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Introduction

The challenge of the puzzles as the Rubik's cube and the so-called 15
puzzle is to restore the given configuration back to the original
configuration. This may or may not be possible. It depends on the given
configuration. The purpose of this paper is to answer the question: how can
we determine whether the given configuration can be restored back to the
original configuration. In both the cube and 15 puzzle, the parity of
permutation carried out between the given configuration and the original
configuration plays an important role to answer this question. 15 puzzle can
be generalized to (mxn) - 1 puzzle, and the proof is given for case m 2 3 and
n=4,

(nxm) - 1 puzzle

(n x m) - 1 puzzle is made of (n x m) - 1 square tiles with the lower
right hand comner blank, arranged in a nxm array. ( See Figure 1.)
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The puzzle is constructed so that tiles can be slid vertically and horizontally,
such moves being possible because of the presence of the blank.

The basic rule

The performances of a sequence of slides are only allowed in such a
way, at end, the lower right-hand corner is again blank. Call this new
configuration achievable.



Question: What are all achievable configuration?
We denote START as a configuration shown in Figure 1.
The following fact is given in [5].

Fact 1: Let X be an achievable configuration. Then, permutation carried
out between X and START must be even.

In fact, the following result is known:
"Every even permutation is achievable."

We give the proof for this in the case m >3 end n > 4. Before we prove
this, we introduce two important results which are also used to attack the

problem of Rubik's cube.

The next Lemma is from [1].

Lemma 1: LetN={1,2,..,n}. Let T be a subgroup of sym (N). Suppose
T contains 3-cycle for three elements a, b, ¢ €N, and if for any
x#a,b,c, xeN, there exists peT such that
xp=a, bp=b, and cp=c. --- (1)

Then, T contains all 3-cycles of the elements of N.
Note: 3-cycle (abc) moves a, b, ¢, as a->b->c->a but fixes ieN,i#a,b, c.

The idea of the proof is from [1].

Proof: Suppose T contains (abc). Then by condition (1), we obtain

(xbc) = p(abc)p,
(axc) = (abc)-1(xbc)(abc),
(abx) = (abc)(xbc)(abc)-L.

From these we get all 3-cycles

(xyc) = (aby)-1(xbc)(aby),
(xby) = (axc)-1(aby)(axc), y,Z#a,b,C
(axy) = (ybe)1(axc)(ybo),



and
(xyz) = (zbc)(xyc)(zbc).

Since (abc) €T and (xbc) = p(abc)p-le T generate 3-cycles for any three
elements of N, T contains 3-cycles for any three elements of N. (Remeber x
is arbitrary element of N such that x # a, b, c.) There are two possible 3-
cycles foru, v, we N, (uvw) and (uwv). Since (uwv) = (uvw)? and (uvw) =
(uwv)2 if one of them is in T, the other is also in T. Hence, T contains all 3-
cycles of the elements of N.

The next Lemma is from [4].

Lemma 2: For each n> 3, let An be alternating group of degree n. Suppose
1, s to be distinct elements of {1, 2, ..., n}. Then Anis generated by

the 3-cycles {(rsk)l 1 <k <n,k=#r,5 }.

Basic slides of the puzzle (3-cycle So)
Suppose a, b, ¢ occupy the positions as below and let ¢ denote blank.

Fig. 2.

We call the following sequence of slides as So.



Then So produces 3-cycle (abc) where So doesn't change the tile positions
other than a, b, c. Then we get the following result.

Claim 1: Assume we have (nxm) - 1 puzzle, where m >3 and n > 4.
Suppose tiles a, b, c occupy the positions as Figure 3. Then, for any
3-cycle of the tile positions, there exists a correspoinding sequence of
slides to produce it, say s, such that s doesn't affect the positions of
tiles other than u, v, w and fixes the blank at lower-right-hand corner.
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Proof: Let x be any tile where x # a, b, c. We first show that there exists a
sequence of slides, denote g, such that

g moves X to a, and g doesn't change the positions of b, c, and ¢.
To produce g, consider the following steps.
Step 1. Transpose c and @.

Step 2. Move x to a, and make g occupy the same position as in
Step 1.



Step 3. Transpose ¢ and g again.

We will show that there exists a sequence of slides to achieve Step 2 for any
x #a, b, c. Figure 4 is the configuration after Step 1. suppose x occupies the
position as in Figure 4.

Label ¢ and tiles as po, p1, p2, p3, ..., p11,p12 as in Figure 5 so that a path (po,
p1, P2, ..., p12 = po) is a simple path in which each pi is distinct, each pi #b,
¢, and p; = x for some j. Then consider the following sequence of slides

(pop1)(p1p2)(P2p3) ... (P11p12).
(i.e., This moves @ = po->p1->p2...->p12 = po.)

