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1. INTRODUCTION

We will be investigating closed loops with two self-intersections on the punctured torus.
Our goal in this paper is to classify these loops, and then to determine which correspond
to classes of hyperbolic geodesics. Some of the techniques we will use are adapted from
those laid out by David Crisp in his Ph.D. thesis. The following survey of background
material includes an abbreviated version of some relevant material from the introduction
to [C]. - :
~ In order to examine the punctured torus, we must review some hyperbolic geometry.
The upper half plane model of the hyperbolic plane, H, is defined on the set {z+iy : y > 0}.
In the hyperbolic plane, geodesics are represented by semi-circles centered on the real axis
and by infinite vertical lines. Note that the choice of a pair of points on the real axis
uniquely determines a geodesic on H up to orientation. We call these points the feet of a

geodesic.
We will be using the group

'..S'L(2,Z)= {(z z) 1a,b,c,d € Z, ad—bc=1}

to act upon H through the homomorphism defined by

a b az+b
T_(c d) — Tz_c{z—l—d'

This group of fractional linear transformations is T = PSL(2,Z). We will denote both a
matrix in SL(2,Z) and a transformation in PSL(2,Z) by the same symbol. Let I be the
commutator subgroup of I'. I" is a free group on the two generators

1 1 1 -1
A_(l 2) and B-(_l 2).

We lose no generality looking at the matrix représenta.tions because I is isomorphic to
the commutator subgroup of SL(2, Z).

Research conducted during the Summer 1994 NSF REU Program at Oregon State University. Thanks
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The axis of a word W € I" is the unique geodesic 4 in H which is fixed by W. W trans-
lates 7 along itself by a fixed hyperbolic distance. We can partition 7 into a fundamental
segment of the form [29, Wzo], the directed segment from zy to Wz,. Note the axes of A
and B are drawn on Figure 1.1. We will call the point of intersection of these two axes i.

Elements in T can be either elliptic, parabolic or hyperbolic. These can be distinguished
by their trace. Let W = (Z 3) . If |a+d| = 2, W is parabolic and has only one real solution,
but the axis of W is not a vertical line. Therefore, the axis of W cannot be a geodesic.
We can show that I' has only one class of parabolic elements, the conjugacy class of
(ABA™'B~)™. If |a +d| > 2, W is hyperbolic and has two real solutions. Thus, the axis
of W is a geodesic in H. Elliptic elements have finite order, but the subgroup I" has no
elements of finite order. Thus, it has no elliptic elements and the case |a + d| < 2 does not

occur.

-———— ——_———
-

FIGURE 1.1. Copies of fundamental region D with the axes of 4 and B
intersecting at the point z.

Taking the quotient group H/I", we obtain a group of symmetries on the hyperbolic
plane. A fundamental region for the group H/I" is the set D such that each transformation
¢ in the group I carries D into a disjoint copy gD and likewise each point in the plane is
carried to some point in D by some element in I' [Se2]. See Figure 1.1 for an illustration
of D. On H, there exist an infinite number of copies of this fundamental region. With the
- operators A and B we can tesselate the entire upper half plane with images of D. The
operations A and B act on D by identifying opposite edges of the region. By making this
identification, we can proceed to construct a torus in the normal fashion. N ote, though,
that each corner of a copy of D and every rational real point in H is identified with infinity.
All such points are identified together in H/I", and thus the torus will contain a point at
infinity, or a “puncture.” We will denote the punctured torus H/I' as T. The tesselation
of D forms a covering space of T. We can now define a projection map

cc: H — H/T'=T,
and this map is a universal covering of T.
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We can project a geodesic ¥ on H onto a path 7 on T. Note that -y is covered by any
fundamental segment of 4. We call v together with the parameterization it inherits from
any fundamental segment of 4 with respect to W a closed geodesic on T defined by the
conjugacy class [W] € I'. _ A A .

In order to study the closed paths on T, we make use of the algebraic structure of the
path homotopy classes in T. For a general space X and a point 2o € X, a closed oriented
path in X whose initial and final point is zg is called a loop based at 9. The composition
of loops /1 and /5 is defined to be the path obtained by first following the path /; and
then I3, denoted /;/;. The path homotopy classes of loops in X with base point z¢ form a
group under composition of loops. This group is called the fundamental group of the space
X relative to the base point zy and is denoted (X,z0). Because T is path connected,
m1(T, zo) is isomorphic to (T, z) for any other z on T. Therefore, we will refer simply
to m1(T), and will use free (no fixed point) homotopy classes for much of our work. For a
more detailed introduction to the fundamental group, see [M] and [St].

Lifts are defined in [M]. For our purposes, given a curve ¢ in H, a lift of ¢ is a copy
of ¢ under some word in I". All such copies map to the same o(c) on the torus T. The
projection o and a fixed lift in H of the base point () of 7;(T) determine an isomorphism
between I and 7 (T). We denote this isomorphism by 8 and label the images of A and B

by a and b, the loops which generate m; (T). Thus,
6: T'=F(A,B) — F(a,b)=m(T),
with 8(A4) = a and é(B) = b. Just as I" is a free group on two generators, so is m (T).

