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ABSTRACT. In this paper we develop a technique for distinguishing between knots and links -
which are written in Conway notation, develop a technique for determining the unknotting
_number of a Conway knot in its minimal projection, and provide a prime knot with an -

arbitrary gap.

INTRODUCTION

- In 1983 S. Bleiler and Nakanishi independently found a counter exmaple to the con-
jecture that the unknotting number of the minimal projection of a knot was the actual
unknotting number of the knot. Bernhard then expanded on this knot ([5, 1,4]) to demon-
strate that a family of knots of the form [odd, even, odd] all have this same property[BE].
Eva Wailes expanded this research further by exmaining the properties of the entire family
of knots [a, b, c]. Wailes’s work revealed three knots whose gaps are 2 1 and at least one
family of links whose gap was arbitrarily large [W]. In this paper, we have extended these
ideas to the class of Conway knots of the form [a, b,¢,d, €]. In our effort to determine the
unknotting number of the two knots which we studied, we developed several things: two
techniques for identifying whether a given sequence of integers written in Conway nota-
tion is actually a link or a knot, a technique for deducing the unknotting number of the
minimal projection of a Conway knot, and a counter exmaple to a conjecture regarding
the unknotting number of the even-continued fraction expansion of a Conway knot. Of the
two 5-component families we studied, one will be shown to have a gap = 1 and the other

to have an arbitrary gap.

Notation. Throughout this paper, when we are referring to a 5-component Conway knot,
we will write the knot in the form [a, b, ¢, d, €], where each of a,b, ¢, d, e are integers. When
we speak of a position in this knot, we are referring to one of the five components, i.e. the
fourth position refers to the integer d. Often we will desire to make changes to a sub-set
of the five integers and we will denote these changes in the form {p,q,r,s,t} where each
of the variables p, q,r, s,t are integers and p is understood to signify that we are making p
changes in the first position of the knot, q changes in the second position of the knot, etc.

Definition. We will use the notation = to signify that two knots are equivalent.
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Definition.  The notation cfrac[a, b,c,d,...]| will refer to the associated contuned fraction
of the knot [a,b,¢c,d,...] [C].

For example, cfrac[a, b, ¢| refers to the associated continued fraction:

ct ——
1

b+ =

a

Theorem. Any knot written in Conway notation where all of the positions are all positive
or all negative is a reduced alternating knot and is thus knotted [K].

We will be using this fa.ct to determine when a given knot is unknotted or not. For
example, if we make a series of changes, say {p,q,7,s,t} on a knot so that the resulting
knot has a projection where all of the positions are poisitive integers then we know that

this knot is still knotted.

Theorem. Two knots written in Conway notation whose associated continued fraction
are equal are neccessarily equivalent [C].

We will use this result extensively to show that certain non-alternating projections
have equivalent alternating projections and thus are still knotted. For example the knot
[1,-2,3,7] Which is non-alternating has cfrac[l,—2,3,7] = %% The knot [2,7] also has
 cfrac[2,7] = £ and thus the knots are equivalent. Since these knots are equivalent and
the second is reduced alternating, then the original knot is knotted. The equivalences
for the 5-component knots for the 30 permutations of positive and negative positions are
computed in the Appendix.

Zero Reductions. If a position in a knot is zero then the following is true:

1) [0,a,b,¢,d] = [b,¢,d].
2) [a’b70’c’d] = [a7b+c7d]

This can be proved using a continued fraction analysis.

Definition. The unknotting number of a knot K is the minimal number of crossing
changes required to unknot K taken across all projections of K. We label this number

U(K).
Definition. The unknottmg number of the reduced alternating projection of a knot K
will be called Upyin (K ).

Deﬁnltlon. The Gap of a knot K is the difference between Upin(K) and U(K).

In this paper we never compute the exact unknotting number of 5-component knot and
thus never compute the actual Gap(K). Rather, we find a bound for the size of the Gap(K )
by finding a non-minimal pro _]ect1on of K whose unknotting number is < Upin(K).

Definition. The evenfrac of a knot K is the continued fraction of a knot which consists

of either:
1) one odd integer followed by a finite number of even integers if the Conway knot

is a knot.
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2) a sequence of even fntegers if the Conway knot is actually a link or knot Prime
(Defined later). '

This representation of a knot is useful in that even positions can be readily reduced to
zeros thus simplifying the reduction of the knot by the zero-reduction method above. Thus
the even projection of a knot may possess the property that it is easier to unknot than
the minimal projection. For example, the knot [5,1,4] has an unknotting number of 3 for
its minimal projection, while the evenfrac of this knot [2,—2,2,—2,2,4] has unknotting
number of 2 which is the actual unknotting number of the knot. This property of even
continued fraction is not true for every knot however, as will be demonstrated by later.

For other introductory information see previous work by Eva Wailes and Cassandra S.

McGee [MW]. -
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MAP METHOD FOR DETERMINING CONWAY LINK NATURE

In working with Conway notation, it is often convenient to be able to identify whether
a given ‘knot’ is actually a knot or a link. In what follows we will construct a road-map
which determines wheter a given ‘%knot’ is actually a knot or a link depending only on the
sequence of even and odd tangles for a given ‘knot’. We will also derive a result for how
many ‘knots’ of n-tangle length are actually knots and how many are links.

First, we need to create a set of labels which identify the behavior of a tangle or a set
~of rational tangles. To this end, we will think of a block, containing k tangles connected
in the Conway fashion, with four nodes labelled 1,2,3,4 and and then make the observtion
that there are three possible behaviors depending on the interior connections - we label
these behaviors as demonstrated in the following diagram:

1 2
] " Link TN 7

3 4 E{ :

1 2 1 2
H 1 R\ —

, K (Knop) [ ___“

3 4 3 4\

1 2 2 4
> | K’ (Knot Prime) _.-’"_—J —
3 4 i3 4}

Block Types and a Two-Component Example

The ‘knot-prime’ block is named as such since the connected block will form a knot,
but the internal behavior is distinct from the block which we’ve labeled as a ‘knot’

To begin the construction, we need to consider the block consisting of one tangle. Given
the nature of one-tangles, only the L and K behaviors are possible. Furthermore, it is easy
to see that if the number of crossings in the tangle is odd, then node 1 will be connected
to node 4 and thus the block is a knot. Likewise, if the number of crossings is even, then

node 1 is connected to node 2 and the block is a link.
Now we need to consider the behavior of a two tangle block which can be formed in

four ways :
[odd, 0dd]
[odd, even]
[even, odd]
[even, even]

Referring to the two-component example above, it can be seen that if both the compo-
nents are odd, then node 1 of the block is connected to node 2 and the block is a link. If

4
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the first component is odd and the second is even, then node 1 of the block is connected
to node 4 and the block behaves as a knot. Finally, if the first component is even and the
second is either even or odd, then node 1 of the block is connected to node 3 and the block

behaves as a knot-prime. We have, then, the following table:

[odd, odd] = Link
[odd, even] = Knot
[even, odd] = KnotPrime

leven, even] = KnotPrime

‘We now proceed by connecting another tangle to the blocks above, which gives us six
cases to check, namely

[Z, odd]
[L, even]
[K, odd]
[K, even]
[K', odd]
[K', even)

We can again refer to the two-component diagram above, treating the first internal
component as one of the previous three block types. We notice that if we connect the two
component link to an odd tangle then node 1 of the block will be connected to node 3 and
the block will behave as a knot-prime. The same is true for adding and even tangle to
a link. If we add an odd tangle to a two component knot, then node 1 of the block will
be connected to node 2 and the block behaves as a link. If we add an even tangle then
node 1 is connected to node 4 and the block is behaving as a knot. Finally, if we add an
odd tangle to a knot Prime, then node 1 is connected to node 4 and the block behaves
as a knot. And if we connect and even tangle to a knot-prime, then node 1 of the block
is connected to node 2 and the block behaves as a link. The important thing to note is
that the three blocks we have defined are the only types of blocks that will ever occur.
Consequently, we have a closed pattern of the following form:
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5

Stafe Table

Current State
Link '
Link

Knot

Knot

Knot Prime

Knot Prime

Next Component
odd

even

odd

even

odd

even

Next State

1 Knot Prime

Knot Prime
Link
Knot
Knot
Link

At this point we have a method of identifying a knot from a link by scanning along
the components and keeping track of what the next block is. For example, the knot
[3,1,4,2,6,7] would be mapped as follows:

And, thus, [3,1,4,2,6,7] is indeed a knot. This State ta,ble‘ can also be visualized as a
State Map as follows: .

