A Construction of the Universal Menger Curve

by Helga Fuller
Advisor: Dennis Garity

The goal of this paper is to construct the Universal Menger Curve, y; from copies of
the dyadic solenoid. Dranishnikov proved in 1986 that on every compact Menger manifold
there exists a free action of the p-adic integers, and what is more, of any zero-dimensional
compact group [3]. So, p; will always have a group action but this example will differ from
some others in that there is an effective group action at every stage of the inverse limit.
This paper contains two preliminary constructions, X and Y, and the final construction, Z,
which is homeomorphic to p;. In 1984 Bestvina [1] proved that:

A space X is homeomorphic to p; if and only if it is:

(1) compact and 1-dimensional - .

(2) path connected

(3) locally path connected

(4) satisfies the disjoint arcs property

Some definitions: .
A space S is locally path connected, if for any point s in S and any neighborhood U of

s, there is a path connected neighborhood V of s contained in U.

A space S satisfies the disjoint arcs property if given any € and any path g in S, there
exists a ¢¢ in .S such that g Ug® = 0 and d(g,¢°) < e.

The function f, : Xn41 — X, is a covering map if for each point in X,,, there exists a
connected open neighborhood U, such that each component of f;1(U) is mapped homeo-
morphically on to U by f,.

The group of dyadic integers, G, is the inverse limit Z, « Z; « Zg «— --- (i.e. each
element is an infinite sequence, ¢1, g2, ... where g;;; mod 2 = g;.

Dyadic Solenoid:

The dyadic solenoid is the infinite intersection of nested tori where the (n + 1)st torus
wraps twice around inside n-th one.



This intersection can be represented as the inverse limit of the system (T, gn, N) where
the bonding maps are inclusions. It can also be represented by the inverse system circles
where the (n + 1)st circle is the double cover of the n-th one [2]. The second form of the
inverse limit is the one that will be used throughout this paper. Only intuitive references
will be made to the first form. The dyadic solenoid will be represented by the inverse system
(Xn, fn, N) where each X, is the union of loops of length one indexed by the sequence
z = {0,1}" and joined together in a spiral by the following identifications:

[z,1] ~ [z 4+ 1,0]

where in X, = = (Zn&n_1...z1) (this sequence will be referred to as the y sequence.)
and z + 1 = a binary addition mod2™.
Note: The symbol + will be used both for regular addition and binary addition.
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X1 is the double cover of X,,. Notice that points in X,41 on the first half (first loop)
of the cover have z,4; = 0 while those in the second half have $n+1 =1.
The bonding map f,, : Xny1 — X, 1s defined:

fal[z, 1 = [ tn

where T = z mod 2” or simply, truncation of the leftmost digit in the y sequence.
fr is well defined: where one loop is joined to another, i.e. when [z, 1],41 ~ [z +1,0]nt1,

then f([z,1]ns1) = [7,1]s and f([z + 1,0]p41) = [z +1,0],
z+1=(z+1)mod 2" =(zmod2")+1=7Z+1,s0

f([2,1)ns1) = [F,1]n ~ [F+ 1,000 = [f([e+1,0]a41)

That the f,,’s are continuous follows from standard results on quotient spaces and the details
will not be given. Continuity will also be assumed for all other maps in this paper.
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A point in the inverse limit, X, is also of form [z,t] where the loop number z is an infinite
sequence of 0’s and 1’s and ¢ € Z denotes the position on the loop. The loop numbers of X
are, in fact, a binary representation of GG so there is a transparent effective group action of
G on X given by:

9([z,t]) =g + z,t] where g € G

Similarly, there is an effective group action on every X, by the binary numbers mod2™.

1. COMPACT 1-DIMENSIONAL
The inverse limit of the product of compact spaces is compact, and the inverse limit of

the product of 1-dimensional spaces is 1-dimensional, so all constructions will be compact
and 1-dimensional.

2. PATH CONNECTED

The dyadic solenoid is not path connected. The proof is omitted.