After this move, ¢ ends up with at the same position and every tile in the
path (p1, p2, ..., pi1) is shifted to the next position, but all other tiles outside

of the path are not moved. (Figure 6)

Repeat this process, and at some point, we will obtain that x is moved to a,
and ¢ occupies xo position. It is clear that this process works no matter what
position x occupies where x # a, b, c. (Notice: We assumed m > 3 andn >
4.) Thus, by following Step 1, 2, and 3, we can produce a sequence of slides
which satisfies the condition (1).

By Lemma 1, it follows thatSoand gSog-! generateall 3-cycles of the
tile positions. Since Soand gSog-! both fix blank position, the moves
generated by So and gSog-! also fix blank position.

Fig.4.
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Then, the next result follows immediately.
Claim 2: Every even permutation is achievable.

Proof: By Lemma 2, any even permutation can be expressed by a product
of 3 cycles. By Claim 1, for any 3 cycle of the tile positions, there
exist a corresponding sequence of slides which also fixes the blank
position. Thus, for any even permutation, there exists a corresponding
sequence of slides which also fix blank position.



The 3x3x3 Rubik's cube

The 3x3x3 Rubik's cube consists of six different colored faces where
each face is divided into nine squares with colored stickers of the same color
attached. Each face of the cube rotates freely, and a few random moves of the

faces soon scramble the colored squares.
The basic mathematical problem is to restore the cube from any random

pattern back to its original position, namely START configuration, with each
face having just a single color.

Question: Which patterns(configurations) are possible?

To obtain a random pattern, consider following procedure.

1. Obtain START configuration at beginning.
2. Disassemble the cube into pieces.
3. Reassemble the cube with all pieces randomly in place to obtain a

random configuration.

It may be or may not be possible to restore the cube from that configuration
back to START configuration without disassembling the cube again. The
purpose of this article is to give the answer to the following question.

Question: Suppose we are given a random configuration of the cube. Then
how can we determine whether the given configuration can be returned
to START configuration by a sequence of basic moves of the cube?
(i.e., Without disassembling the cube.)

Notation

The following terminology is from [2]. We label the six faces of the
cube, as Front, Back, Right, Left, Up, Down, and we abbreviate these
designations to the first letter. See Figure 7.
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We denote the clockwise 90° turn of the R face by R, and likewise for all the
other faces, and use R2 to denote a 180° turn and R3 or R -! to denote 270°
turn (i.e., 90° counter clockwise turn). Finally, we shall remark that there
are divided in three classes known respectively as corner pieces (8 of them),
edge pieces (12 of them), and center face pieces (6 of them).

The _str re of th r

There exist nine movable regions in the cube which are six faces and
three middle layers. See Figure 8.
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Fig. 8.
middle layer A.



First consider the middle layer A. Then we realize that the rotation of the
middle layer A can be produced by the rotations of two face turns, R and L.
For example, 90° clockwise rotation of middle layer A can be produced by 90°
counter clockwise turn of face R and 90° clockwise turn of face L. Thus, we

have
(90° clockwise turn of the middle layer A) = R-L = R3L

The same thing can be said for the other middle layers. Thus, the following
result is obtained.

Fact 2: All moves of the cube are generated by six face turns F, B, R,
L, U, D.

One more remark to be made is that each face tumn satisfies the following

properties.

1. The center face piece remains in place.
2. The corner pieces are moved to corner place.
3. The edge pieces are moved to edge place.

Thus, the cube group consists of following two.

1. The eight corner pieces are permuted their positions among
themselves and if possible some of them are twisted.

2. The twelve edge pieces are permuted their positions among
themselves and if possible some of them are flipped.

We denote 1 and 2 as corner piece group and edge piece group, respectively.

Wreath product

It is known that the interaction between the permutations of positions
and the changes of orientations is an example of a wreath product of groups.



Thus, the cube group is an example of a wreath product of groups. The
definition of wreath product is from [1].

Definition: Let G and H be permutation groups that act on N = {1, 2, ...,
n} and K = {1, 2, ..., n}, respectively. Then the wreath product of H
by G, written H wr G, is the subgroup of sym(NxK) generated by
permutations of the following two types:

m(g) : (i,j) -> (ig,j) forgeG,
and @(hi, ..., hn): (i,j,) > (i,jhi) forh, .., hn€H

In the applications to be considered for the cube group, G will be
Sn=Sym {1, ..., n} and H will be Zx where Zk is the group generated by an
K-cycle or the group of rotations of a regular K-gon. To visualize "the cube
group" is an example of a wreath product of groups, we first look at the
corner piece actions of the cube.

