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The unknotting number of a knot is the minimum number of crossing changes
necessary to obtain the unknot, taken over all regular projections of the knot.
For a long time, it was an open question whether one could restrict investi-
gation of crossing changes to minimal projections and still obtain the correct
unknotting number. This question was answered negatively by Bleiler in [1] and
Nakanishi in [5], both giving the counterexample of the knot 5 1 4 (in Conway’s
notation). The minimal projection of this knot requires three crossing changes
to become unknotted, while there is a nonminimal projection which requires
only two. We shall generalize the procedure which is used to show that 5 1 4 at-
tains its unknotting number only on a nonminimal projection in order to exhibit
an infinite number of knots with this property. i

To this end, we denote the knot given by ¢1 ¢z ... ¢; in Conway’s notation
by C(ei,ca,...,¢;) and consider the knots C(2k + 1,1,2k), where k£ > 2 is
an integer. We shall demonstrate that, while the minimal projections of these
knots (see Figure 1 below) cannot be unknotted in k crossing changes, there are
nonminimal projections (as in Figure 2 below) which can be.

At this point, we shall assume that we are making all our crossing changes
simultaneously (so that the order of changing is irrelevant). The effect of not
assuming this will be examined later and will lead to an interesting question.

By a result of Kauffman, Thistlethwaite, and Murasugi (see [3]), the projec-
tion C'(2k + 1, 1,2k) is minimal because it is reduced alternating. Furthermore,
Tait’s flyping conjecture (see [4]) tells us this minimal projection is unique up
to flyping, which will not change the number of crossing changes necessary to
unknot a particular diagram. To see that this projection cannot be unknotted
in k or fewer crossing changes, we use induction.
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Figure 1 Figure 2

The case where k — 2 is verified by Bleiler in [1], so we proceed to show that
if it holds for k, it holds for k 4+ 1. Hence we examine the effect of at most &+ 1
crossing changes on the knot C(2k + 3,1,2k + 2). We split our task into five

cases.

Case (i) If our set of crossing changes includes at least one from both the 2k + 3
and 2k + 2 portions of the knot, then we cannot possibly have unknotted our
knot. For after making our (at most) k£ + 1 changes, we examine our diagram
before allowing any ambient isotopies. Since at most & crossing changes could

. have occured in either of the 2k + 3 of the 2k 4 1 section, it follows that in both
sections, there is some crossing which was changed but whose nearest crossing
above or below was not. In this case, we can untwist these two crossings while
leaving the rest of the crossings unaffected (the case where the crossing below
is unchanged is shown in Figure 3 below). After doing this in both the 2k + 3
and the 2k + 1 parts of the knot, we are left with the minimal projection of
C(2k + 1,1,2k), modified at (at most) k — 1 crossings, which we know by our
inductive hypothesis is knotted.
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Figure 3

Case (1) If we change n crossings in the 2k 42 side, where 0 < n < k+1, we.
get the knot C(2k + 3,1, 2k+2 — 2n). Except when n = k+ 1, this is a reduced
alternating knot, and is thus a minimal projection. Since it has (4k+6—2n) > 2
crossings and is minimal, it is not the unknot. If n = k + 1, then we are left
with the knot C(2k + 3,1,0), whose minimal projection is given by C(2k + 3).
This is just the (2k + 3, 2)-torus knot, and not the unknot.

Case (ii1) If we change n crossings in the 2k + 3 side, where again 0 < n < k+1,
we get the knot C(2k + 3 — 2n, 1, 2k + 2) which is knotted for the same reason

as in Case (ii).

Case (iv) Changing the “1” crossing and then n crossings in the 2k+2 section of
the knot, where this time 0 < n < k, we obtain the knot C'(2k+3, —1, 2k+2—-2n).
Here we use the identity

e+(-l+@+1) N =(@-)+A+(e-1)") = (2 —z—1)/e.