We will now construct the preliminary path connected space Y. A simple way to make
a path connection would be to identify all points [z, 0] to each other for all possible z. But,
this would ruin the effective group action. For any group element g, the action g([z,?]) —
[z + g,t] would map all points of form [z,0] to themselves. In an effort to keep the group
action transparent, we wish to construct Y from unadulterated copies of X. The following

construction was proposed by R. Edwards and D. Garity.
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The horizontal maps are the familiar double covers. In the vertical direction the (n+1)st
space is a copy of the nth space with a loop added to the point with ¢ = 1 5 of each loop i m
the nth column. The vertical map simply maps these loops back to the pomts with ¢t = 1
of the loop to which they are attached. All other points are mapped bijectively. Y is the
diagonal inverse limit where the diagonal map is simply the composition of the corresponding
vertical and horizontal maps. This gives a structure where Y,,41 is a double cover of Y, with

additional sprouts of Xj.
In the new space, Y, is the set of all equivalence classes

[k7 q7 m’ t]n
where

k€ {0,1,...,n — 1} is the column number,
q € {0, 1}  where {0,1}° gives a blank is the coil number,
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z € {0,1}"7* is the loop number,

t € I is the position of a point on a loop.

It will be useful to let ¢ = (y1...yx) and & = (Yn...Yx+1) because both k and g of a point
in Y, are determined by the sequence (y1...y») with the distribution of digits between z and
g dependent on the column number k.

There are two types of identifications:

Type (1) connects the loops to form a coil:

[’1'77 q, z, 1]71 ~ [k, q,T + 1: O]TL

where y + 1 is a binary addition mod2"~*
At this stage we have a disjoint union of coils with 2¥ coils of length 2*~* in each column

k.
Type (2) identification joins the point ¢ = 1 of each loop in column k to the point ¢ =0

of a loop in column %k + 1 with identical y sequence:
1
[ka 9:Y, '—)_J ~ [k + 17 qYk+1,Z, O]n

where gyir+1 = (Y1.--Ys¥Ys+1) and z = [§] or truncation of the rightmost digit.
Now define the bonding map f: Y,41 — Y,

ka‘LEatﬂ- 1fk<n
fa(lk, ¢, 2, t]na) = { {k ~ 1,q}ym 2 ifk=n

where T is again left truncation of z and ¢ is right truncation of q.
There are several cases to check to insure that f, is well defined.
Type (1) identification: [k,q,z,1]n41 ~ [k, ¢,z +1,0],
case l: k<n

f([k7 q,Z, 1]n+1) = [ka q,7, 1]717 f([ka q, T+ 17 O]n+1) = [k’Q7 T+ 170]714

Z+1 =24 1mod 2" * =z mod2"* =1 =7+1 (stipulating that in X, the = entry is

always mod2™~*), so
f([ka q,Z, 1}n+1) ~ f([k7 g, + 170]‘"-'!'1)

by type (1) connection.
case 2: k=n
1

1
f([k7 q,%, 1]'n+1) = [k - 1767 ks 5]77': f([ka q, %+ 1,0]n+1) = [k - 17?7 qky E]na

and these are identical points.
Type (2) identification: [k, q,Y, %] ~ [k +1,qYk+1,2,0]n
casel: k+1<n

1 1 ' _
A= f([k7 q,7, §]n+1) = [ka Q7_f’2']n7 B = f([k + 1,924, 2, 0]n+1) = [k + 1, qzq, 7%, O]n



if £ = Tpy1-k...21, thenT = zp_g...z1, and ¥ = 2p_k...x2 50 A ~ B by type (2) identification.
case 2: k+1=n

—t

1 : 1
A= f([k7 q,, §]n+1) = [k’ q,T, '—]n’ B= f([k + 1, 91, Z, O]'n-+1) = [k’q__wl’ T1, 5]71

o

Notice gz; = ¢ and z has n+1—k digits, or (k+1)+1—k = 2 digits,s0 z = 227, and T = 14
so A = B. A point in the inverse limit, Y, can be either column finite or column infinite. A
column finite point has form [k, %;...yk, ---Yk+1, ) Where k is finite. A column infinite point is
the inverse limit of points [n — 1, y1.--Yn-1, Yn, %]n for all » and has no finite column number.
All points in Y have an infinite y sequence. Claim: Y is path connected.