Consider a corner piece of the cube. Since each corner piece of the
cube has three distinct faces, it can have three different orientation in a certain

position. (Figure 9)

Orientation 1 Orientation 2 Orientation 3
Fig. 9. Three different orientation of a corner piece

We can actually visualize this corner piece as equilateral triangle whose
vertices are labeled by three different letters U, F, R so that the orientation of
the triangle is distinguishable. Thus, each orientation of Figure 10 can be
described as follows.
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We realize, orientation 2 and orientation 3 can be obtained by 120° clockwise
rotation and 240° clockwise rotation (or 120° counter clockwise rotation) of
the original triangle (orientation 1), respectively.

In terms of the corner piece, we describe that the orientation 2 and
orientation 3 can be obtained by 120° clockwise "twist" and 120° counter
clockwise "twist" of the original corner piece (orientation), respectively.
Since there exist eight corner pieces in the cube and each corner piece has
three different orientations, we can conclude the following result.

Fact 3: The corner piece group is a subgroup of Z3 wr Ss.

Since there exist twelve edge pieces in the cube and each edge piece has two
different orientations, we have the following result.

Fact 4: The edge piece group is a subgroup of Z2 wr § 12.
We will discuss some general properties of Zk wr Sn.
Remark 1: Zk can be considered as the group of K integers mod k.

The following results are from [1].



Theorem 1: Any element £ of Zik wr Snhas a unique representation of the
form £= nE"oE"w), £"@, ..., £"(m) where £'€ Snand £"1s a
function from N = {1, ..., n} to Zk

From Remark 1, £"(i) can take values 0, 1, ..., k-1 fori=1, ..., n.

It is known that 3-cycles play special roles in both the corner piece group and
the edge piece group. We will define k-cycle first.

Definition: An element £€&Zi wr Sn is called a k-cycle if £'is a k-cycle
and £ has order K. (i.e., £x=identity.)

Before we state the next result, we define Act'(£).
Act'(£) ={ ieN :if' #ior £'(0) #0 }

Next result shows how to produce 3-cycle.

Theorem 2: Leta,b,c&N. If £, 8, ¢ &€Zcwr Sn satisfies
(1) Act'(€®)nAct'(B) = {b}, where af' =b = cf§’
(i1) Act'(g)N{a, b, c} = {c}, where cg'=cand ¢"(c) =1
Then,

S[£,B]g7 is 3-cycle forj=0,1,.. k1
where [£,8] = £8£-1B-1

proof is given in [1].
Let To = [£,8] and Tj= gi[£, B]@7
Then T; satisfies follows
T = (abc) (i.e., Tjmoves a, b, c as a->b->c->a.)
and
T"i(a) = T"o(a)+j, T"i(b)=T"o(b), T"i(c) =T 0"(c)]
for j=0, ..., k-1

We call this set of 3-cycles {To, T1, ..., Ti-1} a complete set of 3-cycles.



Example 1
Suppose we have the corner pieces labeled a, b, c as in the Figure 5.

Then £ can be produced by U, B can be produced by R-1DR, and g can be
produced by LD.
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Remark 2: £=U and B = R-1DR satisfy Act'(£)N\ Act'(B) = {b},
and ¢ = LD satisfies cg' =c and ¢"(c) =1 (i.e., =LD doesn't change
the position of a, b, ¢ but "twists" the corner piece ¢ 120° clockwise).
So T = (LD)[U, R1DR](LD)” produces 3-cycle on a, b, c.
(i.e., T; moves a, b, c, as a->b->c->a and T7 is identity.)
where j=0, 1, -1.
(Note: -1 is equivalent to 2 in Zx.)

Remark 3: T;j = (LD)[ U, R1DR ](LD)i doesn't change the positions and
the orientations of the pieces in the cube other than the corner pieces a,
b, c.

Example 2
Suppose we have the edge pieces labeled 1, 2, 3 as in Figure 12.
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According to theorem 2, we find

£=01 where 0 = F1B
B =R-1FR
and ¢=P1F2 where P =R-1L

Hence, (P-1F2)i[¢-1,R-IFR](P-'F)- produces 3-cycle on 1, 2, 3.
We introduce some special move of the cube, next.

Define L ab € Zk wr Sn such that
(uab)'= identity

and
(Uab)"(a) = 1, (Uab)"(b) = -1, and (Uab)"(i) =0 fori=#a, b
where a, b, 1 € N.