Now we would like to be able to compute that for n tangles, there are exa.ttly m links
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and p knots, etc. To do this we will introduce the following notation:

K (n).= The number of knots for n-components
L(n) = The number of links for n-components

K'(n) = The number of knot-primes for n-components

'Now, looking at the State Map above, we can make the following observations:

1). Since L always goes to a knot-prime regardless of the nature of the next tangle, and
since the only way for the next block to be a knot-prime is for the current block to be a
Iink then: ' ‘

K'(n+1) =2% L(n)

2). Since adding an even to an n-tangle knot will generate an n+1 tangle knot and a‘d'ding
an odd to an n-tangle knot-prime will generate an n+1 tangle knot and since these are the

only two ways to arrive at an n+1 tangle kknot then:

K(n+1)=K(n)+ K'(n)

3). By a similar analysis as 2), we can conclude that:
L(n+1) = K'(n) + K(n)
Conditions 2 and 3 can be combinéd to give : Kn+1) = L(n + 1), or with no loss of
generality: _ ' '
L(n) = K(n)

4). For any given n there are 2" unique sequences of odd-even pattérns, each of which
must generate one of the three results; L, K, K'. Therefore:

L(n) + K(n)+ K'(n) = 2"
The above equations can be combined and simplified to yield the difference equation:
L(n) =2V _ [(n—1)
For any given n, this recursion generates a sequence such as :
L(n) =2(n=D _2(»=2) 4 29 _ + (1)1
This expression is the quotient of a polynomial division, namely, letting z = 2, then:

L(n) = 21 — (=2 4 g(n=8) _ | (1))
(z+1)*L(n) = z" + z(»7D _ g(r=1) _ 4(n=2) | (n-2) + e + (=1)(»D)

7
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Pairwise terms cancel and the expression reduces to:
(z +1) % L(n) = 2™ 4 (-1)(»~D)

And finally:

L(n) = z(™ 4 (—1)(r-1) _ 2(m) 4 (—1)(r-1)
z+1 _ 3
From this result, and the previous relations, the number of knots for n-tangles can be
computed (here knots are considered to be the sum of knots and knot-primes since both
behave as knots):
2(n+1) 4 (=1)(™

Knots(n) = 3

CONTINUED FRACTION METHOD FOR DETERMINING CONWAY LINK NATURE

In considering whether a given knot, written in Conway notation, is actually a link,
knot, or knot-prime, as defined earlier there is an easier way than the map method.
Consider the set of rationals and define the following:

odd

even

=K' for Knot-Prime

even .
dd = L for Link

odd .
ogd = K for Knot

Then observe that if the knot has one component, then if the component is odd we
have a knot, and if it is even then we have a link. Also note that the continued fraction
associated with these knots corresponds to the above definitions (odd/1 even/1).

Now we consider the four cases where we add either an even or odd component to the
base even or odd component. All we are interested in is the nature of the. associated
continued fraction. V o

Let o stand for odd and e stand for even. Also notice the following properties:

exe=c¢

exo=ce
e+l=o0
o+1=ce¢
o0*x0=0
o+e=o
e+e=e
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Now consider:

cfracfo,0] =0+ 1/0 = (00 + 1)/o=e/o  Which is L by Definition

cfracfo,e] = e + l/b =(eo+1)/o=0/o  Whichis K by Definition
,ckfvrac[e,o] =o0+1/e=(eo+1)/e=0/e  Whichis K’ by Definition
cfracle,e] =e+1/e = (ee + 1)/e=o/e Which is K’ by Definition

Now, as before, we need to consider adding an even or odd component to the above
results to see the cycle:

cfrac[L,o] = 0+1/(e/o) = (o€ + 0)/e = o/e  Knot-Prime
cfrac[L,e] = e+ 1/(e/o) .=v(ee +0)/e=o/e Knot-Prime
cfrac[K', o] =o0+1/(of/e)=(oo+e€)/o=0/o  Knot v
cfrac[K',e] = e +1/(o/e) = (0ce+e)Jo=e/o  Link
cfrac[K, o] = 0+ 1/(o/0) =4(00+0')/o=e/0 Link
cfraclK,e] =e+1/(o/o) =(oe+0)/o=0/0  Knot
Consequently, to determine the state of a Conway knot we need merely compute the

associated continued fraction and then observe which ratio of evens and odds results.
For example, the knot [3,4, 5, 3] has cfrac = 217/68 which is o/e so this knot is a

_knot-prime.
COUNTER-EXMAPLE TO THE EVEN CONTINUED FRACTION CONJECTURE

S. Bleiler conjectured that the unknotting number of the even continued fraction rep-
resentation of a knot was the actual unknotting number of the knot [BL]. The knot
[2,2,1,1,2] written in Conway notation is a counter-example to this conjecture.

First, notice that the Conway continued fraction of the knot [2,2,1,1,2] is :

1 ' 31
2+ 1 = E
1+ 1
1-!—'—~1
2+§

Now, notice that the continued fraction of the even knot [2,—4,2,2] is also 31/12. We
know that since the continued fractions are equal, then [2,2,1,1,2] = [2, —4, 2,2] [C]. -
~ Clearly, [2,2,1,1,2] is knotted. Furthermore, we can unknot this knot with one crossing

change, namely:

{0,0,1,0,0}
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Which gives us the following knot and its reductions:

=[2,2,-1,1,2]
=[2,0,1,-1,2]
= [3,-1,2]
=1,1,0]

- =[1] = UNKNOT.

Now we want to show that the even knot [2,-4,2,2] can not be unknotted in one change
- we need to consider only four cases, namely one change in each of the four possible

positions::
Case 1: {1,0,0,0} on [2,-4,2,2].
= [0,-4,2,2]
= [2,2] = KNOTTED.
Case 2: {0,1,0,0} on [2,—4,2,2]. '

=[2,-2,2,2]
=[3,1,2] = KNOTTED.
Case 3: {0,0,1,0} on [2,-4,2,2].

- =1[2,-4,0,2]
= [2,-2]
[-3] = KNOTTED.

Il

Case 4: {0,0,0,1} on [2,—4,2,2].

=[2,—4,2,0]
= [2, —4]
=[-2,-3] = KNOTTED.
Therefore, the even knot can not be unknotted in one crossing change. Furthermore,
since the actual unknotting number of [2,2,1,1, 2] must be less than or equal to the un-

knotting number of this projection and since this projection is knotted with an unknotting
number of 1 then the unknotting number is EXACTLY 1, i.e.

0<U(k) = Umin(k)=1—U(k)=1
- Consequently, the unknotting number of the even projection of [2,2,1,1,2] does not
realize the unknotting number.

10
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UNKNOTTING THE MINIMAL PROJECTION

To prove the unknotting number of the minimal projection of a Conway knot [a, b, ¢, d, €]
we will use a procedure which progressed from earlier methods of unknotting a three-tangle
Conway knot. In earlier work, the proof would proceed by induction adding a position at
each level in the proof. So, for example, the first part may prove by induction a certain
unknotting number for the knot [2k+1, 1, 4], and then use this result to prove unknotting
number for the next knot in the sequence [2k+1,27+1,4]. For the three position Conway
knots this method is involved but managable. But, for the five position Conway knots this
method is too tedious. ’ ' ' _

An alternative method was developed which cut the number of cases that needed to be
considered down to 30 for the five Conway knots. Most of the time the number of cases
can be reduced further down to around 20 cases that must be analyzed. The general idea
of the procedure is that we make an arbitrary change {p,q,r,s,t} on our knot, where any
of the p,q,r, sort can be equal to zero. Obviously, this change will cover all possible ways
to make crossing changes on the knot. In general a guess on the unknotting number is
needed so that an upper bound can be placed on p+.g+r + s +¢. We then need to check
when any one, two, three, or four positions of the knot become negative as a result of our
changes. To simplify matters we first check what occurs when any of the even positions are
changed to zero. When one of the even positions are reduced to zero, the knot simplifies to
a Conway three tangle knot for which we already know the unknotting number. Once we
eliminate the possibities of a zero in any positions, each position needs only to be checked
for when it is strictly positive or negative.

The notation {+ — + — +} is used to label which case is presently being worked on.
Here, the + — 4+ — + signifies that we have made changes on the knot so that the first
position will still be positive, the second position will become negative, and so on. When
we make these arbitrary changes on the knot we assume that each position will be able to
obtain any value except zero. For each of these cases we need to show that the resulting
knot is either still knotted or requires more changes to unknot than our target unknotting

number.

KNOTS OF THE FORM [2i + 1,25 + 1,2k, 2] + 1,2m] WITH j 2 k AND j 21 AND [ > 1.