This is equivalent to the statement: There exists a path from the point O = [0, -,0...,0]
to any other point 7 in Y. (A path between any two points of Y is then just the path from
O to the first taken in reverse, followed by the path from O to the second.) A path from
O to T will also be broken into two. The first part, I : Z — Y, is. from O to the point Vr
where Vi is the column infinite point with the same y sequence as 7. The second part isa
path J:Z — Y from 7 to Vr.

Below is an example of a path in Y3 from ps(©) = [0,,000,0] to ps(Vr) = [2,10,1, 3]
‘where p, is the projection from Y onto Y,. Notice that yo = 000... and y7 = 101... Starting
at O, the path travels down one loop in the 0 column to get y; = 1, remains in the same
loop in column 1 to get y, = 0, and travels down one in column 2 to get y3 = 1. The path

then remains at p3(Vr) on [3,1].
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I is the inverse limit of paths I, : T — Y, connecting p,(O) to p,(Vr). By inverse limit
we mean p,(I) = I, and f,(I,4+1) = I,. The existence of the I,’s will be shown by induction.

1. There exists a path I; : Z — Y; from pi(O) to pi(Vr) with I [%,1] =pi (7).
define: '

- [0,,0,w)) if 3 =0, w € [0,3)
gl(w) { [0,’ 0,4’1,0]1 if Y1 = 1 w e [0, %]
[O,’I,Q(w—%)]l lfyl— 1 'LUE[4, 2)

If y; = 0 then the path goes from 0 to 3 on the top loop of Y3. If y; = 1 the path goes along
the entire top loop and goes from 0 to % on the bottom loop.

1 1
hy(w) = [0,_, yl,-Q-} for w € [5,1]

hiw) = {‘zl(w) fwelzl]

2. Assume there exists a path I, in ¥, from p,(O) to p.(Vr) with I, [2;;1, 1] (V1)

Claim: There exists a path in Yn;1 from pry1(O) to pny1(Vr) with Inyq [-Z—g-z—’{l, 1] =

pas1(Vr and fo(Ins) = I
define:

f:l(gn) fwe [0’ 2;;-1)
03027 (= B2)] iy = 0w € [ B2, B
e, 0,270 (0= 52)] ifuna =1, we (52, 250

1 2n+2_3 . . 2n+2_3 2n+1_1
[n,?h 1,2+ (w )| Hypn =1 we |S5mm, T

n+1 (w) =

1 —1
hn-}-l(w) = [nayl"-ym Ynt1, 5] forw € |:—_2.,LT'7 1]

where F1 is the lift of g, path starting at p,41(O). (Because f, is a double cover, . (gx)
gives two paths in Y;4;.) Technically this can be written: F;*([%,¢,z,1]) = [k, g,0z,t] where

0z = Oyn..-Yk+1 (Yn+1 is set to 0)

gne1{w) forw € 0,2%11;1
Fova() = { () [m“ )

hpy1(w) forw € [ 2n+;171]

This is continuous because,

1 om — 1
im . (g.) = [n— L,y1-. Jn-—laOJn:Q] ~ [n,91.-Y»,0,0] =gn+1< 5 )

w—+-—2,r—

and ' 1 on+l _ ]
im  gppa(w) = {nayl---ymyn-frlv’i] = hnt1 (_21H-T)

2ntl

w—r 27



Also,

fn(In+1) =1I:

Fo{F71(ga)) = gn because F71(gn) C vf7 (gn)

and fn(In+l\fn_1(gn)) = hp

If T is the inverse limit of points of form [n — 1,¥1...Yn1,¥n, 3] for all n, then 7 = V7
and the path is complete. For any other 7, the second part of the path (J) from T to V7
is also necessary. 7 can now be written [R, g, z,t] where R is some finite column number.
Because the y sequences of 7 and V7 are the same, and any loop in column k is joined to
the loop with identical y sequence in column %k — 1, the path J goes from % to 0 on each loop

with y sequence identical to 7.