2. SIMPLE LOOPS AND SINGLE SELF-INTERSECTIONS

Crisp adapts Birman and Series’s results about simple curves to the punctured torus
T, giving
Theorem 2.1 (Birman and Series). The conjugacy class of a simple loop [ on T is
either :
(a) the identity, and | bounds a disk,
(b) one of [aba~'b™] or [bab~1a™!], and | bounds a punctured disk or
(c) [w] where w is a generator of 71(T), and I does not separate T.

It is worthwhile to consider an example of one of these conjugacy classes in more detail.
In particular, we would like to examine a class that contains geodesics. We know that
the conjugacy classes [aba™'571] and [bab~'a™!] correspond to parabolic classes in T , but
generators correspond to hyperbolic classes. Therefore, consider a geodesic v in the class
[a] on T and choose a word in 6~ ([a]). We will use 4 because it is the simplest such, but
any conjugate will work. Note thut A fixes an axis 4 in H with feet p1,p2 = (—1£+/5)/2.
Since A transforms a point on th: left edge of D to a point on the bottom-right edge of D,
a fundamental segment for ¥ is its intersection with the fundamental region D. We will
call this segment S, and orient it from left to right. We know that 7 is covered by and has
the same orientation as the projection of S onto T [C].
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To completely understand the path of 4 on T, it is sufficient to examine the lifts of S
into D. However, all of S is already inside D, so there is only the identical lift to consider.
We can see the axis of 4 in the fundamental region D in Figure 1.1.. ' ‘

In his thesis, Crisp investigated the properties of geodesics with one self-intersection
and applied them towards finding isolated values in the Markoff spectrum. To classify
loops with single self-intersection, he considered the composition of two simple loops with
transverse intersection and demonstrated the following theorem. :

Theorem 2.2 (Crisp). The conjugacy class in m1(T) of a loop on T with a non-trivial
single self-intersection is either , ,

(a) [(aba=1671)?] or [(bab~1a=1)?] or , :
(b) [9(a®)] or [g(abab™1)] or [9(aaba=1b~1)] for some g € Aut 7 (T). -

Conversely, each of these conjugacy classes contains such a loop.

7 .

FIGURE 2.1. Lifts of the axis of ABAB" in the fundamental region D.

Now, let us consider an example of a geodesic with one self-intersection. Consider a
geodesic 7 in the class [w] = [abab~!]. Let

M =6"Y(w) = ABAB! — (3 3) |
and note that M fixes an axis ¥ in H with feet p;,p, = (-1£13)/6. Let S = [20, M z]
be the fundamental segment of ¥, where zg is the point of intersection between 4 and D
closest to the repulsive fixed point of 4. We know that 7 is covered by and has the same
orientation as the projection of S onto T. Thus, it is sufficient to examine the lifts 'of S
into D. In particular, we can verify the number of self-intersections of by computing the
number of self-intersections of the lifts of S into D. Lo :

Note that S intersects as many copies of D as there are letters in M. We want to map

the intersection of § with each of these squares back into Z? Thus, we apply successive
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portions of M~! to S. Because each of these lifts of S is a segment of a lift of ¥, it is
sufficient to examine the lifts of ¥ which intersect D. To compute these lifts, first compute

M~ = BA™1B~14!

and let My be the partial words formed by considering the last k generators in M ™1,
These operations transform the original feet p; and P2 into the feet of a lift of 4. Since
M oMz = 29, we will get every shift of S into D by considering ¥ and the lifts [M;p;, M;ps]
for ¢+ = 1,2,3. These lifts are illustrated in Figure 2.1. Because the intersections at
opposite edges of the region are identified, we can see that the lifts cross one time within
the fundamental region. This agrees with the fact that 7 has one self-intersection.

We can perform a similar operation with any hyperbolic word, because the axis of any
such word will always pass through D [C]. In Section 3, for example, we will use a similar
technique to show that particular conjugacy classes contain curves with a minimum of

three self-intersections. :

3. LooPs WITH TWO SELF-INTERSECTIONS

Our goal in this section is to classify geodesics on T with two self-intersections. We
considered three methods for doing so. One possible method we considered was to consider
all compositions of a simple loop and a loop with one non-trivial self-intersection. This
will yield all classes of loops with two non-trivial self-intersections. However, many of the
cases that must be considered are redundant. F urthermore, it is impossible to continue by
way of induction to classify loops with n non-trivial self-intersections, because there are at
least two classes of loops with three non-trivial self-intersections that are not generated by
any composition of a loop with two non-trivial self-intersections and a simple loop. These
classes, [g(ababT'a™1ba1671)] and [g(aaba=16"15-1)], will be discussed later.

Another possible method is an extension of Crisp’s techniques. Consider one non-trivial
intersection on a loop. The loop is the composition of two subloops at this intersection. If
the original loop has two non-trivial self-intersections, one of two cases will arise.

(i) Each subloop is in the conjugacy class of a simple loop, and the two subloops cross
non-trivially exactly once away from the chosen intersection.