We will be considering the unknotting number of the Conway knot [2041,25+1,2k, 2]+
1,2m] in its minimal Conway projection. We will show that the unknotting number of knots
of this form is 7 + k +m in their minimal projection. To prove that the unknotting number
is 2 + k + m, we show that it cannot be unknotted in 7 + & + m — 1 changes and that it
can be unknotted with  + & + m crossing changes. To see that [2i 4+ 1,25 + 1,2k, 2] +
1,2m] can be unknotted in ¢ + k + m changes, we make 7 changes in the first position,
k changes in then 3rd position and m changes in the last position. The resulting knot is
[1,27+41,0,214+1,0]. After simplifying and unwinding we see that we have the trivial knot.
Hence, [27+ 1,25 + 1,2k, 2] + 1, 2m] can be unknotted in i + k 4+ m crossing changes.

To prove that [2i + 1,27 + 1,2k,2] + 1,2m] with j 2kand j >1and! > 1 can not
be unknotted in 7 4+ k + m — 1 changes, we will consider the crossing change {a,b,¢c,d, e}
where a,b,c,d, or e are all greater than or equal to zero. After making these crossing
changes the resulting knot is [2i + 1 — 2a,2j +1—2b,2k — 2¢,21 4+ 1 — 2d,2m — 2e] where

11
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a+b+c+d+eli+k+m—1.

First notice that if we change either the third or fifth position to zero then we will
have a three component knot. From Eva Wailes‘s work we know the unknotting numbers
of the three component knots and links. So, if we make k changes in the third position
then we get the knot [2i + 1,2j + 21 + 2,2m] which takes i + m changes to unknot [W].
The total number crossing changes (z + m + k) is above the target number allowed. If we
make m changes in the fifth position then we get the knot [2; + 1,25 + 1,2k] which takes
¢ + k changes [W]. Here we have used the : + k + m changes. Since we have shown that
changing any of the positions to zero will result in an unknotting number greater then
t+k+ m — 1, we can ignore those changes where the third or fifth position become zero.
More specifically we have covered the cases where ¢ = & or e = m.

In order to cover all of the possible ways to unknot our knot with the change {a,b, ¢, d, e},
- we now consider the cases where one, two, three, and four positions are changed to negative.

Part I. One Position is changed to negative.

{—++++} Assume 21+1—-2a £ —1,2j+1-2621,2k—2c 22, 21+1-2d > 1,
and 2m — 2e 2 2. From equivalence 1 we get the knot [2a — 2 —
2,1,25 — 2b,2k — 2¢,2] + 1 — 2d,2m — 2¢]. The last three positions
are all positive so the only terms to be wary of are if 2a —2i — 2 = 0
or 2j — 2b = 0. But even if both of these positions are equal to zero
we still get the knot [2/4-1—2d,2m — 26] which will be knotted from
our assumtions.

{+—-+++} Assume2z+1—2a 12]+1—26<—1 2k—2c22,214+1—
, 2d 2 1, and 2m — %e 2 2. From equivalence 2 we get the knot
[2¢ — 2a 1,26 —-25-3,1, , 2k — 2¢—1,2141—2d,2m — 2¢]. The last
three terms are always positive by our hypothesis. The only possible
non-positive terms occur when 2 —2a = 0 or 2b — 25 — 3 = —1.
If 20 —2a = 0 and 2b — 2j — 3 2 1 then we reduce the knot to
[26—25 —3,1,2k — 2¢ — 1,21 + 1 — 2d,2m — 2¢] which is still non
trivial. If 26 — 2a 2> 2 and 2b — 2j — 3 = —1 then by equivalence
32 we get the knot [22 - 1,1,2k — 2¢ - 2,21+ 1 — 2d,2m — 2¢]
which is knotted even When 2k —2c—2=0. If2i —2a = 0 and
2b—2j —3 = —1 then we get the knot [2] + 1 — 2d,2m — 2¢] which

is also non trivial.

{++—-++} Assume that 2i+1-2a 2 1, 2j+1-2b 2> 1, 2k—2c¢ £ -2, 2I+1-2d >
1, and 2m — 2e 2 2. From equivalence 3 we get the knot [2: +1—
2a,25 —2b,1,2¢—2k —2,1,2] — 2d,2m — 2¢]. The last and first terms
are always positive by our hypothesis. We have three non-positive
‘possibilities to consider: 2j —2b = 0,2c—2k—2 = 0, and 2/ —2d = 0.

-Even if all three are zero, we get the knot [2i —2a + 2m — 2e + 3]
which is knotted since 2 —2a+2m —2e+3 > 1 from the hypothesis.

{+4+—+} Assume that 2i+1-2a 2 1, 2j+1-2b > 1, 2k—2¢ > 2, 20+1—2d <
—1, and 2m — 2e 2 2. From equivalence 4 we get the knot [2; + 1 —

12
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2a,2j+1-2b,2k—2¢—1,1,2d—2]—3, 1,2m—2e—1]. The first three
and the last terms are always positive by the hypothesis. The only
non-positive possibility is when 2d — 2] — 3 = —1, which when true
gives us the knot [2i+1—2a,25 +1—2b,2k—2c—2, 1,2m —2e—2] by
equivalence 33. This gives us two non-positive possibilities, namely
if2k—2c—2=0and 2m — 2¢ — 2 = 0. However, even if both
positions are zero then we still have the knot [2 + 1 — 2a). Notice
that we have made at least | + &k +m — 1 changes. So, we have at
most. 7 — [ changes left. Since, ! = 1 we know that a < i — 1. Hence
21 +1—2a > 1 and therefore is non trivial.

Assume that 20 +1—-2a 21,2/ +1-2b2> 1, 2k—2¢22,214+1—
2d 2 1, and 2m — 2e < —2. From equivalence 5 we get the knot
—[20+1 - 24,25 +1 ~ 26,2k — 2¢,2] — 2d, 1,2¢ — 2m — 1]. The first
three and the last terms are positive by our hypothesis. The only
non-positive possibility is if 21 — 2d = 0. Even if 2 — 2d = 0 we get
the knot —[2i +1 —2a,2j + 1 — 25,2k — 2c + 1,2 — 2m — 1] which
is also non trivial.

Part I1. Two Positions are changed to negative.

{'—7 ) +7 +, +}

{—'+ —++}

Assume that 20 +1—-2a £ -1,27 +1-26 < -1, 2k —2c 22,21+
1—2d 21, and 2m — 2¢ Z 2. From equivalence 6 we get the knot
[2a—2i—1,26—2 —2,1,2k — 2c — 1,214+1—2d,2m — 2¢]. The last
three and the first positions are positive by our hypothesis. The only
non-positive possibility is if 26 — 2§ — 2 = 0. When 2b — 27—-2=0
we get the knot [2a = 27,2k — 2¢ — 1,214+ 1 — 2d,2m — 2e] which is
non trivial. '

Assume that 20 +1-2a £ —1,2/ +1-2b> 1, 2k —2¢ < -2, 21+
1—-2d 2 1, and 2m — 2e 2 2. From equivalence 7 we get the knot
[2a —2i —2,1,2j — 25— 1,1,2¢ — 2k — 2,1,2] — 2d, 2m — 2e]. The
last position is the only one which is always positive. The other four
positions can be non-positive when 2qg — 2; — 2 = 0,27 —26-1=
—1,2¢ -2k -2 =0, or 2l — 2d = 0. Notice we have made at least
i+ k+2 changes, so we have at most m —3 changes left. So we know
that 2m — 2e > 5.

First, assume that 2j —2b—1 £ —1, then it is easy to see that if the
other positions are zero we will still minimally have the non trivial
knot [2j —2b—1,2m —2e+-2]. Otherwise, if 29 —2b—1 = —1 then we
need to consider combinations of when 2a—2i—2 = 0,2¢—2k—2=0,
and 2/ — 2d — 2 = 0.

If 2a—27—2 = 0 then we get [1,2]—2d, 2m — 2¢] which is knotted.
Then even when 2¢c — 2k — 2 = 0 or 2] — 2d = 0 or both we get the
knot [2m — 2e + 1] which will also be knotted since 2m-2e-+1 . 6.

13
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If 2c—2k —2 =0 and 2/ — 2d > 0 then we get the knot [2a — 2: —
4,1,21 —2d — 1,2m — 2¢| which is non trivial even if 2a — 2; — 4 = 0.
Notice that we can assume 2a — 2 — 2 > 0 since it was covered in
the previous case. Then if 2¢ — 2k —2 = 0 and 2/ — 2d = 0 we get
the knot [2m —2e+ 27 —2a+3] Notice that b+c+d2j+k+1=1
which then implies that a +e S i +m —1—k. Therefore we know
that 2m —2e + 2 — 2a+ 3 > 1.