J is the inverse limit of paths J, : Z — Y, connecting p,(7) to p.(Vr). The existence
of the J,,’s will also be shown by induction. For n where R > n, po(7) = pn(Vr) and J, is
trivial. So the path and first inductive step will start with Yr4;.

1. There exists a path Jry1 : Z — Yr41 from pr+1(7T) to pry1(Vr) with JR+1 [%, 1] =
pr1(Vr). Note: pria(T) = [R,y1.-.yr,y + B+ 1,1]

define ‘ )
gri1(w) = [R,y1-..yr, yre1,w(l — 2t) + t] for w € [0,5)

1 1
hpii(w) = [R, Y1---YR, YR+1, -2-] for w € [5,1]

gre1(w) for w e [0, %)
hR+1(w) for w € [%, 1]

Jri1(w) = {

Assume for m > R + 1 there exists a path J, in Y, from p,(7T) to p.+1(V7) with
J . 2u—R_1 — (T) .
u TR DPu .
Claim: There exists a path Jy41 in Yyq1 from puy1(7 to pus1(Vr) such that fu(Jut1) = Ju-
define '

K (gw) for w € [0, 5572)

~-R 2v—R_q 2u—R_y gu-Rtl g
[u7 Y1---Yu, 3/u+1,2u (w - _T.L——R—):l ' for w e [ qu—R 9 Qu—f+tl

Gur1(w) = {

1 uRtl 1
hu+1 (w) = [7_1,7 Y1 Yuy Yutiy 3] for w € [—21:1'2:_—1‘—‘,1]

<

where K7! is the lift of g, which is path connected to py41(7). Technically : X7 Yk, q,z,t] =
[kv 95 Tut1T, t]
0 2“—R+1-1]

Jutr1(w) forw € [ y “umRFT

hus(10) for w € [Bmmmst, 1]

Jupr(w) = {
That J,41 is continuous and that f,(Ju+1) = Jy follow by similar arguments to those for 1.

3. LOCALLY PATH CONNECTED



Let V = {p;*(V)|n € N with V an open set in X, }, then V is a basis for X. This is
true of any inverse system [C]. In Y the basis elements are generally not path connected.- So
now we will construct the final space Z which will be locally path connected. First, order
the rationals with the function r : @ — N. Where Y,,;; was a double cover of ¥, with 2"
coils of length two added, Z,,; is a double cover of Z, with 2" coils of length two added to
each existing column at the next free rational. The following picture is a top view with each

circle representing a column.

01,2

0,1 1,1

0 ~.]

external numbers

0 Z are the column sequence, k
4

In this space Z, will again be the set of all equivalence classes:
[k7 q7 x) t]n

where now
k = ko, ky,...kg with 1 € {0,...,n}, ko = 0 and "}_, k: = s; where 5; <n —1
g €{0,1}"
z € {0,1}"™*
teZ



The only changes in the notation are that the k that appeared in Y as a column number
is now a sequence and where k appeared in Y as an index, it is now replaced by s, the
summation of the new sequence k. Again there are two types of connections. -

Type (1) connections (the connecting of loops) hold exactly as before:

[k’Q’ :L‘, 1]’!7. ~ [ky q,x + 1, O]n

where z + 1 is binary addition mod2"~*.
Type (2) connections are modified as follows:

[k, Y1---Yspr Ynoe-Ysi+1 r(m)] ~ [km, y1.- Ysitms Y- -Ys4m+1, 0]
provided that s;+m <n

The following picture is a sideview of only the boldface columns of the previous picture.
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&)gqx
(0),,0000
0001