(ii) One of the subloops has one non-trivial self-intersection and the other is in the
conjugacy class of a simple loop. The two subloops do not cross non-trivially away
from the chosen intersection. :

By examining all possible subcases of (i) and (ii), it should be possible to classify all
loops on T with two non-trivial self-intersections. However, it is difficult to know what
all of these subcases are. In particular, we must examine more than one representative of
each conjugacy class of loops. For example, aaba=51 is automorphic to bab~la"bab™?,
yet they yield loops in the classes [aaaba™b7!] and [abab~la~1bab™!], respectively, when
composed with the generator a. We will later show that the first class and the second
class, which is automorphic to [abab~taba=1b71], are not automorphic. '
Finally, we considered the composition of three simple loops, as justified by the following

lemma.
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Lemma. Any loop ! on T with k non-trivial self-intersections can be formed as the com-
posttion of k + 1 simple loops, which intersect at only one point. :

Proof. Consider a loop [ on T with k non-trivial self-intersections occurring at distinct
points. Because four segments converge at each intersection and each segment connects
two intersections, there are exactly 4k/2 = 2k total distinct segments connecting the self-
intersections of [. :

Now, pick some point p on T. For each self—mtersectmn of I, we can continuously deform
I'so that the intersection occurs at p, in effect collapsing a segment of I. In order to bring
all intersections to one point, we perform k — 1 collapsings, leaving 2k — (k — 1)=Fk+1
segments. [ :

This lemma shows that it is sufficient to consider the compositions of three simple
loops in order to generate all loops with two non-trivial self-intersections. We continue by

classifying these compositions.

Theorem 3.1. The conjugacy class in m1(T) of the composition of three simple loops on
T is one of

(a) [(aba=1671)*] or [(bab™ta™1)?]

(b) [g(aaba=b"1aba=1571)]

(c) [g(aaba™1b71571)]

(d) [g(aba=tbab™1)]

(&) [9(aaaba151)

(f) [g(abab~taba=1571)]

(g) [o(aaba= a=1571)]

(b) [g(abab™la"1ba"1571)]

() [o(a)] f

(§) lo(aabab™)]

(k) a simple loop ‘

(1) a loop with one non-trivial self-intersection

for some g € Aut (T).

Proof. Let | = 14 1213, Where I, I3 and I3 are simple loops on T. We can move any self-
intersections in  to the origin of I by a continuous deformation. Without loss of generahty,
we can assume that the origin of / is the base point o(¢) of m1(T). Let w, wy, wp and w;
be the homotopy classes of [, I3, Is and I3 respectively. The correspondmg free homotopy
classes are [w], [w1], [we] and [ws].

Note that [w] = [wiwows] = [wawiws] = [wgwgwl] since cychc permutations are con-
Jjugate. Therefore, we need consider at most one even and one odd permutation (we need
consider only one permutation when any two loops are homotopic).

By Theorem 2.1, each of I, I and I3 can be either the 1dent1ty, a generator or a loop

around the puncture. Thus, consider these cases:

Case 1: [w;] = [1d].
'In this case, w = [waws], the conjugacy class of e1ther a simple loop or a loop with one
non-trivial self-intersection.

Case 2: [wi], [wy), [ws] € {[ aba-lb 1, {bab“ '1]}
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We know that [aba=1671] and [bab~1a~?] are the free homotopy classes of simple loops
around the puncture, and that they have opposite orientations. There are two possibilities.
Either w; = wy = w; or two loops are homotopic and one is reversed (without loss of

generality, let w; = we = w3 ). In the first instance,
[w] = [wi] = [(aba™57*))] or [(bab~a™")%, (a)

depending on the orientation. Otherwise, [w] = [wiwows] = [w;'] = [aba~b7!] or
[bad~1a™1]. '

FIGURE 3.1. We can cut and deform T into a disk.

For the remaining cases, we make use of three methods from [C]. First, note that we can
induce an automorphism between the w; and words in a and b. Typically, we use g(a) = w;
and g(b) = wyi for j # k, but occasionally we use more complicated automorphisms in
order to simplify the word. We also simplify words via cyclic reduction, which is actually
conjugation with an appropriate word. In addition, note that every time we refer to an
automorphism g, we actually mean any automorphism g. For example, [g(a)] refers to any
generator in m1(T). We allow this abuse in order to simplify the notation. The second
method we adopt is the technique of cutting T along some loop ! whose image in m;(T)
is a generator to obtain a disk bounded by ! containing the puncture and a hole also
bounded by I. This operation is illustrated in Figure 3.1. Finally, we frequently introduce
an additional path whose image in m; (T) forms a basis with the homotopy class of the

loop bounding this disk.

Case 3: [w;] = [g(a)] and [ws], [ws] € {[aba™? b_l], [bab~ta]}.

The loop l; does not separate T, so cut T along /; to obtain a disk bounded by I
containing the puncture and a hole also bounded by /;. Define a path Iy such that w,
and wy form a basis for m1(T). If l; and I3 have opposite orientation, then wy = wy 1
and [w] = [wy] = [g(a)]. Otherwise, wy = ws and the loop lyl5 is a double loop around

35



SUSAN DZIADOSZ, THOMAS INSEL, PETER WILES

<) O

FIGURE 3.2. The torus T cut along /; in Case 3.

the puncture We see from Figure 3.2 that I3 and I3 are homotopic to either l3l4l] l4 !or
lal;17117Y, depending on their orientation. In the first case,

w] = wiwzws = [wiwiwaw w wiwaw w ] = [g(aaba™ b aba 0], (b
1 Wy 1 Wy

and in the second [w] = [wywows] = [wywawrwi wi  wawiwy 'w ] = [g(aaba=1671)].