If21-2d=0,2a—2{—2 >0, and 2c — 2k — 2 > 0 we get the
knot [2a — 27 — 3,1, 2c——2k——1 2m — 2e — 1] which is non trivial.

Assume 21 +1—-2a £ -1,2/+1—-2021,2k—2c 2 2,21+ 1 —
2d £ —1, and 2m — 2e 2 2. From equivalence 8 we get the knot
[2a — 2 —2,1,25 — 2b,2k — 2¢ — 1,1,2d — 2] — 3,1,2m — 2e — 1].
The non positive possibilities are if 2a — 2i — 2 = 0,2j — 2b = 0, or
2d -2l -3 = —1. Notice that we have made at least 1+2+1 changes.
We have at most k+m-I-3 changes left.

If only 2a—2:—2 = 0 then the equivalent knot is [2j —2b,2k —2c—
1,1,2d—21-3,1,2m — 2e — 1] which is non trivial. If 2j —2b = 0 and
2d—21—3 > —1 then our knot becomes [1,2d—2[—3,1,2m —2e —1]
which is still knotted. If 2d — 2] — 3 = —1 then our knot becomes
[2m — 2e — 1]. We know that 2m — 2e — 1 > 1 since we have made at
least i + j + I changes and have k+m—l J —1 or less than m — 2

. changes left.

If 2j — 2b = 0 and 2d — 21 — 3 > —1 then our knot becomes
[2a — 2t — 2,2k — 2¢,1,2d — 21 — 3,1,2m — 2e — 1] which is knotted.
Then if 2d — 2] — 3 = —1 we will get the knot [2a — 27 — 2,2k — 2¢ —
1,2m — 2e — 2]. We can assume that 2a — 2¢ — 2 > 0 since convered
in previous case and 2m — 2e — 2 > 1 since we have made at least
¢+ j + [ changes and have at most m — [ — 1 changes left.

If only 2d — 21 — 3 = —1 then we get the knot [2a — 27 —2,1,2j5 —
2b,2k — 2¢ — 2,2m — 2e — 2]. We can assume that 25 — 2b > 0 and
that 2a — 22 — 2 > 0 since covered in two immediate previous cases.
Even if 2k —2¢ — 2 = 0 or 2m — 2e — 2 = 0 or both we notice that
we at least get the knot [2a — 2i — 2] which is non trivial.

Assume 2i+1-2a = -1, 2j4+1-2b2 1, 2k—2¢ 2 2, 214+1-2d 2 1,
and 2m — 2e £ —2. From equivalence 9 we get the knot —[2a — 2i —
2,1,25 — 2b,2k — 2¢, 2l — 2d,1,2e — 2m — 1]. The only non-positive

‘possibilities for the positions are if 2a — 21 — 2 = 0, 25 — 2b = 0,

or if 2] — 2d = 0. Even when all three are zero we get the knot
—[2e — 2m — 1] which is still knotted.

Assume 2 +1-2221,2j+1—-20 X -1,2k—2c £ —2,2[+1 —
2d 2 1, and 2m — 2e 2 2. From equivalence 10 we get the knot

14
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[2i —2a,1,2b— 25 — 2,2c— 2k — 1,1, 2] — 2d, 2m — 2¢]. The only non-
positive possibilities are if 2 —2a = 0, 26—2j —2,.= 0, or 2]—2d = 0.
Even when all three of these positions are zero we still get the knot
[2m — 2e 4 1] where 2m — 2e 4+ 1 2 3 and therefore knotted.

Assume 20 +1—-2a 21,2/ +1 -2 X -1,2k—2c 22,21+ 1 -
2d £ -1, and 2m — 2e 2 2. From equivalence 11 we get the knot
[2¢—2a,1,2b—25-3,1,2k—2c—2,1,2d— 2] —-3,1,2m —2e—1]. The
last position is always positive. The non-positive possibilities are if
20—2a=0,20-2j—3=-1,2k—2¢—2=0, or 2d—2{ -3 = —1.
We need to consider all of these combinations. Notice that we don’t
need to consider when 2i—2a = 0 and 2k —2c = 0 are zero separately,
but can assume that they are both zero or both greater then zero.

If 2i—2a = 0, 2k—2¢~2 =0, 2b—2j—3 > —1, and 2d—21—3 > —1
then we get the knot [26—2j —3,2,2d—21—3,1,2m —2e—1]. Now if
2b—2j—3 = —1 then the resulting knot is [1,2d—21—3, 1, 2m—2e—1].
If only 2d — 21— 3 = —1 then our knot is [20—2j —4,1,2m — 2e — 3].
Notice we have made at least 2 + k£ + j + 1 + 3, and we have at most
m — j — 1 — 4 changes left. So, we will always have a knot since
2m—2e—3 > 1. And, if both 26—2j -3 = —1 and 2d — 2/ —3 = —1
then our knot becomes [2m — 2¢ — 1] which will also be knotted since

2m—2e—-1>1.

We now assume that both 2 —2a > 0 and 2k — 2¢c — 2 > 0. If
2b—2j — 3 = —1 then our resulting knot is [2 — 2a — 1,1, 2k — 2¢ —
3,1,2d—21-3,1,2m—2e—1] which is all positive. If only 2d—2]—3 =
—1 then we get the knot [2i—2a—1,1,2k—2c—4,1,2m—2e—2] which
will be knotted since we do not have enough crossing changes left to
make 2m —2e—2 =0. If both 26—2j —~3 =—1 and 2d—2[—3 = -1
then the knot becomes [2i — 2a — 1,1,2k — 2c — 4,1,2m — 2¢ — 2].
which will be knotted since 2m — 2e — 2 > 0. :

Assume 20 +1-22 21,2/ +1—-20 X —1,2k—2c 22, 2] +1 —
2d 2 1, and 2m — 2e £ —2. From equivalence 12 we get the knot
—[2¢—2a,1,26—25-3,1,2k—2¢c—1,2]—2d,1,2e—2m—1]. The only
non-positive terms are if 2b — 27 — 3 = —1 or 2/ — 2d = 0. Note that
2t—2a>0sincea £i—3. If2l —2d = 0and 26— 2j —3 > —1 then

- we still have a non trivial knot. If 25— 2)—83=-1and 2l—-2d =0

then our knot becomes —[2i — 2a — 1,1,2k — 2¢ — 1,2¢ — 2m — 1]
which is also knotted.

" Assume 20 4+1-2221,2/+1—-2021,2k—2c < =2 21+ 1—

2d = —1, and 2m — 2¢ 2 2. From equivalence 13 we get the knot
[2i+1~2a,25 —2b,1,2¢—2k—1,2d—2]~2,1,2m —2e—1]. The only
possible non positive positions are when 25 —2b = 0 or 2d—2[—2 = 0.
Even when both are zero we still get [2¢+2—2a, 2c— 2k, 2m — 2e — 1]

15
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which is knotted.

Assume 20 +1-2a 2 1,2/ +1—2b 2 1,2k -2 < -2, 21+ 1 —

2d 2 1, and 2m — 2e < —2. From equivalence 14 we get the knot
—[2¢4+1—2a,2j —2b,1,2c— 2k —2,1,2] —2d — 1, 1,2e—2m—1]. The
only possible non-positive terms are if 2j —2b = 0,2c—2k—2 = 0, or
2l-2d—1= —1. If 21—-2d—1 > —1 then we will still have a non trivial
knot even when 2j —2b=0and 2c—2k—2=0. f21 —2d—1 = -1 °
then we get the knot —[2i+1—2a,2j—2b,1,2¢—2k—3, 1, 2e—2m—2]
which is knotted when 2j—2b > 0 adn 2¢—2k > 0. If both 2j—2b = 0
and 2c — 2k — 2 = 0 then we get the knot —[2e — 2m — 2i 4 24 — 3].
We have already made at least [+j+k+m+2 changes. So we know
that a+e <= m+1— 3. This implies that 2¢ —2m — 2 +2a—3 > 1
and so we still have a non trivial knot.

From equivalence 15 we get the knot —[27 + 1 —2a,2j + 1 - 20,2k —

2¢-1;1,2d — 21 — 2,2e — 2m]. Only one term can be non-positive,
namely 2d — 2/ — 2 = 0. When 2d — 2] — 2 = 0 we still have the
knot —[2i +1—2a,25 +1—2b,2k —2c—1,2¢ — 2m + 1] which is still
knotted. ' :

Part III. Three positions are negative.

