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A. INTRODUCTION. Some functions are ‘nice’ and some are not. For example, suppose
we have a real function on the real line satisfying f(x+y) = f(x) + f(y). It is known
that if such a function is continuous at zero, then it is uniformly continuous
everywhere, and in fact it is linear — which is very ‘mice.” But if the function is not
continuous at zero, then it is not ‘mice’ at all: it is continuous nowhere, and in fact its

graph is scattered throughout the entire plane. To be more precise, its graph
intersects every disk (arbitrarily small) in %2. We say that such a function is dense
(this matches the ordinary definition of a dense set in a topological space). More

generally,

1. Definition. A function (or partial function) from a topological space D to a
topological space R is dense if the function (considered as a set of ordered pairs) is

dense in the product topology D x R.

Theorem 2 gives some equivalent formulations, which follow directly from the

definition.

2. Theorem. A function f:D — R is dense < for each nonempty open set A in D, and
each nonempty open set B in R, there exists x € A and y € B such that y =f(x) &
for each nonempty open set A in D, f(A) is dense in R. Also, this statement holds if
we replace the words ‘“nonempty open set” with “nomempty basic set.”

B. EXISTENSE OF DENSE FUNCTIONS. A natural question to ask is whether there exists a
dense function between two given topological spaces, and if so, how to construct one.

We begin by giving a necessary condition for the existence of a dense function.

3. Theorem. Let D and R be topological spaces. If there exists a demse function from
D to R, then the size of the smallest nonempty open set in D is at least the size of the
smallest dense set in R. (By ‘“smallest nonempbty open set in D” we mean any
nonempty open set in D whose cardinality is a lower bound for cardinalities of

nonempty open sets in D.)

Proof: Let A be the smallest nonempty open set in D. Then f(A) is dense in R and
clearly |A| = [r(4)].

We find that this condition is also sufficient in certain cases; Theorems 4, 5, 7, and 9

are partial converses to Theorem 3.



4. Theorem, LetD and R be topological spaces, and suppose D has a finite basis. Then,
if the size of the smallest nonempty open set in D is at least the size of the smallest
dense set in R, there exists a dense function from D to R.

Proof: Let S be the smallest dense set in R, and let {A1, A2, A3, .., Ap} be the finite
basis. Without loss of generality we may assume that the list {A;} contains no -
repetitions and is ordered in such a way that if either A; g Aj or |A,"<|Aj[ then i<j.
By theorem 2 it suffices to find a map f:D — R such that S ¢ f(A;) for all i=1...n.

First we assign function values to the points in Aj. Since lAll > lSI by hypothesis,
it is easy to assign these function values in such a manner that S < f(A1). Now we
proceed by recursion. Assume function values have been assigned to all the points
in Ait uAgu --- U Ag, and that S ¢ f(A;) for all i=1...k. We will now extend the
domain of the function to include Ag+1. Suppose, for the first case, that Ag,1nA; = O
for some i € {1,...,k}. Then Ag.1nA; is a nonempty open proper subset of Ay, SO
there must exist some j such that Ag+1nA;=Aj; By the ordering we have chosen for
the list {A,}, we know that j < k. Therefore, we have already assigned function
values to A; in such a way that § ¢ f(A;). So, to each point of Ag4+) to which we have
not already assigned a function value, we may assign an arbitrary point of S. Then

ScflAj) c f(Ag+1).

Now we turn to the second case, in which Ap+1mnA; =@ for all i=1...k. Since we have
assigned function values only to those points in A;j U A2 U --- U Ag, none of the
points in Ag4+] have been assigned function values. Thus we are free to assign
function values to the points of Ag4] in any way we choose. Since IA k+1| > lS| by
hypothesis, we know that we can map Ag41 onto S, just as we did with A1, so that

S < f(Ak+1).

In this manner we assign function values to all the points in A1, 42, ..., Ap.



3. Theorem. LetD and R be topological spaces, and suppose the size of the smallest
nonempty open set in D is at least the size of the smallest basis for D and at least the
size of the smallest dense set in R. Then there exists a dense function from D to R.

Proof: Let S be the smallest dense set in R, and let U be the smallest basis for D. Our
assumption is that each open set in D has cardinality greater than or equal to both ]’ul
and [ S l . Now, if U is finite, then we are done, by theorem 4. Assume then that U is
infinite. In that case, lu X S' = max {l ul , ]S,}, so our assumption is that each
open set in D has cardinality at least k= |U X S|.

Now, the cardinal number x is also an ordinal number, and we know that there is a
well-ordering of U x S that has ordinal number x. Thus U X § can be written as a k-

sequence of ordered pairs { (Ag, Pa) }ae x-

Now we define a sequence of points { X¢ } o € « using transfinite recursion, as
follows. Let By = { xg: € <a }. Cleary lBal < Ia, . Since a <x and x is a cardinal
number, |a‘l<lxl . Since Ay is an open set in D, we have by assumption that

IK[ < lA“" Therefore lBa,<|Aa' . Thus there is a point in Ay which is not in By. Let

Xxq be that point.

Now, each xq is distinct, by our construction. Thus f= { (Xq,pa): @ € ¥ } is a partial
function on D. To verify that f is dense, we need only show that S < f(4) for all

A e U. But this is clear, since for every p € S we have (4, p) = (Ay, po) for some «,
and xq € Aqg = A with f(xq) = pg =p. Obviously, any dense partial function can be
extended to a demse function by arbitrary assignment of function values, so we are

done.