Then under the assumption of Theorem 2, we have the following result.
Theorem 3: Under the assumption of Theorem 2, we have peb = [¢,[£, B]].
Remark 4: We take a look at Example 1 again. Since we have £ =U,

B =R-DR, and ¢ = LD under the assumption of Theorem 2, we have

Ue = [LD, [U, R-IDR]]. We can verify this basic move of the cube
doesn't change the piece positions at all but twists only two corner



pieces b, c where c is twisted 120° clockwise and b is twisted 120°
counter clockwise.

We can easily expand this idea for any two corner pieces.

Fact 5: Suppose the corner pieces a, b, ¢ occupy the same positions as in
Example 1. Let x, y be any two corner pieces. Then, there exists a
sequence of basic moves of the cube, say u, such that u doesn't change
the piece positions in the cube at all but changes the orientations of only
two corner pieces x, y where x is twisted 120° clockwise and y is
twisted 120° counter clockwise.

Proof: For any x, y, suppose we agree that there exists a basic move of the
cube, say r, such that.

rmoves X to c and y to b simultaneously.
By Remark 4, u = r[LD, [U, R-ID]]r! satisfies the condition.
By theorem 3 and the similar argument as above, we get the following result.
Fact 5': Let p, q be any two edge pieces. Then there exists a sequence of
the basic moves of the cube, say B, such that 8 doesn't change the piece

positions in the cube at all but changes the orientation of only two edge
pieces p, q where p, q are both flipped.

Two subproblems of Rubik's cube

In the Rubik's cube, there are various pieces which can occupy certain
positions with certain orientation. Thus, studying possible configurations of
the cube involves the following two problems.

1. What positionings of the pieces in the cube are possible?
2. What orientations of the pieces in the cube are possible?



We deal with these two subproblem separately.

The positioning problem

When we view the basic moves of the cube as acting on positions of the
pieces in the cube, we will obtain "permutation of the corner piece positions"
and "permutation of the edge piece positions." Thus, it is reasonable to
denote "overall permutation of the piece positions in the cube" as total
permutation of the corner piece positions and the edge piece positions. Then
we have the next result.

Claim 3: Overall permutation of the piece positions in the cube which is
produced by a sequence of basic moves of the cube must be even.

Proof: Since all moves of the cube is generated by six face turns, F, B, R,
L, U, D (by Fact 2), it suffices to show each face turn produces even
permutation of the piece positions. Consider the face turn F. Label
four corner pieces in face F as 1, 2, 3, 4, and four edge pieces as a, b,
¢, d as Figure 13.

Face turn F
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Fig. 13

Then face turn F produces the following two permutation of the piece
positions.

(1234) on the corner pieces. (i.e., 1->2->3->4->1.)



and
(abcd) on the edge pieces. (i.e., a->b->c->d->a.)

Since both (1234) and (abcd) are odd permutations, total permutation of the
piece positions produced by face turn F is even, and likewise for all the other

face turns.

Claim 4: Suppose the corner pieces a, b, ¢ occupy the same positions as in
Example 1. Then, for any 3-cycle of the corner piece positions, say
(uvw), there exists a corresponding sequence of basic moves of the
cube, denote s, to produce it such that s doesn't change the positions of
the pieces in the cube other than u, v, w. (For any three edge pieces,
we have exactly the same result.)

Proof: Letx be any corner piece where x #a, b, c. We first show that there
exists a sequence of basic moves of the cube, denote P, such that

P moves x to a, and P doesn't change the positions of b, c, at all.

— ()

1. If x is in the face B, it is easy to move x to a by turning face B.
2. If x is at £, apply the move L-1B-1LL which moves x to a and fixes b

and c.
3. If x is at BB, apply the move DBD-! which moves x to a and fixes b
and c.
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Thus, for any corner piece x # a, b, c, there exists a sequence of basic
moves of the cube which satisfies (1). From Example 1,

Tj= (LD)[U, RIDRIILD)S (j=0,%1)

produces 3-cycle (abc) for the corner piece positions a, b, c.

Hence, by Lemma 1, it follows that T; and PT;P-! generate all 3-cycles
of the corner piece positions. Last thing to be checked is 3-cycles of
the corner piece positions produced by T; and PT;P- don't affect the
edge piece positions. This is clear since both 7; and PT;P-don't
change the edge piece positions, the moves generated by 7; and PT;P-
don't change the edge piece positions.

Then we obtain the following result.

Claim 5: Every even permutation of the corner piece positions can be
produced by a sequence of basic moves of the cube which doesn't
affect the positions of the edge pieces.

Proof : By Lemma 2, any even permutation of the corner piece positions can
be expressed by a product of 3-cycles of the corner piece positions. By Claim
4, for any 3-cycle of the corner piece positions, there exist a corresponding
sequence of basic moves of the cube which doesn't affect the positions of the
edge pieces. Thus, the result follows immediately.