{_’ — =t +}
f——+-+)
{~=++-}

From equivalence 16 we get the knot [2a — 2 — 1,2b — 25 —1,2¢—
2k —1,1,2l — 2d,2m — 2¢]. The only possible non-positive term is
when 2/ — 2d = 0 which will result in the non trivial knot [2a — 2i —
1,26 - 25 — 1,2¢ - 2k — 1,2m — 2¢ + 1].

 Assume 2i+1-2a S —1,2j+1-2b< -1, 2k—2¢ 2 2,2[+1-2d <

—1, and 2m—2e 2 2. From equivalence 17 we get the knot [2a— 2i —
1,20—25-2,1,2k—2c—2,1,2d—21-3,1,2m—2e—1] The possible non
positive terms are if 20—2j—2 = 0, 2k—2¢—2 = 0, or 2d—2/—3 = —1.
If 2d—21—-3 > —1 and the other two positions are zero it is easily seen
that we still have a knot by our zero reduction. So, if 2d—2[-3 = —1
then we get the knot [2a—2i—1,2b—2j—2,1,2k—2c—3, 1, 2m—2e-2]
which is knotted if 26 — 25 — 2 > 0 and 2k — 2c — 2 > 0. But, if
20—27—2=0and 2k —2c—2 > 0 we get the knot [2a — 24,2k —
2¢—3,1,2m — 2e — 2] which is still knotted. If 2k — 2¢ — 2 > 0 then
we will get the knot [2a —2{ — 1,20 — 25 — 3,1, 2m — 2¢ — 3]. Notice
that we have made 7 + j + [ + 3 changes, so we will still be knotted
since2m — 2e — 3 > 1. Then if both 2b-2j-2 = 0 and 2k-2¢-2 = 0 we
get the knot [2m —2e—1—2a+2:]. Notice that b+c+d > j+k+1+2
which implies that a+e = i+m —3. Hence, 2m—2e+2i—2a—1 2> 5
and we have a non trivial knot. ‘

"To make these three positions negative we need at least i + J+m+3

- changes. We are only concerned with those cases where less that
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i+ k+m — 1 crossing changes are made. Since j 2 k, we can ignore

this case.

Assume 264+ 1-2a £ 1,2/ 4+1-2021,2k—2¢ X -2,21+1 —

2d £ -1, and 2m — 2e 2 2. From equivalence 19 we get the knot
[2a—21-2,1,25—-2b—1,1,2¢—2k—1,2d—2]—2,1,2m —2e~—1]. The
possible non-positive terms are when 2a—2:—2 = 0, 25 —2b—1 = —1,
or 2d—20—-2=0. If 2 —2b—1 > —1, then when either or both of
the other positions are zero we will still have a non trivial knot. If
25—2b—1=-1,2a—2:—2 > 0, and 2d—2]—2 > 0 then the resulting
non trivial knot is [2a—2{—3,1,2¢—2k—2,2d—2[—2,1,2m—2e—1].
We will now consider the differing combinations of when 2a—2:—2 =
0 and when 2d—2{—2 = 0. If 2a —2:— 2 = 0 then the resulting knot
is [2d—-21—2,1,2m — 2e— 1] which will be knotted. If 2d—2]—-2 =0
the we get the knot [2a—21—3,1,2¢—2k —1,2m — 2e — 1] which will
also be knotted. Finally, if both 26 —2i —2=0and 2d—2/—2 =0
then we get the knot [2m — 2e — 1]. Notice we have made &t least
1+'7+1+1 changes which implies that 2m —2e —1 > 1 and therefore
our knot is non trivial.

To make these three positions negative we need at least t+k+m-+3
changes. We are only concerned with those cases where less that
¢t + k +m — 1 crossing changes are made.

Assume 21 +1—-2a S -1,274+1—-2021,2k—2c 2 -2,21+1 —
2d £ -1, and 2m — 2e < 2. From equivalence 21 we get the knot
—[2a-2¢—2,1,2j —2b—2,2k —2c—1,1,2d — 2] — 2,2¢e — 2m)]. The
possible non-positive terms are if 2a —2: -2 =0, 27 —2b— 2 = 0,
and 2d — 2/ — 2 = 0. Even with all of these equal to zero, we still get
the knot —[2e — 2m + 1] which is knotted since 2e — 2m +1 > 1.

Assume 2i +1—-2a 2 —-1,27+1—-20£ 1,2k ~-2¢ £ -2, 21 +1 —
2d £ -1, and 2m — 2e 2 2. From equivalence 22 we get the knot
[2¢ — 2a,1,2b — 2 — 2,2¢ — 2k,2d — 2] — 2,1,2m — 2e — 1]. The
possible non-positive terms are if 2t —2a = 0,20—25 -2 =0, or
2d—21—-2 = 0. Notice that if any one or two of the positions are non-
negative then we most certainly have a non trivial knot. If we make

" all three of these positions zero then we get the knot [2m — 2e — 1].

Notice that at least ¢ + 7 + !+ 1 changes have been made, leaving at
most m — 3 changes. This implies that 2m — 2e — 1 > 1 and hence

we have a non trivial knot.

Assume 21 +1—-2a 21,27 +1—-20 S -1,2k—2c £ 2,21 +1 —
2d 2 1, and 2m — 2e £ —2. From equivalence 23 we get the knot
~[2¢ — 2a,1,2b — 25 — 2,2¢ — 2k — 1,1,2] — 2d — 1,1,2e — 2m — 1].
The non-positive terms are if 26 — 27 —2=0or 2/ -2d -1 = —1.
Note that 2: — 2¢ > 0 since we have alread made j + k +m + 3
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crossing changes which implies a < i —4. If 21 —2d — 1 # —1 and
2b—2j —2 = 0, we still we get a non trivial knot. If 21 —2d—1= —1
then we get the knot —[2i—2a,1,2b—2j—2,2¢—2k—2,1,2e—2m—2]

_ which is knotted if 20 — 25 — 2 # 0. If 26 — 25 — 2 = 0 then we get

the knot —[2¢ — 2a,2¢— 2k —1,1, 2e — 2m — 2] which will be knotted.
Assume that 2i+1—2a 2 1, 2j+1—2b < —1, 2k—2¢ > 2, 2l+1-2d <

=1, and 2m — 2¢e £ —2. From equivalence 24 we get the knot

—[26—2a,1,26—25—3,1,2k~2c~2,1,2d—2]—2, 2¢— 2m]. The non-
positive terms are if 26—25—3 = —1, 2k—2¢~2 = 0, or 2d—21—2 = 0.
Note that we have already made at least j +!+m+ 3 changes which
implies that 2 —2a > 0. If 26— 25 — 3 # —1 then we will still have a
knot even when the other two position are zero. If 26— 2§ — 3 = —1,
then we get the knot —[2i—2a—1,1,2k—2c—3,1,2d—2]—2, 2e—2m)]
which is knotted if 2k —2¢—2 # 0 and 2d — 2] —2 # 0. Now we need
to consider combinations of 2k—2¢—2 = 0 and 2d—2/—2 = 0. If only
2k —2c = 0 then we get the knot —[2i —2a—2,1,2d — 2] — 3, 2e — 2m)]
which is non trivial. If 2d — 2] — 2 =0 then our equivalent knot is
—{2¢ —2a — 1,1,2k — 2¢ — 3,2e — 2m + 1] which is knotted. If both
2k—2c = 0 and 2d—2[ = 0 then we get the knot [2m—2e+2i—2a+1].
Notice that b+c+d 2 j+k+1+1 will imply that a+e < i +m —4.
And therefore 2m — 2¢ + 2; — 2a + 1 > 1 and non trivial.

From equivalence 25 we get the knot —[2i+1—2a,2j —2b,1,2¢c—2k —
1,2d — 21 —1,2¢ — 2m]. The only non-positive term is if 2j —2b =0
which gives us the knot —[2/+2—2a,2c—2k—1,2d —2]—1,2¢ — 2m)]
which is knotted.

From equivalence 26 we get the knot [2a — 2; —1,2b — 2§ — 1,2¢ —
2k,2d — 21 — 2,1,2m — 2e — 1]. The only possible non-positive term
is when 2d — 2] — 2 = 0 which gives us the knot [2a — 27 — 1,2b —
2j —1,2¢ — 2k + 1,2m — 2e — 1] which is knotted.

To make these four positions negative we need at least i+k+I[+m+4
changes. But, we are only concerned with those cases where less then
i+ k +m — 1 crossing changes are made.