6. Definition, A topological space X is relatively countable if it has a basis with
cardinality no larger than that of X itself.

Z1. Theorem. LetD and R be topological spaces, and suppose every subspace of D is
relatively countable. Then, if the size of the smallest nonempty open set in D is at
least the size of the smallest dense set in R, there exists a demse function from D to R.

Proof: Let {Ag}ae y be a well-ordered sequence of all the open sets in D, ordered in
increasing cardinalities. = We shall define using transfinite recursion a sequence of
functions {fa}a e y each of which satisfy ome of the conditions: (1) fq =@ and fu
is a dense function from Ag to R,or (2) fo =@ and Ay intersects some Ag, with E<a and

f§¢@.



Assume f; has been thus defined for all £<a, and consider Agq. For case (I), suppose
that Ay intersects some A, with <o and Je#@. Then we simply define fy = &, thus
satisfying condition (2). For case (II), assume that Ay is disjoint from every A ¢ With
E<o and fé # . We claim that in this case, Ay has no open subset of smaller
cardinality than Aq itself.

To see this, suppose there were an open subset B of Ag with smaller cardinality. Since
B is an open set, we must have B=A, for some B<a. Iffy = @, we contradict our
assumption for case (II). If fp =D then condition (2) must hold for fg» which means
that Ay intersects some A, with £<B and f, # &. But since Ag=B c Aq, this implies that
Ay also intersects A (with &£<B<a and f§ # ). Again we have a contradiction to our

assumption for case (II).

Thus we have esfablished our claim that every open subset of Ay has the same (for it
cannot be greater) cardinality as Ag. Now, Ay is relatively countable, as a subspace of
D. Therefore if B is any open subset of Ag, IB, =lAa[ > lsmallest basis for Ag

Then by Theorem 5, there exists a dense function from Ay to R. We let fy be that

function. Thus condition (1) is satisfied.

Our recursive definition is now complete. Notice that it is only in case (II) that we
define fy to be nonempty. But this is precisely the case in which Ay is disjoint from
all the ranges of the functions f for B<a. Therefore the ranges of the functions are

all disjoint, so f= U, fu is a partial function.

To verify that f is a dense partial function from D to R, we need only to verify that
f(A) is dense for every open set A in D. We know A=Ay for some a e v. If fu # O
(condition 1), then f(A) contains fg(A), which is dense in R because fo is a dense
function from A to R. If fo, = @ (condition 2), then A intersects some A g, With E<a and
fr=D. Then f(A) 2 f(A N Ag) ;fg(A NA,), which is dense in R because f& is a dense
function from A to R. Thus f is a dense partial function from D to R. Of course, any
dense partial function can be extended to a dense function by arbitrary assignment

of function values, so we are done.
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8. Lemma. Every metrizable space is relatively countable.

Proof: If M is finite, then every metric yields the discrete topology, so the set of all
singleton points forms an basis. If M is infinite, then (for any arbitrarily chosen
metric) the set of all balls of rational radius forms an basis, with cardinality

M x @ = |mM|.

9. Theorem. Let D and R be topological spaces, and suppose D is metrizable. Then, if
the size of the smallest nonempty open set in D is at least the size of the smallest dense

set in R, there exists a dense function from D to R.
Proof: Theorem 7, Lemma 8, and the fact that metrizability is hereditary.

At this point, one might wonder if every topological space is relatively countable. If
so, then we could drop the condition of metrizability in Theorem 9, and between
Theorems 3 and 9 we would have a necessary and sufficient condition for the
existence of a dense function. Unfortunately, we have been unable to prove or
disprove the statement that every topological space is relatively countable. We
speculate that the statement is related to (perhaps equivalent to) the Generalized

Continuum Hypothesis.

C. DENSE PARTITIONS,

10, Definition., A dense partition of a topological space X is a family of pairwise-
disjoint subsets of X, each of which is dense, such that the union of all the subsets is
equal to X. The size of a partition is simply its cardinality (the number of subsets).

For example, the family of subsets of the real line (with the usual topology)
consisting of the set of irrationals and the set of rationals is a dense partition with
size 2. 'We consider the question: given a topological space, does there exist a dense
partition of a given size? For example, does the real line have an uncountable dense
partition? We shall see that this is related to the question of the existence of dense

functions.



11, Theorem. Let D be a topological space every subspace of which is relatively
countable. The following are equivalent: '
i. Each open set in D has cardinality at least «x.
ii. D has a dense partition of size x.
iii. There exists a dense function from D to R, where R is any topological space
such that the smallest dense set in R has cardinality x.

Proof: (i — ii) Let x be given the discrete topology. Then the smallest dense set in x
is ¥ itself, so the conditions of Theorem 7 are met. Therefore there exists a dense
function f from D to x. Define Ag =f'l({a}) for all « € x. Each Ay is dense in D
because it is the inverse image of an open set in x, therefore {Aq: o € x} is a dense

partition of size X.

(ii —» iii) Let {Aq: @ € x} be a dense partition of size x, and let {pg: 0 € x} be a dense
set in R of cardinality x. Define f(x) = pq, for all x in Ag. Then f is a dense function
from D to R, since given any nonempty open set P in D and any nonempty open set o)
in R, there is some py in Q (since {pq: @ € x} is dense), and Ay must intersect P, (since

{Ag: a € x} is a dense partition).

(iii = i) Theorem 3.