Case 4: [w1], [wz] = [g(a)] and [ws] € {[aba=1b71],[bab " a"1]}.

@ -

FIGURE 3.3. The torus T cut along ll in the first, second and third parts of
Case 4.

Cut T along /;. Since wj is a generator, but not necessarily equal to w,, three cases
arise. ) 8
First Case: I, is a loop such that w; and w, form a basis for w1 (T). There are two pos-
sible orientations for each of I3 and I3, yielding four subcases each with two permutations.
For each, see Figure 3.3(a).

(i) Iy goes into the hole and I3 is clockwise. Note that I3 is homotopic to I35l l_
Thus, [w] = [wlwzwg] [wiwawywawy 1w2 =g (aaba=1b71)] or [w] = [w1w3w2]
= [w1w1w2w1_ fw; tws] = [g(a)].
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(i1) I goes into the hole and I3 is counterclockwise. Note that I3 isAhomotopic to
LLIZYTY. Thus, [w] = [wiwws] = [wlwgwgwlw'{lwi'l] = [g(a)] or [w] =

[wiwsws] = [wiwawiwy  wi ws] = [g(aaba=1571)]. )
iii) Iy comes out of the hole and I3 is clockwise. Note that I3 is homotopic to Iy 15117 ls.
201

Thus, [w] = [wiwaws] = [wiwawywy  wi  ws] = [g(aaba™d7 )] or
0] = [w1wsws] = [wiwiw;  wi wyws] = [g(aaba™ 57157)] (¢)

(iv) l2 comes out of the hole and l3 is counterclockwise. Note that I3 is homotopic to
I3 bl Thus, [w] = [wiwsws] = [wiwsw;  wiwswy "] = [g(a)] or

[w] = [wiwsws] =>[w1w{1w1w2w1_1w2] = [g(aba™bab™1)] ' (d)

For the remaining two cases, define a path l4, such that w; and w4 form a basis for 71 (T).
Note that I3 is homotopic to I3l4l; 11;‘1 or to Iyl ll; 1. depending on its orientation.
Second Case: [ is homotopic to I or I 1, If I, is homotopic to T 1 then [w] =
[wiywawg] = [ws], a simple loop around the puncture. Otherwise, as in Figure 3.3(b),
either '
[w] = [wiwaws] = [wiwiwywew] 'w; '] = [¢(aaaba™1b71)], (e)

or [w] = [wywews] = [wiwiwswiw, *wi'] = [g(abab~')], depending on orientation.
Third Case: 3 is a loop around the hole but not the puncture. From Figure 3.3(c), note
that I is homotopic to I4ly 14_1 or to Iyl 1 lzl. If I is homotopic lyl; l,;l, with /3 homotopic

to 111411_114_1, éither

[w] = [wiwsws] = [Wiwswiw] ' wiwswy T w ] = [g(abab™ aba~1b71)] €3]
or [w] = [wiwsws] = [wiwiwaw] 'w wgwiw] = [g(a?)]. With I3 homotopic to
LLITHTY [w] = [wiwews] = [w1w4w1w;1w4w1w;1w;1] = [g(a?)], or [w] = [wiwszws] =
[wiwswyw wT wewiwt] = [g(abab~laba"1b71)]. Otherwise, l; is homotopic to

lI7 ;. With I3 homotopic to lll4ll—ll4_1, [w] = [wywaws] = [w1w4w1_1w4_1w1w4w1“1w:{1]
= [g ((aba=1671)?)] or :

[w] = [wrwsws] = [wlwlw,;w;lw;lw,;wl"%wzl] = [g(aaba™ta"1p71)]. (g)
With /3 homotopic to l4l1l4_lll_1, [w] = [wrwaws] = [w1w4w1_1w4_1w4w1w;1wf1] = [Id] or

[w] = [wiwsws] = [w1w4w1w;1wf1w4w1_1w4—1] = [g(abab_la_lba_lb_l)]. (h)

Case 5: [w1], [ws], [ws] = [g(a)]
Five cases arise.
First Case: l; and [3 are each homotopic to l; or I !. Depending on the orientation of

the loops, [w] = [g(a)] or
[w] = [g(a®)]. o )
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@ ®) ' ©

<D 0 <D

FIGURE 3.4. The torus T cut along Iy in the second, third and fourth parts
of Case 5. _ :

Second Case: no loop is homotopic to any other loop or to its inverse, and two homotopy
classes each form a basis for 1(T) with the third class, but not with each other. Assume
that w; and ws form a basis for 71 (T) and that w, and w; form a basis for m(T). If we
fix the orientation of 1, a change in orientation of I3 is realizable by an automorphism.
Therefore, we also fix the orientation of Is. Necessarily, w; and ws are conjugate. Cut T
along l;. From Figure 3.4(a), note that I, is homotopic to I3 L7 or lsly 1 I3'. When I, is
homotopic to I3l 15, [w] = [wiwews] = [wiwaw;wy  ws] = [¢(a)] or

[w] = [wiwsws] = [wiwswswiwy?] = [g(aaba™b)]. (@)

When I3 is homotopic to i3I, [w] = [wiwaws] = [wiwswi wy ws] = [g(a)] or [w] =
[w1waws] = [wiwswswi 'w; '] = [g(aaba1571)].