To make these four positions negative we need at least i+j +I[+m-+4
changes. But, we are only concerned with those cases where less then
¢ +k +m — 1 crossing changes are made.

To make these four positions negative we need at least i+j +k+m+4 _
changes. But, we are only concerned with those cases where less then
¢+ k 4+ m — 1 crossing changes are made.

From equivalence 30 we have the knot —[2i — 2a,1,2b — 25 — 2,2¢ —
2k,2d—21—1,2e—2m)]. The two non-positive terms are if 2; —2a = 0
and if 2b—2j — 2 = 0 which gives us the knot —[2d — 2] — 1, 2¢ — 2m)|
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which is knotted.

.We have just show that the knot [2 + 1,25 + 1,2k, 2] + 1, 2m)] will not be unknotted in
fewer than ¢ + k£ 4+ m changes. Hence, [2 + 1,25 +1 2k 21+ 1,2m] with j 2 k,12 1 has

Unin(k) =i+ k +m.

PRIME KNOT WITH ARBITRARY GAP

From the previous section we have that the unknotting number of the Conway knot
K = [2i + 1,25 + 1,2k,21 + 1,2m] with the restrictions 7, > 1 and j 2 kisi+ k+m.
We also that all ratlonal knots are prime [L]. Now all we need is a projection of X which -
has a smaller unknotting number. This can be achieved by looking at the even-continued
fract1on of this knot. The even continued fraction expansion of K is:

k—1 times
——
[204+1,25 +1,2k,204 1,2m] = [26 + 1,25 + 2,-2, 2,-2 |21+ 2,2m]

Notice that the even continued fraction begms with an odd term. This is true for all
knots (as opposed to links or knot- -primes) since no sequence of evens in the form of a
continued fraction can generate a rational of the form odd/odd and continued fraction of
all knots are of this form. Thus the even continued fraction of a knot must contain at least
one odd term!. As an example of the above equivalence consider the following equlva.lent

knots:

C[1,11,14,3,14] =[7,12,-2,2,-2,2,-2,2,-2,2,-2,2, -2,2, -2, 2, —2, 4,14]

Now if we insist that & = m we see that the non-minimal projection can be unknotted
by making the changes:

k—1 times

~~
{2,0,0, 1,0 ,I+1,0}
Then we get the following knot and its reductions:

k—1 times
=1[1,12,-2, 0,2 ,0,2k]
=[1,12, -2k, 0, 2]
=[1,12, 2k — 2k]
=[1,12,0]
= [1]

1t is interesting to note that the infinite continued fraction [2,~2,2...] is exactly equal to one. Thus,
knots can be written as an infinite even continued fraction since the last term in the expansion, which is

exactly odd, differs from an even by one.
19
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And the knot is unknotted in i +k— 14+ 1+1=i+k+1 changes. At this point we can
choose the parameters k& and ! to create a gap of arbitrary size. For example, if we pick
! £ k and remember that k = m then we get a gap: .

Gap(K)2i+2k—i—k—I=k—1 and 1515k
Thus we have a prime knot with the property that

Gap(K) 2 k-1

This is significant because there are no restrictions between k and [, thus the Gap is
completely arbitrary. It was known previously that a knot with arbitrary gap could be
constructed by forming the connected sum of an arbitrary number of knots with Gap= 1.
However, this type of construction does not yield a prime knot. The above family of knots
is prime [L].

For our example knot, K = [7,11,14, 3, l4] wehave Gap =k —[=7—-1=6.

KNOTS OF THE FORM [2j + 1,2k + 1,2/,2m,2n] WITH j 2 I 2 k 2> m > n.

1,21,2m,2n] cannot be unknotted in fewer then itk+n+1 crossing changes in its
minimal projection. For this knot we need to assume that J212kZ2m2n We wil
make the change {p, g, r,s,t} where any of the p,q,r,s,¢ can be greater then or equal to
zero. The resulting knot is [2j + 1~ 2p,2k 4+ 1 — 2¢,2] — 2r,2m — 2s,2n — 2t]. '
Observe that if any of the last three positions are changed to zero then our knot reduces
to a three tangle Conway knot. If we make n changes to the 5th position then the knot
reduces to [2j + 1,2k + 1,2]] which will take j + & + 1 changes to unknot [W]. If we make
m changes to the 4th position then the resulting knot is [25 4+ 1,2k + 1, 2] + 2n] which will
take j +k + 1 change to unknot [W]. And finally if we make 1 changes on the 3rd position
then the knot reduces to [2j + 1,2k + 1+ 2m, 2n] which will take j + n changes to unknot
[W]. So we can assume throughout our proof that 2/ — 2r, 2m — 2s, and 2n — 2t are all non

Using the method outlined in the previous section we will prove that ,[2j’+ 1,2k +

Z€TO.

Part I. One Position is Negative.

{—-++++} Assume that 25 +1 — 2p < 0 and the rest of our terms are positive.
Then our resulting knot is [2p—2j —2,1, 2k—2g,21—2r 2m—2s,2n—
2t] by equivalence 1 and is non trivial even if 2p—25—2=0 and

2k —2¢ = 0. '
{+—-+++} Assume that 2k + 1 — 2¢ < 0 and the other four terms are positive.
For simplicity we will consider when 2k + 1 — 2¢g = —1 and when

2k +1-2¢ < —=1. I 2k+1—2¢ = —1 then our knot becomes
[2j —2p— 1,1,2l-2r —2,2m — 25,2n — 2¢]. f 2§ —2p—1 = —1 then
we get the knot [2m—2s, 2n—21] which is non trivial. If2j—2p—1 > 0
and 2] —2r — 2 = 0 we get [2j — 2p — 1,2m — 25 4+ 1,2n — 24] which
is also mon trivial. If 2k + 1 — 2¢ < —1 then our knot becomes
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[2—2p, 1,2¢—2k—3,1,2]—2r—1,2m—2s, 2n—2t]. The only possible

‘non positive term is if 25 — 2p = 0. But even when 25 — 2p = 0 we

still get a non trivial knot.

Assume that 2l — 2r < 0, then our knot becomes (27 +1 - 2p,2k —
2¢,1,2r — 21 — 2,1,2m — 25 — 1,2n — 2¢]. The only possible non
positive terms are if 2k — 2¢ = 0 or 2r — 2] — 2 = 0. But if either or
both are true it is easily seen that we still have a non trivial knot.

Assume that 2m — 2s < 0, then our knot becomes [2] + 1 — 2p, 2k —
2¢ + 1,21 — 2r — 1,1,25 — 2m — 2,1,2n — 2]. The only possible
non positive term is if 25 — 2m — 2 = 0, but then we have the knot
[27 +1—2p,2k — 2g + 1,21 — 2r — 1,2,2n — 2t] which is also non
trivial. '

Assume that 2n — 2t < 0, then our knot becomes —[27 + 1 — 2p, 2k —
2¢+1,21—2r —1,2m — 25 — 1,1, 2¢ — 2n — 1] which is non pos1t1ve

and hence non tnwal

Part II. Two Positions Become Negative.

{-—+++}

{—+—++}

{—-++-+}

Assume that 25 + 1 — 2p < 0 and that 2k + 1 — 2¢ is less than zero.
Also, we know that 2/ — 2r,2m — 2s,2n — 2t are all greater than
zero. Then our resulting knot from continued fraction identity 6 is
[2p —2j — 1,2¢ — 2k — 2,1,2] — 2r — 1,2m — 25,2n — 2¢]. All of the

“terms will be greater than zero with the exception of 2¢ — 2k — 2

which may equal zero. But, even if 2¢ — 2k — 2 = 0 we still have
[2p — 25,21 — 2r — 2,2m — 25,2n — 2t] which is also non trivial.

Assume that 25 + 1 — 2p < 0 and that 2/ — 2r < 0. We also know
that 2k +1 — 2¢,2m — 2s and 2n — 2¢ are all greater than zero. The
resulting knot from identity 7 is [2p — 25 — 2,1,2k —2¢ — 1,1,2r —
20— 2,1,2m — 25 — 1,2n — 2t]. The possible non positive positions
are when 2p—25 —2=0,2r -2/ —2=0o0r2k—2¢—1 = —1.

Notice that since we have already made j + [+ 2 changes that we
have k£ 4+ n — [ — 2 changes left. Thus ¢ £ k — 2. Since I 2 n this

implies that 2k — 2¢ — 1 > —1.

So if both of our positions are non negative then the knot becomes
[2k —2¢ —1,2,2m — 25 — 1,2n — 2t] which will still be non trivial.