This tells us that the knot C(2k + 3, —1,2k + 2 — 2n) is equivalent to the knot
C(2k+1,1,2k—2n) since their associated continued fractions are equal (see [2]).
But for the same reasons as in Case (ii), this is knotted, so our k£ + 1 crossings
are not sufficient to unknot our original knot.

Case (v) Changing the “1” crossing and then n crossings in the 2k + 3 section
of the knot, with 0 < n < k again, we get the knot C(2k + 3 — 2n, -1, 2k + 2).
As in Case (iv), we see that this is equivalent to C(2k + 1 — 2n, 1, 2k), which is
knotted as in Case (iii). Thus & + 1 crossings will not unknot our original knot
in this case.

Therefore, in all cases, we cannot unknot the projection C(2k + 3, 1,2k + 2)
in k+ 1 crossing changes. By induction, then, we cannot unknot the projection
C(2k+1,1,2k) in k crossing changes, for all k£ > 2.

Now we show that the nonminimal projection pictured in Figure 2 above
can be unknotted in k crossing changes. After changing the “1” crossing and



the & — 1 crossings in the loops around the center strand in our nonminimal
projection, we get the unknot. To see this, note that (as shown in Figure 4
below) two twists each from the 2k + 1 and the 2k parts of the knot can be
unraveled until all our added loops have been used and we are left with the
knot C(8,—1,2), which is the unknot. Hence this projection can be unknotted
in k crossing changes.
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Figure 4

We have, then, an infinite number of knots C(2k+1, 1, 2k), with & > 2, whose
unknotting number cannot be realized by considering only minimal projections.

Also, it should be noted that the class of knots obtained by changing all
the circled crossings in the nonminimal projection of C(2k + 1,1, 2k) with the
exception of the “1” crossing shows that there exist knots of arbitrarily large
crossing number with unknotting number one. We realize this since, upon ex-
amining any of our loops created by a Reidemeister move and a crossing change,
we see that adding this loop does not change the crossing number of the original



knot. This is clear from Figure 5 below, in which the projection on the right is
minimal (since it is reduced alternating) and has the same number of crossings
as the minimal projection of the knot C(2k + 1,1, 2k).
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Figure 5

If, on the other hand, we relax our requirement that all the crossing changes
be done simultaneously and allow ourselves to effect ambient isotopies between
crossing changes, we notice an interesting result. In this case, when we examine
the knots C'(2k + 1,1, 2k) for k > 2, we see that we can, in some sense, restrict
ourselves to minimal diagrams when computing the unknotting number. This is
because, first of all, changing the “1” crossing yields the knot C'(2k+1, —1, 2k).
We saw in Case (iv) above that this can be changed to C(2k — 1,1,2k — 2)
by an ambient isotopy. From here, we can alternate “1” crossing changes and
ambient isotopies until we reach the knot C(3,1,2) after k— 1 crossing changes.
From there, changing the “1” crossing results in the unknot. Note that each
projection on which a crossing change is made is minimal since it is reduced



alternating. Thus, by allowing ourselves to effect an ambient isotopy to bring
ourselves to a minimal projection before each crossing change, we can in fact
unknot these examples in the same number of changes as was exhibited in the
nonminimal projection with simultaneous crossing changes. For the particular
case of C(5,1,4), this procedure of alternating between crossing changes and
ambient isotopies actually achieves the unknotting number, which is known to
be two. Thus the following question arises:

Can the unknotting number always be realized by a sequence of crossing changes,
each of which takes place on a minimal projection?

The author conjectures an affirmative answer to this question; if this is the case,
a simple method for calculating the unknotting number of a knot K is provided.
One would need to consider all knots obtainable by a single crossing change of
a minimal diagram of K, and, of these knots, find the minimum unknotting
number. Adding one to this minimum would then yield the unknotting number

of K.

The author wishes to express his gratitude to Dennis Garity for his helpful .
discussions and encouragement.
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