0010

(02,1)011, 0

©20100, 0 p_>

(02,1),110,
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The map f,, for the case s; < n is the same as for case k <nin Y.
fn[ka q,, t]n+1 = [k7 q, T, t]ﬂ

Z = z with left truncation._
for case s, =n

Fal(koy ey K1)y Y1e-Yss Yna1s t] = [(Koy oey Kic1)s Y10e-Yomkys Ynee-Tomky=1, T(K1)]

The next goal is to show that Z is locally path connected. First, it will be useful to
show that Z is path connected. The path construction will be very similar to that for Y.
To make the similarities more visible, I will use many of the same letter names. The first
path I will be from O to the point Vr where V7 is now defined as the inverse limit of
points p,(Vz) = [(koy -, k1), Y1---Usy» Yn---Ys, — 1, 7(kiz1)]. If the k& component of 7 is finite:
(o, ..., km) then let k; = 1 for all i > m. Again the y sequence of V7 is equal to the y
sequence of 7. I is the inverse limit of paths I, : Z — Y,, connecting p,(O) and p,(V7).
Existence of the I,’s is shown by induction.

1. There exists a path,l;, in Z,, from p,, (O) to ps, (VT) with I, [2, ] Ps, (V). Note:

s1 =k

deﬁne

() = [0, =, 0%...01 + [2Rw], 2Rw — [2Rw]] for w € [0, 2]
Fou 10 [0, —,ykl...yl,r(kl)ZR[w - B'—l] for w € [—TR— %)
where (yi...y1) +1 =R

: ) 1
By () = [0, =, yo, ooyt (k1] for w € [5, 1]

_ gs;(w) for w e [0, %)
Lo (w) = { hs;(w) forw e [%, 1]

fj_l(Ij) = 1 for 1 <j < s

2. Assume there exists a path in Z,__, from p,,_,(O)tops,_,(Vr)with I, [2;::151] =

Psm—1(V7) and f;_1(I;) = ;-1 for 1 <y < Sm~1- Zz—ok =S. -
Claim: There exists a path in Z, from ps,, (O) to ps,,(Vr) with I, [%?;f—l, 1] Ps (VI
and fj_1(l;) = [j-1 for 1 < j < 8. Deﬁne

f;}—l((gsm-—l)(w)) ' forw e [0, 2::;1_;1]
Ism (w) = [ka q; (Osm sm_.1+1)[R] R - [R] forw € [2"’2"8:1_;1, (23’"2—52%1%—1)]
0t ) (225) (o~ 550t [0 )
where
k = (kﬂa “ery km)
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qg= (yl---ysm—;)
R =2~ R (w— 5251)

2om —1
hs,,(w) = [k, @, Ysp---Ysm_s+1: T (km )] for w € [ Som ,1]

gom—
I () = gs,, (w) forw € [0:m23m1)
_ gsm(w) forw € [22,,:1, 1}

If 7 is a column infinite point, the path is complete. Otherwise a path J from Vr to T
can also be constructed by going from r(m) to 0 in each column traversed by I. Details are
omitted! '

Now we need to show that given any point « = [k, ¢,z,t] in Z and a neighborhood W of
a, there exists a nbhd. U/ with « € & and & C W such that U is path connected. Because
V is a basis we can pick a V C W containing . By definition, V = p;!(V) for some m.