Third Case: no loop is homotopic to any other loop or to its inverse, and any combination
of two loops forms a basis for 1 (T). If we assume w; and w3 form a basis for (T), l2 can
be homotopic to I3, I31;, Iy ly 1 Iy 17, or to one of their inverses. We obtain similar results
for all cases, so assume wy = wiw; or wy 'wy ', as shown in Figure 3.4(b). In the first case,
[w] = [wiwzws] = [wiwiwsws] = [g(abab™)] or [w] = [wiwsws] = [wiwswiws] = [g(a?))].
In the second, [w] = [wiwews] = [wiw; wi ws] = [bab~1a"] or [w] = [wiwswsy] =
[wiwswy 'wy ] = [1d].

For the remaining two cases, define a path I, such that w; and w4 form a basis for
Ty (T) v :

Fourth Case: l; is homotopic to [; or Ir 1 and I3 is a loop around the hole but not the
puncture. If /; is homotopic to I;! then [w] = [w;] = [g(a)]. Otherwise, cut T along [;.
Note, from Figure 3.4(c), that I3 is homotopic to lglyI;* or I,I] 1171, When /3 is homotopic
to 1411 l4_ 1, .

[w] = [wiwaws] = [w1w1w4w1w4_l] = [g(aabab_‘l)]. | G3)

Otherwise, [w] = [wiwows] = [w1wwaw] 'wi '] = [g(aaba1571)].

Fifth Case: I3 is homotopic to /; or T Tand 3 isa loop such that w; and ws form a basis
for m1(T). If I; is homotopic to /7" then [w] = [ws] = [¢(a)]. Otherwise, [w] = [wiwaws] =
[w1w1w3] = [g(a)].
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\>
= .

FIGURE 3.5. The punctured torils\ T with a loop in the free homotopy class
[aba™bab~!] can be cut along the indicated generator and deformed into this

disk.

FIGURE 3.6. The punctured torus T with a loop in the free homotopy class
[bba='b1a™!] can be cut along the indicated generator and deformed into this

disk.

Unfortunately, this technique will generate loops that are automorphic, but are not
obviously so. Consider the loop aba™bab™! in the conjugacy class [g(aba1bab™1)]. We
can cut the torus along the indicated dashed line and deform it into a disk. This is
illustrated in Figure 3.5. The loop bba~*b~'a~! in the conjugacy class [g(aaba~1b)] can
be cut and deformed into a disk as shown in Figure 3.6. We can go between the two disks
by rotating the inside edge of the first by one half twist clockwise and the outside edge
one half twist counterclockwise. Together, these are a full 360° twist, a homeomorphism
on T. We know that there is a correspondence between automorphisms on 7(T) and
homotopy classes of homeomorphisms on T [N]. Therefore, there is an automorphism gg
-on m1(T) such that go(aba™badb™') = bba=2671a~!. In fact, we can deduce the proper
automorphism, a — a™! and b — a1, from the nature of the homeomorphism. Thus,

the original free homotopy classes are automorphic. :
 This occurs because of the way we collapse segments to move all intersections to one
point. We cannot collapse segments that connect an intersection to itself. All loops with
two non-trivial self-intersections and no trivial self-intersections have four segments. In
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all but one class, two segments are non-collapsible and collapsing each of the remaining
two segments yields symmetric cases. In the above class, however, all four segments are
collapsible and there are two pairs of symmetric cases. Thus, this class appears twice, in

apparently different cases.
From Birman and Series, we know which of these composed loops are simple, and from

Crisp, we know which have one non-trivial self-intersection. We will list the conjugacy
classes of the remaining loops, without attempting to classify them at this time. [

-2

FIGURE 3.7. Lifts in H of the axis of M — ABAB-1A~1BA-15-1

Now, we will demonstrate that two of these classes contain loops with three non-trivial

self-intersections. First, consider the conjugacy class [g(abab~la~1ba=15~1 )]. Because
geodesics always realize the minimal number of self-intersections in their class, consider a

geodesic v in this class on T. Compute

_ —1g-1ps-1p-1_ (25 6
M =ABAB™"AT"BA™'B —(54 13),

and note that it fixes an axis 4 in H with feet p1,ps = (1 +v/10)/9. Let S = [z0, Mz(]
be the fundamental segment of 4, where zp is the point of intersection between ¥ and D
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FIGURE 3.8. A loop on T in the free homotopy class [abab_la“lba"lb“l] has
three non-trivial self-intersections.

closesi_i to the repulsive fixed point of 4. To find the number of self-intersections of «, it is
sufficient to compute the number of self-intersections of the lifts of S into D.
Each of these lifts is a segment of a lift of Y. To compute the lifts of 4, first compute

M~ = BAB-'ABA-'B-141,

and let M; be the partial words formed by considering the last % generators in M1,
These operations transform the original feet p1 and p; into the feet of a lift of 4. Since
MsMzy = zy, we will get every shift of S into D by considering ¥ and the lifts [M;p;, M; 2]

fore=1,2,..., 7. :
Figure 3.7 illustrates that these lifts cross three times within the fundamental region
(the intersections at opposite edges of the region are identified). Thus, v is a closed
geodesic with three non-trivial self-intersections as shown in Figure 3.8. It follows that
[9(abab™a~*ba~1571)] has three non-trivial self-intersections. for any g because automor-

phisms on 7 (T) preserve the number of intersections [C].