Assume that 25 +1—2p < 0 and that 2m—2s < 0. Then we also know
that 2k + 1 — 2¢,2] — 2r, and 2n — 2t are all positive. Our resulting
knot is [2p—2j—2,1,2k—2¢,2]—2r—1,1,25—2m~2,1,2n— 2t —1].
Again the only possible non-positive terms are when 2p — 25 — 2 =
0,2k —2¢ =0, or 25 — 2m — 2 = 0. Even if all of these are zero we
still get the knot [2,2n — 2t — 1], and since 2n — 2t — 1 > 0 we know

that it is non trivial.
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Assume 25 +1—-2p < 0,2k +1—-2¢ > 0,2 —2r > 0,2m — 2s > 0,
and 2n — 2t < 0. Using equivalence 9, we get the knot —[2p — 2; —
2,1,2k —2¢,21 — 2r,2m — 2s — 1,1,2t — 2n — 1]. The only positions
that may be non positive are if 2p—2j —2 = 0 or 2k —2¢ = 0. But if
both are positive we get the knot [2m — 25 — 1,1,2¢ — 2n — 1] which
is still non trivial. - , '

Assume that 25 +1—2p > 0,2k+1-2¢ < 0,2]-2r < 0,2m—2s > 0,
and 2n — 2t > 0. Using equivalence 10 we get [2j — 2p,1,2¢ — 2k —
2,2r — 21 —1,1,2m — 2s — 1,2n — 2t]. The only non positive terms
are if 25 — 2p = 0 or 2¢g — 2k — 2 = 0. But even if they are both zero
we still have the knot [1,2m — 2s — 1,2n — 2¢t] which is still knotted.

Assume that 25 +1—2p > 0,2k+1—-2¢ < 0,2]—2r > 0,2m—2s < 0,
and 2n—2¢ > 0. Using equivalence 11 we get the knot [25 —2p, 1,2¢—
2k—-3,1,2l - 2r —2,1,2s —2m —2,1,2n — 2t — 1]. The possible non
positive terms are if 2¢—2k—3 = —1,2[—2r—2 =0, or 2s—-2m—2 =
0. Notice that we have already made at least k¥ + m + 2 changes.
We can make at most j +n —m — 2 changes. Since m = n we know
that 2j — 2p 2 5. We need to try the different combinations of when
29—2k—3 = —1,21-2r—2 =0, or 2s—2m~—2 = 0. If all three of them
are non positive then the knot becomes [2j —2p, 1, —1,3,2n — 2t —1].
Which is equivalent to [2—2j +2p, 2n —2t —1]. Now we have made at
least k+I+m+1 crossing changes. This implies that p < j—I—m—1.
So we know that 2 — 25 + 2p < 0. Hence our equivalent knot is
[27 —2p—38,1,2n — 2t — 2] which is non trivial even if 2n — 2t —2 =0
since 2j —2p—3 > 1. If 2¢—2k—3 = —1 and 2/—2r—2 = 0 then we get
the knot [2j—2p—2,1,25—2m—3,1,2n—2¢—1] which is non negative

and'then hence non trivial. f 2¢—2k -3 =—-1and 25s-2m —2=0

then we get the knot [2j —2p—1,1,2]—2r — 3,2, 2n — 2t — 1] which is
also non trivial. If either 2s —2m —2 = 0 or 2] — 27 — 2 = 0 or both
then one easily sees that we have a non trivial knot using the zero
reduction property. If 2¢g — 2k — 3 = —1 then our knot is equivalent
to [2j —2p—1,1,21 - 2r —3,1,25 — 2m — 2,1,2n — 2t — 1] which is
non negative and hence non trivial.

Assume 25 +1—-2p > 0,2k +1-2¢ < 0,21 —2r > 0,2m — 25 > 0,
and 2n — 2t < 0. Using equivalence 12 we get —[2j —2p,1,2¢ — 2k —
3,1,2l = 2r —1,2m — 2s — 1,1,2t — 2n — 1]. The only terms we need
to be careful of are 2¢g— 2k —3 = —1 and 25 —2p = 0. Notice that we
have made a least k+n+2 crossing changes, so at most we have j —2
left. So we know that 25 —2p > 0. If 2g— 2k — 3 = —1 then our knot
will become —[25 —2p—1,1,2]—2r —2,2m — 25 —1,1,2t — 2n — 1].
Now even if 21 — 2r — 2 = 0, we still will have a non trivial knot.

Assume 25 +1—-2p > 0,2k +1—2¢ > 0,2l — 2r < 0,2m — 25 < 0,
and 2n — 2t > 0. Using equivalence 13 we get [2j + 1 — 2p,2k —
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2¢,1,2r — 21— 1,25 —2m —1,1,2n — 2t — 1]. The only possible non
positive term is if 2k — 2¢ = 0. But, even if this is true we will still
have a non trivial knot.

Assume 25 +1—2p > 0,2k +1—2¢ > 0,2l — 2r < 0,2m — 25 > 0,
and 2n — 2t < 0. Using equivalence 14 we get —[27 +1—2p,2k —
2¢,1,2r—21—2,1,2m —2s—2, 1,2t —2n — 1]. The only possible non
positive terms are if 2k—2q = 0, 27'—21—2 =0, and 2m—-2s—-2 = 0.
But, even if all are zero we still get —[2j +4 — 2p, 2t — 2n — 1] which
is non trivial.

Assume 2j +1—2p > 0,2k +1—2¢ > 0,2l — 2r > 0,2m — 25 < 0,

and 2n — 2t < 0. Using equivalence 15 we get the knot —-27+1-
2p,2k+1—2¢,2]1—2r—1,1,2s—2m—1, 2t —2n] which 1sallnegat1ve

and therefore non tr1V1al

Part III. Three positions are negative.

(- —+4)
(—=+=+}
{—%++—}
S
{—+—+-)
{~++--)
T

To make the first three positions negative we need to make at least
J+k+1+ 3 changes. But we are only allowed j + k + n changes and
sincel 2 n we are unable to make then j + k + [+ 3 changes.

To make the 1st, 2nd and 4th positions negative we need to make
J + k4 m 4+ 3 changes. But again we are only allowed j + &k + n.
Since m 2 n we are unable to make these positions negative.

To make these positions negative we need to make j + &+ n + 3
changes, but we are allowed to make j + k£ + n changes. So, we
cannot make these positions negative.

To make these positions negative we need to make j +14+ m + 3
changes, but we are allowed only j + k + n changes. Since m = n we
are unable to make these positions negative.

To make these positions negative we need to make j + 1+ n + 3
changes, but we are only allowed j + k + n changes. Since [ 2> k, we
cannot make these three positions negative.

Assume that 25 +1—-2p < 0,2k+1—-2g > 0,2]—2r > 0,2m—2s < 0,
and 2n—2t¢ < 0. Then our resulting knot by 21 is —[2p—2j—2,1,2k—
2¢,21—2r—1,1,2s—2m—1,2t — 2n]. The only possible non negative
terms are if 2p — 25 — 2 = 0 or if 2k — 2¢ = 0. But, even if they are
both zero we still have —[1,2s—2m — 1, 2t — 2n] which is non-trivial.

Assume that 27 +1—-2p > 0,2k+1—-2¢ < 0,2]—2r < 0,2m—2s < 0,
and 2n — 2¢ > 0. Then our resulting knot by 22 is [25 — 2p,1,2¢g —
2k—2,2r—21,2s—2m—1,1,2n —2t]. The only possible non positive
terms are if 25 — 2p = 0 and if 2¢ — 2k — 2 = 0. But, even if both of
these equal zero we still have the knot [2s —2m — 1,1, 2n — 2¢] which
will still be non trivial.
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{+-—-+-} Assume that 2j+1-2p > 0,2k +1—2¢ < 0,2]—2r < 0,2m—2s > 0,
and 2n — 2t < 0. Then our resulting knot will be —[25 — 2p,1,2q —
2k—2,2r —21-2,1,2m — 25— 2,1,2t — 2n — 1]. Notice that we have

- already made at least k + [ + n + 3 crossing changes. We have at
most j — I —3 left to make. The only possible non-positive terms are
2q—2k-2=0,2-2p=0,2r—2[ -2 =0, and 2m — 25 — 2 = 0.
If all of them are zero then we get the knot —[2,2t — 2n — 1] which
is still knotted since 2¢ — 2n.2> 2.