case 1: If ¢ has ¢t = r(b) and k = ki,...k; such that Y o ki + b < m, then pick a U in
X,, such that « € U,U C V and [/ contains no point with ¢ = r(a) and @ < b. Let B be
the point in U with ¢ = r(c), where r(c) is the next rational (i.e. ¢ is the least number such
that ¢ < b.) Now let w = s; + ¢ and let U be the component of Pw(p;U) containing p, ().
U is homeomorphic to an X. One arc, D, is in column k and the other is in column k,7(b)
(or ki,...,k;,7(b)). The two arcs intersect at py([k,g,z,7(b)]- In general, any component
of p-1(D) will intersect a component of p;*(E) in the set {p;'[k, ¢,z,r(b)]} for n > w. In
Zwy1, 2¢ 2-coils will be added to the kth column at points with ¢ = r(c). Let @ be the
2-coil connecting the two lift components of f,—1(U). In Zy41, @ prevents the two lifts
of U from being disjoint. p3};(Q) = pw(B) is homeomorphic to the entire space Z, so it
is path connected. It connects p;*(D) U p;'(E) which each have countably many sprouts
homeomorphic to Z ( i.e. pZ*([k,q,z,7(d;)]) are the sprouts of p;*(D) for any d; € N such
that ¢ < d; ). So, p,—1(U) is the desired path connected nbhd. of a.

case 2: For the case of a with t = r(b) where s; + b > m the argument is similar with
r(c) = r(b). :

case 3: If a has an irrational ¢, the argument is again similar. Choose U to include a
point B with ¢ = r(c) so that s; 4+ ¢ > m and there are no points in U with ¢ = r(a) such

that a < c. ) .
In the last two cases U (and U) are homeomorphic to a single arc instead of an X.

4. DISJOINT ARCS PROPERTY
Put a metric on Z such that if @ and 3 are points of Z,

d(pa(a),pa(B)) <1

for all n and

D(a ) = sup { pn(). Pn(ﬂ))}

Now given a path A : Z — Z and an €, D(h, h) < eif b = b, for all m where L >¢ and it
is possible where = < ¢ for h # h. (hm = pm(h)) Let M be the largest m such that - > .
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By the Simplicial Approximation Theorem [2], we can draw vertices on the graph of Aps
and also subdivide the unit interval so that there exists a map jar : Z — Z such that any
vertex on T is mapped to a vertex and any edge is mapped linearly onto an edge or onto a
vertex in such a way that d(har,jar) < €1, and because M is finite, € can be chosen so that
sup (-d—(%l) < e for n < M. Because j§ = j, for n < M < R, D(j%,7) < e. T is finitely
subdivided into vertices and edges, denoted by ¢, ...,7s. Because of this there are only a
finite number of pairs such that jar(is) = jam(i-) with s # r. For n > M, define j,41 to be
the lift of j, starting at f;*(4,(0)) with yn41 = 0. If j(¢s) # j(ir) then there exists a u such
that j,(zs) # ]u(zr) for n > u. We take R = maz(u) over all pairs. Define ]n as follows:
for n < R j& = jn. For n > R define j¢,, to be the lift of j, starting at f;'(j.(0)) with
Yntr = L.

Claim: j&,, NJjr+1 = 0, therefore j5Nj = 0. If j°Nj # 0, then there exists TRe1(is) =
jR+1 (Z'r)

case l: 7 =3

We know that j§,,(0) # jr+1(0) so the following lemma provides a contradiction.

Lemma (umqueness of lifts): Let (Zgr41, fr) be a covering space of Zr. Given any two
continuous maps, j§,1, r+1 : Z — Zr41 such that j§ = jg, theset {b € T)jg1(b) = jrR41(8)}
is either empty or all of Z. See [4 [ ] for proof.

case 2: T # s

]R+1(7'-9) = jr+1(ir) s0 ji(is) = jr(is) = Jr(ir)

Jr41(is) = jre1(é,) follows because j7¢(z,) must equal j(i,).

Substitute the first line into the third and it reduces to the first case: j§,1(%s) = jr+1(4s)

So:3¢ Ny = 0.

Conclusion:

Z is the Universal Menger Curve and, as promised, there is an obvious effective group
action: Because the loops, z, in Z (or in Y) are indexed by the dyadic integers and each loop
is connected only to the loop z + 1 in the same column and coil, or to a loops in different
columns with identical y sequence, the group action: g([k,q,z,t]) = [k, ¢,z + g,t] of the
dyadic integers will hold on the inverse limit Z (or Y). Also, the group of binary numbers
mod2™ acts effectively on Z, (or Y3) for the same reasons.
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