FIGURE 3.10. A loop on T in the free homotopy class [aa-baz_l bt 57!] has three
non-trivial self-intersections.

Now, consider a geodesic y on T in the conjugacy class [9(aaba=1b~1p71)] and compute
_ -1p-1p-1_ (—15 -8
M= AABAT BB - (_28 Iy

and note that it fixes an axis ¥ in H with feet p1,p; = +4/2/7). Let S = [20, M zo] be the
fundamental segment of 7, where zg is the point of intersection between 4 and D closest to
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FIGURE 3.9. Lifts in H of the axis of M = AABA~1B-1B-1,

the repulsive fixed point of 4. To find the number of self-intersections of 7, it is sufficient
to compute the number of self-intersections of the lifts of S into D.
Each of these lifts is a segment of a lift of 4. To compute the lifts of 7, first compute

M =BBAB™1A141

and let M} be the partial words formed by considering the last & generators in M 1.
These operations transform the original feet p; and p, into the feet of a lift of 4. Since
MeMzy = 2y, we will get every shift of S into D by considering ¥ and the lifts [M;p;, M; D2)
for : = 1,2,...,5 Figure 3.6 illustrates that these lifts cross three times within the
fundamental region. Thus, v is a closed geodesic with three non-trivial self-intersections
as shown in Figure 3.10. It follows that [g(aaba='6~15~1)] has three non-trivial self-
intersections for any g. :

We have completed the classification of the compositions of three simple loops and
identified that two conjugacy classes contain loops with three non-trivial self-intersections.
Now, we can identify which of the remaining classes contain loops with two non-trivial
self-intersections. ‘ f '
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Theorem 3.2. The conjugacy class in m(T) of a loop on T with two non-trivial self-
intersections is one of . ’ ‘

(a) [(aba™1571)?] or [(Bab~ta1)3]

(b) [g(aaba=1b " aba=1b71)]

(<) [g(aba~1bab™)]

(d) [g(aaaba=1b71)]

(e) [g(abab™ aba=1571)]

(f) lg(agba™a™1671)]

(&) [9(a®)]

(h) [g(aabad™)]

for some g € Aut 71 (T). Conversely, each of these conjugacy classes contains such a Ioop.

Proof. By the Lemma, it is sufficient to consider the composition of three simple loops.
We can now apply Theorem 3.1 and eliminate simple loops, loops with single non-trivial
self-intersection and the previously discussed classes of loops with three non-trivial self-

intersections.

FIGURE 3.11. A loop on T in the free homotopy class [aaba=16"!aba~1 b1].

FIGURE 3.12. A loop on T in the free homotopy class [aba™'bab~1].

The only candidates remaining are (a)-(h) above. It is sufficient to demonstrate a closed
loop with two non-trivial self-intersections for each class in the case where g is the identity,
because automorphisms on-;(T) preserve the number of self-intersections. For [a®], the
obvious choice is a tripled generator, and for each of [(aba=1571)%] and [(bab~1a=1)3], the
obvious choice is a triple loop around the puncture. This disposes of classes (a) and (g).
For the remaining cases, see Figures 3.11 — 3.16. O

We have now demonstrated a complete classification of loops with two non-trivial self-
intersections. Now, we will demonstrate that all of these classes are distinct. First, note
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FIGURE 3.13. A loop on T in the free homotopy class [aaaba=1b71].

FIGURE 3.14. A loop on T in the free homotopy class [g(abab~aba~15671)].

FIGURE 3.15. A loop on T in the free homotopy class [aabab™!].

FIGURE 3.16. A loop on T in the free homotopy class [aaba=1a"1571].

that [g(a®)], [(aba=571)3] and [(bab~'a~1)?] are distinct from the other classes because
they are non-primitive, and are distinct from each other because [a®] corresponds to a
hyperbolic word in H, while the others correspond to parabolic words. Next, note that
two loops on T cannot be in automorphic conjugacy classes in 7 (T) if they are not in
automorphic conjugacy classes on the normal torus 7. When we remove the puncture from
T, loops can be deformed as follows:
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(i) [aaba™'a=1b"1] s in [Id] .
(i) [aaba='b"'aba™'b7!] and [aba~1bab™!] are in [9(a)]
(iii) [aaaba='67'] and [abab~aba~15~1] are in [g(a?)]
(iv) [aabab!] is in [g(a%)]
for some g € Aut 71 (T"). This enables us to distinguish all but two pairs of classes.
Suppose two conjugacy classes [w;] and [w2] are automorphic. Each class contains a
unique geodesic. Specifically, let 4; represent [w1] and v, represent [w;]. We know that
there exists a homeomorphism that takes v; to a loop in [ws] and takes 2 to a loop in
[w1]. We are fairly sure that the following can be proved.

Assumption. If[w;] and [ws] are automorphic classes in (T) with geodesics v; and 7,
respectively, there is a homeomorphism h: T — T that takes v to 7ys.

