose an =k (mod m) for some k in Z. Since anis in Z(c), it can
be written in the form ¢ + da for c and dinZ; in parﬁcular, here an = (k +

rm) + (sm)a =k (mod m) for some r and s in Z. Similarly, an=(an) = (K +
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rm) - (sm)a =k (mod m). So an-an =0 (mod m). But we know on-af =
V5*Fib(n) from the Binet formula, so 0 = V5*Fib(n) = (-1 + 2c)*Fib(n) = a-

1(2 + o)*Fib(n) (mod m). Since a-1 is a unit in Z(a) and (2 + a) is a prime

in Z(a), m cannot divide either of them. So it follows that m | Fib(n). [pg

121]

Theorem 3 If p and g are primes in Z with p = %1 (med 5), g= %2
(mod 5), then the following are true:

1) p | Fib(p -1)

2) q | Fib(g+1)

3) 5| Fib(5).

Proof Case 3) is trivial; Fib(5) = 5, so of course 5 | Fib(5). For case

1), we see that ~ap-1=1 (mod p), by Theorem 1. Then using Theorem 2, p |

Fib(p - 1). For case 2), ocCI+.1 =aa = N(o) = —1}(_r-n_0_q q) and so q | Fib (g + 1).
Using these theorems, we explain Téble 1. Theorem 3 tells us that
Fib(p -1) = 0 (mod p) and Fib(q +1) = 0 (mod q). Theorem 2 says that if p |
Fib(p -1) then ap-1 = Fib(p - 2) (mod ‘p), but we know apP-1=1 so Fib(p - 2)
= 1 (mod m), and since Fib(p - 2), 1 and m are all in Z, this ris true with the

ordinary mod, too. Thatis, Fib(p - 2) = 1 (mod m).
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Similarly, o«(g+1)-1 = Fib((g + 1) -1) = -1 (mod q), so Fib(q) = -1

(mod qg). Working backwards with the definition of the Fibonaccis, one can

generate the observations in our table. In fact, we can extend the result
we have just proved to show that if p = 1 (mod 4) then Fib((p-2)1/2) = 0
(mod p), and similarly, if g = 1 (mod 4) then Fib((g+1)/2) =0 (mod q). We

have arranged our data in Table 2 below, to make the proof clearer.

Table 2
Fib(p - 1) = 0 = —Fib(0) Fib(p - 1) = 0 = Fib(0)
Fib(p - 2) = 1 = +Fib(1) Fib(p - 1) = ~1 = —Fib(1)
Fib(p - 3) = -1 = —Fib(2) | Fib(p - 1) = 1 = +Fib(2)

Fib(p - (p +1)/2) =k =Fib((p - 1)/2) Fib(g - (g - 1)/2) = m = Fib((g + 1)/2)

for some k such that |k| € Zp for some m such that |m| € Zq

First notice that (p -1)/2 is an even integer, so the negative sign
preceeding "Fib((p-1)/2)" is correct; also (gq+1)/2 is odd, so the negative

sign in front of "Fib((g+1)/2))" is correct as well. Next note that (p- (p-

1)/2) = (p-1)/2 (mod p), and (g-(g-1)/2) = (g+1)/2 (mod q). This means
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that in fact k = -k mod p and m = -m mod q. The only k and m that satisfy
these congruences are k = m = 0.

We Conclude by noting several questions we would still like to look
into, or would like to suggest to anyone interested in continuing our work.
1) Our original problem of predicting cycles and fixed points is still open.
We include at the end of this paper a copy of our Mathematica functions
Fib[n_] and G[p,r], and a table of data that we haye already collected,
which we hope will be a timesaver.

2) A specific question on points which go directly to zero - Table 2 and
proof show that there is a zero-point approximately "halfway" between O
and p, or 0 and q, for certain p and g primes. We have noticed that
sometimes other zero points occur at régular intervals, but we don't know
why, or when to expect them to show up.

For example, for the prime p=61, zero points occur every fourth of
the way from 0 to p-1; that is, Fib(15) = 0, Fib(30) = 0; Fib(45) = O; (and
Fib(60) = 0, of course). For p= 89, zero points appear every eighth of the
way from 0 to p-1. Fib(11) = Fib(22) = Fib(33) =Fib(44) =...= 0. For g=47,
zero points happen every third of the way, from 0 to g +1. Fib(16) =
Fib(32) = 0 (mod q)

However, g = 23 has no zero points, p = 41 only has the "halfway zero
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point Fib(30) = 0, and most others are disappointing as well.

3) To what extent do fixed points and cycles of G act like magnets,
drawing in the orbits of other points? Some seem to be very attractive
while others are not at all. An example of this is seen in the behavior of
the prime q = 53. The fixed point 34 appears. in the orbits of 5 other

points besides its own; the fixed point 51 appears only in its own orbit.
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Appendix A

Fibonacci Numbers F,—F,,

F,, = 10946
F,, = 17711
F,, = 28657
F,, = 46368
F,, = 75025
F,, = 121393
F,, = 196418
F,s = 317811
F,o = 514229
F,, = 832040

 F,, = 1346269

F,, = 2178309
F,, = 3524578
F,, = 5702887
F,q = 9227465
F,, = 14930352
F,, = 24157817
F,q = 39088169
F,o = 63245986
F,, = 102334155



Appendix B
The data presented on the next few pages is the result of running
function G on primes and their residues. The number on the left is the
prime used as a modulus in fhe function, and the strings of numbers on the
right are the orbits of the residues. Notice for larger primes we omit all
but the first few numbers of the orbit of a point, to save space. Arrows
represent cycles. On the left margin, the symbol (¥ means a cycle occurs,

and * means a new fixed point occurs.
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Appendix C

To program our Fibonacci function, type the following into Mathematica:

Fib[n_] := Block| {g=n, r, V = {{0}, {1}}, M = {{0,1}}, {1,1}} }, While [ gl =0, r

= Mod[q,2]; g= Quotient[q,2]; If [ == 1, V = M.V]; M = M.M]; Return [v[[1,1]1]]

Our G function is a 2-variable function; p stands for "prime” and r stands
for "residue”, but of course any positive integers would work. - For

instance,' we tried squared of primes and their residues. G does rely on

the program "Fib," so type it in first.

G[p_,r_] := Block [{j = r, k = 0}, While [ k < 20,- Print [j]; j = Mod[ fib[j], p]; k

++] ]
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