Exactly, the same thing can be said for the edge pieces.

Claim 5': Every even permutation of the edge piece positions can be
produce by a sequence of basic moves of the cube which doesn't affect
the positions of the corner pieces.

The next result gives the answer to the positioning problem.

Claim 6: Every even overall permutation of the piece positions in the cube
can be produced by a sequence of basic moves of the cube.



Proof: Since overall permutation of the piece positions is even, we have the
following two cases.

Case 1: Permutation of the corner piece positions and permutation of the edge
piece positions are both even.

Case 2: Permutation of the corner piece positions and permutation of the edge
piece positions are both odd.

If we had the condition of Case 1, the result follows immediately from Claim

5 and Claim 5'. Now consider Case 2. From the proof of Claim 3, we know
each 90° clockwise face tum F, B, R, L, U, D produces odd permutations on
both the corner piece positions and the edge piece positions. Thus, if we had

Case 2, apply one of the face turn to obtain the conditions of Case 1, then the

result follows immediately.



The Orientation problem

Let Yo denote some configuration of the cube in which each piece of
Yo occupies the same position as START configuration, but some of the
pieces have different orientations.

To begin with, we introduce two strong conjectures.

Conjecture 1: Suppose Yo is a configuration of the cube such that the only
difference between Yo and START configuration is that a single
corner piece of Yo is twisted (120° clockwise or 120° counter
clockwise) compared to that of START. Then there is no sequence of
basic moves of the cube which restores Yo back to START.

Conjecture 2: Suppose Yo is a configuration of the cube such that the only
difference between Yo and START configuration is that a single edge
piece of Yo is flipped compared to that of START. Then there is no
sequence of basic moves of the cube which restores Yo back to

START.
We first consider the corner pieces.

Let Y. to denote a configuration of the cube in which each corner
piece of Yc occupies the same position as START configuration, but some of
the corner pieces (more than two) are twisted compared to START. Then,
we have following two results.

Claim 7: There exists a sequence of basic moves of the cube which restores
Y. back to START configuration if total twists of the corner pieces of
Y. are multiples of 360°. And there is no such sequence of basic
moves of the cube if total twists of the corner pieces of Yc are not

multiples of 360°.

Proof: Suppose i comer pieces are twisted compared to START
configuration, where i=2, 3, ..., 8. Name these i corner pieces as Ci,
Cz, ..., Gi. Choose any two corner pieces among C1, Ca, ..., Ci, then
twist one of them 120° clockwise and the other 120° counter
clockwise (i.e., 240° clockwise ) so that one of them ends up with no
twist. By Fact 5, there exists a sequence of basic moves of the cube
to accomplish this. At this point, we have at most (i-1) twisted corner
pieces and total twists of those corner pieces are again multiples of
360° since we applied total 360° twists on them. Repeat this process
inductively, and finally we end up with the last single corner piece has



multiples of 360° twist, but it is equivalent to no twist. This proves
the first part of Claim 7. By the same argument as above and
Conjecture 1, the second part of Claim 7 can be proved.

In the same manner, we obtain similar result for edge pieces

Let Ye to denote a configuration of the cube in which each edge piece
of Ye occupies the same position as START configuration, but some of the
edge pieces (more than two) are flipped compared to START configuration.

Claim 7': There exists a sequence of basic moves of the cube which restores
Y. back to START configuration if total number of flips of the edge
pieces in Ye is even. And there is no such sequence of basic moves of
the cube if total number of flips of the edge pieces in Yeis odd.

The proof is analogous to Claim 7.

Conclusion

In order to determine whether a given configuration, denote X, can be
restored to START configuration by a sequence of basic moves of the cube.

1. Check the parity of overall permutation of the piece positions
which is carried out between X and START configuration.

If it is odd, there is no sequence of basic moves of the cube which
restores X to START (Claim 3). Otherwise, there exist a sequence of
basic moves of the cube which restores X to a configuration X', where
each piece of X' occupies the same position as START

configuration. ( Claim 6 )

Assume we have found such a sequence of basic moves of the cube and
obtained the configuration X' so that we could observe how each piece of X'
is oriented comparing to START.

2. Check the orientation of each piece of X' comparing to START.

If total twists of the corner pieces of X' are multiples of 360° and total
number of flips of the edge pieces are even, there exists a sequence

of basic moves of the cube which restores X' back to START (Claim 7
and Claim 7'). Otherwise, there is no way to restore X' back to
START without disassembling the cube. (Claim 7 and Claim 7')
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