If this assumption is true, A can be restricted to be a homeomorphism from a subset of T
to its image. Thus, T \ {71} is homeomorphic to T {72}. In particular, this implies that
the number of regions into which a geodesic separates T is invariant under automorphism.
This allows us to easily distinguish [aaba~16"2aba~16"] from [aba=1bab~1].

This homeomorphism between T\ {7;} and T \ {72} also preserves certain topological
properties that enable us to distinguish [w;] = [aaaba~1b~1] and [wg] = [abab~aba—1b71].
Since the geodesics in each of these classes separate T into three regions, we need to
further examine these topological properties. Suppose there is some homeomorphism A
that maps 7; to 42. In Figures 3.17 and 3.18, note that the shaded region surrounds a
region containing the puncture. Thus » must map the shaded region in Figure 3.17 to the
shaded region in Figure 3.18. We can cut along 71 and 7; to separate these regions. The
first region is a disk with two non-manifold points, or “pinches.” The second is an annulus
- with two such points. These points are formed by identifying adjacent corresponding
heavy dots shown in each ﬁgu}e. But no homeomorphism can take a disk to an annulus.
Therefore no such homeomorphism A can exist, and there can be no automorphism from

[w1] to [ws].

It remains only to identify which of these classes of loops contain geodesics. We will
show that all closed geodesics with two self-intersections on T can be classified by their
conjugacy classes in I". This proof parallels Theorem 3.2 in [C], but it is included for

completeness.

Theorem 3.3. A closed geodesié on'T has two self-intersections if and only if it is defined
by a conjugacy class in I of one of the following forms :
(a) [G(AABA™'B=*ABA~1B™1)]
(b) [G(AAABA™! B~1)]
(c) [G(ABAB™'ABA-1B™1)
(d) [G(ABA™1BAB™))
(e) [G(AABA™1A-1B1)]
(f) [G(AABAB™1)]
for some G € Aut I".

Proof. Suppose a closed geodesic on T has two self-intersections. We know that closed
geodesics on T are primitive, hyperbolic and realize the minimum number of self-
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FIGURE 3.17. The punctured torus T with a loop in the free homotopy class
[abab~'aba~'b7!] can be cut along the indicated generator and deformed into
this disk. Then, the shaded region can be separated from the remainder of the

disk.

FIGURE 3.18. The punctured torus T with a loop in the free homotopy class
[aaaba=1b71] can be cut along the indicated generator and deformed into this -
disk. Then, the shaded region can be separated from the remainder of the disk.
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intersections for their free homotopy classes. We can apply Theorem 3.2 and preclude
the non-primitive classes [(aba™571)%], [(bab~1a~?)*] and [g(a®)]. Only [(aba=15~1)3] and
[(bab™*a~*)?] are parabolic. We conclude that the conjugacy classes in (T) of closed
geodesics with two self-intersections are of the remaining forms. Because we have an iso-
morphism 6 between I'" and m;(T), we can consider the image of each of these classes in I,
Thus, each conjugacy class in I which defines a geodesic on T with two self-intersections
is of one of the forms (a)—(f) above.

Suppose a loop on T is defined by one of the forms (a)~(f) in I'. It is clear that these
forms are primitive and hyperbolic; thus their corresponding free homotopy classes in
71(T) contain closed geodesics. By Theorem 3.2, these free homotopy classes also contain
loops with two non-trivial self-intersections. Geodesics realize the minimum number of
self-intersections in their free homotopy classes. Therefore, these free homotopy classes
must contain closed geodesics with two self-intersections. [J

4. RELATED RESULTS

Generating Loops with More Intersections.

In order to generate all classes of loops with two non-trivial self-intersections one must
examine significantly more cases than are needed to generate loops with one such intersec-
tion. In addition, these cases are noticeably more complex, and non-obvious automorphic
classes occur. There is every reason to suspect that this trend towards difficulty continues
as the number of intersections increases. Thus, considering the composition of k¥ + 1 loops
is not a practical method for generating loops with k non-trivial self-intersections if £ is not
very small. We will therefore examine an alternate method of generating all automorphism
classes of loops with k self-intersections. :

Every such class of loops is represented by some set of cyclically-reduced words that are
not made shorter by any automorphism in 7;(T). At least one of these minimal words
begins with a and has b as its first non-a letter (if any). We claim, without proof, that
one of these words begins with a longer series of a than any other, and call this word a
“standard minimal word.”

For a given length, there are probably not very many standard minimal words. For
example, Table 4.1 lists standard minimal words of length one through five. If aaabb looks
unfamiliar, note that it is automorphic to aba~1bad=1. . '

TABLE 4.1. Standard minimal words of length 1, ... 5.

Length Words

a
a

a

a*, abab™!, aba=1p~1!

a®, aaabb, aabab™, aaba=1p~!

Uk W N
T W N
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Conjecture 4.1. The longest standard minimal word in 71 (T) that specifies a class con-
taining a loop with k non-trivial self-intersections is (aba=*b71)F+1,

If this is true, note that the shortest standard minimal word representing loops with &
non-trivial self-intersections is a**1. Neither a**! nor (aba='571)¥+! are geodesics, so we
have demonstrated how to find geodesics on T with k£ non-trivial self-intersections.

Corollary. In order to find all geodesics on T with k self-intersections, it is sufficient to
-examine all standard minimal words in 71 (T) of length between 4k and k + 1, exclusive.