{+-+--} Assume that 25 +1-2p > 0,2k+1—-2¢ < 0,21—2r > 0,2m—2s < 0,
and 2n — 2t < 0. Then our resulting knot is —[2j — 2p, 1,2¢ — 2k —
3,1,2l — 2r — 2,1,2s — 2m — 1,2t — 2n]. Since we have made at
least k + m + n + 3 changes we have at most j — m — 3 changes
left to make. So we know that 2j — 2p > 7. The terms that may
be non positive are if 2¢ ~ 2k —3 = -1 and if 20 —2r — 2 = 0. If
29 —2k—3 = —1and 2] — 2r —2 = 0 then our resulting knot is
—[2j —2p—2,1,2s — 2m — 2,2t — 2n]. From above we know that
27 —2p—2> 0, so even if 25 — 2m — 2 = 0 we still have a non trivial
knot.

{++—-—--} Assume that 2j +1—2p > 0,2k +1—2¢ > 0,2l - 2r < 0,2m —2s <
- 0,and 2n — 2¢ < 0. Then our resulting knot is —[2j + 1 — 2p, 2k —

2¢,1,2r —21—-1,2s — 2m, 2t — 2n]. The only term which can be non

negative is when 2k —2¢ = 0. But, even if 2k —2¢ = 0 we still get the

knot —[2j +2—2p,2r — 21— 1,25 — 2m, 2t — 2n] which is non-trivial.

Part IV. Four positions are changed to negative

K£25+1-2p < 0thenp 2 j+1. Then we need g+r+s+t < k+n—1. Even if we choose
the next largest position to recieve zero changes (r = 0), we still have g+ s+¢ < k+n—1
where we need ¢ + s +¢ = k + m + n + 3. Hence, we have reached a contradiction. So, we
cannot make the first position negative and still have four negative positions. So the only
case we need consider is when we make the last four cases negative. For simplicity we will
assume we have the knot [a, —b, —c, —d, —e] where a,b,¢,d and e can be any value. The
equivalent knot will be —[a — 1,1,b—1,¢,d,¢]. If a and b are greater then 1 then we are
done. If a =1 and b > 1 then we get —[b— 1, ¢c,d, €] which is still knotted. If @ > 1 and
b =1 then we get —[a — 1,c¢ + 1,d, €] which is also knotted. If @ = 1 and & = 1 then we
will get —[d, e] which is also knotted. '

It has just been show that the knot [2j + 1,2k + 1,2/,2m,2n] with j 2 I 2 k> m 2 n
cannot be unknotted in fewer than j + k +n 4 1 changes. Since its minimal projection can
be unknotted in j 4+ £+ n + 1 changes we know that Unin(k)=j+k+n+1.

PriME KNOT WITH GAP ONE

Previously we have proved that the knot [2j + 1,2k 4+ 1,21,2m,2n] with j =1 2 k >
I 2m 2 n has Unin(k) = j+ k+n+ 1. We now describe a projection of this knot
where U(k) = j + k 4 n. This implies that the knot [2j + 1,2k + 1,21, 2m, 2n] will have
Gap(k) 2 1.
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The projection of £ that we looked at is its even continued fraction expansion:

k—lA times

—
27 +1,2k+1,2l,2m,2n] = 2,-2 ,2k+ 2,2l,2m,2n)]

We know that these knots are equivalent by looking at their continued fractions. To see
k-1t A ,
that [ 2,—-2 ,2k +2,2[,2m, 2n] can be unknotted j + k + n changes consider making j-1
changes on the set of negative and positive 2's, k + 1 changes on 2k + 2, and n changes on
j—1-1 times ! times
» —~— o~
the last position. The resulting knot is [ 0,—2 ,2,-2,0,-2,0,2[,2m,0]. After using
our zero reduction property the trivial knot will result. Therefore, we are able to unknot
the [27 + 1,2k + 1,2,2m, 2n] knot in non minimal projection in less then j + k+n + 1
crossing changes producing a Gap = 1.
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CONCLUSION .

We have shown that for several families of knots the unknotting number of the actual
knot will be lower then the unknotting number for its minimal projection. Although we
did not directly find the exact unknotting number for these knots, we were able to give a
upper bound on the unknotting number. Current results and previous ones by Murasugi
try to find a lower bound on the unknotting number [M]. They seem to indicate that one
may be able to compute the lower bound exactly and therefore get the exact Gap for the
knot. Further research into these areas should provide the exact gaps for all Conway knots.
The one missing piece is to develop an easy way to unknot the minimal projection of any
Conway knot. We conjecture that to unknot a minimal projection of a Conway knot with
arbitrarily large tangles, the only crossing changes that need to be checked are if a position
is changed to -1, 1, or 0. We also conjecture that the Murasugi lower bound specifies the
positions that must be unwound to unknot the minimal projection.
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CONTINUED FRACTION IDENTITIES FOR 5-COMPONENT CONWAY KNOTS

In the following tables, the variables a,b,c,d,e are considered to be positive integers
> 0. These identities can all be proved using the continued fraction relationship of Conway

Knots.

l.[-a,b,c,d,e]=[a—1,1,b—1,¢,d,¢€]

2.Ja,—b,c,d,e] = [a l,l,b 2,1,c—1,d,€]

3.[a,b,—c,d,e]=[a,b—1,1,¢—2,1,d—1,¢]
4.[a, b,c,—d,e]z[a,b,c—l,l,d—2,1,,e—1]

—la,b,e,d—1,1,e — 1]

5.[a,b,¢c,d, —e

6.[—a,—b,c,d,e] =[a,b—1,1,c—1,d, €]

7.[ab —c,dye] =la—1,1,b—2,1,c—2,1,d — 1, €]

8.[—a,b,c,—d,e]J=[a—1,1,b—1,e—1,1,d—2,1,e — 1}

9[——a,b,c,d,—e]E —la—1,1,b—1,¢,d - 1,1,e — 1]

10.[a,—b,—c,d,e] =[a—1,1,b—1,c—1,1,d —1,€]

11l.[a —bc—d,]E[a—llb——21c—2 1,d—2,1,e — 1]
]z —[a—1,1,6-2,1,c—1,d—1,1,e — 1]

—'_:[ 11c—1,d—1,1,é——1]

-1,1,¢e—2,1,d—2,1,e — 1]

[ abc 1,1,d—1,¢]

16.[— [a,b,c —1,1,d —1,¢]

17.[— ]Ehb—llc—2Ld—ZLe—H

[a, bcd —e]=—[a,b—1,1,¢—1,d—1,1,e—1]

19.[-a

20.[-a

21L.[-

-——||—-\

—d,e]=[a—1,1,6—2,1,e—1,d—1,1,e — 1]
—e]=—[a—1,1,—2,1,¢—2,1,d—2,1,e — 1]

7 ’

7 7 7

7

a,b,c, d, —e]=~-[a—-1,1,b—1,e~1,1,d—1,€]
22.[a,—b, —c, d,e]E[a——l,l,b——l,c,d—l,l,e-—l]
23.[a, b, cd—e]——[a—-llb—- c—1,1,d-2,1,e—1]
24.[a, — —e]l=—-[a—1,1,—2,1,¢—2,1,d —1,¢]
[a,b, —~e]E —la,b6—-1,1,c—1,d,€]
26.[—a,—b,—c,—d,e] = [a,b,c,d—1,1,e — 1]

27.[-a,— ,d,—e] = —[a,b,e—1,1,d—2,1,e—1]

28.[— a, d,—e]E—[a,b—-l,l,c—Q,l,d—l,e]

29.[—a —e]=—[a—-1,1,—2,1,¢—1,d, €]
,—d, —¢]

—|
_la=1,1,b—1,¢,d,¢]

I

[a7
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31.[-1,b,¢c,d,e] = [b—1,¢,d, €]

32.[a,

—1,¢c,d,e] =[a—2,1,¢—2,d,€]

33.[a,b,—1,d,€] = [a,b—2,1,d — 2,¢€]
34.[a,b,c,—1,€] = [a,b,c — 2,1,e — 2]
35.[a, b,¢,d, —1] = [a, b,¢,d — 1]
36.[-1,1,c,d,¢e] = [d, €]

37.[-1,-1,¢,d,e] = [2,c— 1,d, €]
38.[a,1,-1,d,e]=[d—a—1,¢]
39.[a,~1,1,d,e]=[d+1—a,c¢]
40[a 1,-1,d,e]=[a-1,1,1,d—1,¢]
41.[a, b, 116]5[ ,e+1—1b
42.[a,b,1,~1,e]=[a—1,1,e—b—2]
43.[ay, .. ,an,l,—l,l,an_l_l,...,am]=[al,...,an—l,l,an_,_l-—1,...,am]

[C]
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