Thus, we need only find all standard minimal words of appropriate length, graph lifts
into the fundamental region D, and and count their intersections as we did in Sections 2
and 3. Unfortunately, no systematic way to generate all these words is apparent. In
particular, we need to be able to quickly tell if two given words are automorphic. In
Section 3, automorphisms between the classes of loops were always relatively simple, but
were not always easy to find. There are seventy-two different automorphisms that either
map a to a two-letter word and b to a one-letter word, b to a two-letter word and a
to a one-letter word, or both a and b to one-letter words. Sometimes the appropriate
automorphism was obvious. For example ab is clearly a generator, so [ab] = [¢g(a)] for some
g € Aut 7 (T). Others were less obvious and grew out of a geometric argument. Finding
an automorphism between two large words can be difficult. In addition, the topological
arguments that two words are distinct will become more complicated as the number of

intersections increases.

Connections to the Markoff Spectrum.

Once Crisp had classified the geodesics on T with one non-trivial self-intersection, he
used these results to find isolated values in the Markoff spectrum. Before we comment on
similar conjectures about the relation between the Markoff spectrum and the geodesics we
have classified, a brief introduction is needed. A more detailed introduction to the theory
can be found in [CF], but we paraphrase from Crisp.

The Markoff spectrum is a subset of the interval [v/5, o) and is the set of values which
arises from the study of the normalized minima of real indefinite binary quadratic forms,

f(z,y) =aw2+/3$y +7y°, o, B,7€R
with discriminant d(f) = 82 — 4ary > 0. We define |
m(f) = inf {|f(z,9)| : (z,9) € Z X Z, (z,y) # (0,0)}
and

M(f) VA [m(f).

The quantity M(f) is called the Markoff value of the form f, and the set of Markoff values
taken over all possible real indefinite binary quadratic forms is called the Markoff spectrum.
Some facts are known about the structure of the Markoff spectrum. The portion of the
spectrum which is less than 3 is a discrete set of values which converges to 3. It is also
known that the spectrum contains a maximal interval of the form [v,00) where v is less
than v/21 ~ 4.582. This is known as Hall’s ray. Harvey Cohn discovered a connection
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between the properties of the Markoff spectrum and the behavior of geodesics on T. If
we associate a Markoff form f with the geodesic v in H whose feet are the roots of f and
projecting v onto T, these Markoff forms correspond to the closed geodesics.

Once Crisp identified the conjugacy classes in m1(T) of loops with one non-trivial self-
intersection, he identified which of these classes contained geodesics. Of the five classes,
two contained geodesics: [g(abab™!)] and [g(aaba™'b7')]. Because the geodesics in the
second class contain a subloop which bounds a disk containing the puncture, their Markoff
values lie in Hall’s ray. Notice that the subloop bounding such a disk is in the conjugacy
class of [aba~1b71] or its inverse. In I", this corresponds to either [ABA™'B™'] or its
inverse. Crisp proves that this implies the geodesic corresponding to this class has a lift
to H which has a diameter greater than 6, which is greater than v. Thus the geodesics in
[g(aaba~1b~1)] lie in Hall’s ray. However, Crisp was able to calculate the Markoff values for
the geodesics in the first class and conjectured that these values Would be isolated points

in the Markoff spectrum.

We have identified the conjugacy classes in m (T) which contain loops Wlth two non-
trivial self-intersections and we have shown that six of these classes contain geodesics. Of
these six classes, it is clear that at least three of them will have corresponding Markoff
values which lie in Hall’s ray. Specifically, loops in each of the automorphism classes
[g(aaba= b aba=1b71)], [g(aaaba=1b~1)] and [g(abab ' aba~'b1)] each contain a subloop
which bounds a disk which contains the puncture. Because we know that any automor-
phism of m;(T) can be induced by a homeomorphism of T, the geodesics for these classes
will also contain a subloop which bounds a disk containing the puncture. For this reason,
we can apply Crisp’s argument and conclude that the assoc1ated Markoff values will lie in
Hall’s ray. :

When We examine the remaining three classes of loops, the classes [g(aba™ bab™! )] and
[¢9(aaba'a~1b71)] bound a region which is a disk containing the puncture, but it is not
bounded by a subloop. It is unclear whether the associated Markoff values to the geodesics
in these classes will lie in Hall’s ray. The loops in the class [g(aabab™ 1)] do not contain
any such regions, so we make the following conjecture.

Conjecture 4.2. The geodesics in the class [g(aabab™1)] for all g € Aut m;(T) have
associated Markoff which are isolated in the Markoff spectrum.

5. CONCLUSION

We have classified all six distinct classes of hyperbolic geodesics with two non-trivial
self-intersections on the punctured torus. We compared three methods for doing this, and
decided to consider the composition of three simple loops. Unfortunately, while two of
these methods have obvious generalizations, the number of cases that must be considered
grows incredibly with the number of intersections.

Nevertheless, we have conjectured techniques to generate all classes of loops with an
arbitrary number of self-intersections. In addition, we discussed the Markoff value asso-
ciated to a geodesic, and identified three classes with associated values in Hall’s ray. ‘We
also conjecture that geodesics in one automorphism class have associated Markoff values

which are isolated.
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