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ABSTRACT. Seven common population models for which local stability is equivalent to global
stability are examined. Using methods suggested by Cull and Singer, we look for a single set of
sufficient conditions for global stability satisfied by these seven models. Additionally, we hope
these conditions will be relatively easy to test. Four models are proven to be globally stable
by a Schwarzian derivative test. Methods for restricting other models to fit the criteria of
the test are discussed. One model is found to have a region of positive Schwarzian derivative,

modifying a claim by Singer.

Introduction

Population models have been formulated to model the growth and decay of a typical
biological population. Characteristics of these models reflect the growth of a population
until it reaches some environmental maximum capacity, and the subsequent decline in
populations larger than that capacity. In “nicely” behaved population models, the popu-
lation may oscillate between growth and decay, but will eventually reach a stable size at
which birth and death rates are equal, regardless of the initial size of the population. This
convergence to a stable size, called global stability, is a characteristic of the population
models we will be examining. However, it is not a property inherent in our definition of
population model. In fact, functions which qualify as population models can behave in
numerous ways, from cychng infinitely through a number of sizes to becoming chaotic,
which do not result in a stable population size. It is also possible to have a model where
convergence to a stable size occurs for all initial population sizes in a small region about the
stable size, but not for other initial sizes. This is known as local stability. It is important
for those applying population models to know whether or not their models are globally
stable. Models having this property are predictable, Whlle those that do not can exhibit
unexpected behavior.

Using the definition of global stability or equivalent conditions to determine whethera
model is globally stable is quite difficult, if not impossible. Sets of sufficient conditions for
global stability which are relatively easy to check exist, but each only applies to a limited
number of the seven commonly studied models Wthh we are interested in examining.
Intuitively, there should be a simple relation among these and other globally stable models,
which causes them to have this property. Our goal is to find a single set of easy to test
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sufficient conditions for global stability which are satisfied by the seven population models
under consideration and could also be applied to other models outside our area of inquiry.

Previous Work

Authors such as Fisher et al. (1979) and Goh (1979) construct Liapunov functions in
order to prove that models are globally stable. The required calculations are laborious, so
we do not pursue this method any further in this work.

The models that we will study are proven in Cull (1988) to have the property of equiva-
lent local and global stability. Cull requires two distinct theorems to prove global stability
for all seven models; each of Cull’s theorems is satisfied by only five of the seven models.
The theorems are relatively easy to use, but we seek to unite all seven models under a
single set of sufficient conditions. The first of the theorems uses the first three derivatives
of the population model, checkmg them for size and positivity or negativity in various
regions. The second examines the derivatives of functions formed using the population
model, again looking for positivity or negativity in certain regions. Additionally, Cull’s
results include a theorem and corollary which give conditions equivalent to the definition
of global stability. The theorem, while quite intuitive, is difficult to apply to a given model
to determine stability. The corollary helps us to check some models for stability very easily
(those with no critical point smaller than the equilibrium point), but for others is not easily
applied. '

Cull normalizes all of his models to have the same equilibrium point. For four of our
models we choose to use the variations on Cull’s models mentioned by Singer (1978).
Singer’s work considers functions more general than our population models, but includes
a theorem which gives sufficient conditions for a property equivalent to global stability.
This requires that the Schwarzian derivative of our function, a formula involving its first
three derivatives, be negative everywhere. Singer claims that this condition is satisfied by
his four models. In order to meet the other criteria of Singer’s theorem we must restrict
our models to a closed interval. Hence we look for our models to have negative Schwarzian
everywhere so that this restriction can be made arbitrarily.

We will be testing models presented by Cull and Singer to see if they fulfill the re-
quirements of Singer’s theorem. If the theorem does not apply directly, we will consider
different ways of viewing the models, using information found in Cull’s work, in order to
allow use of the theorem.

Definitions .
A population model is a function of the form
Tep1 = f(z1)

where f is a continuous function from the nonnegative reals to the nonnegative reals and
there is a positive number Z, the ethbrmm point, such that

f(0) =
f(a;)>m for0<z<z
flz)=¢2 forz=1z
flz) <z forz >z
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and if f'(zp) =0 and 31 < 7 then

F&)>0  for0<z<oy
flz) <0  forz >z such that f(z) > 0.

We will allow f(z) = 0 for all z-> # yielding the possibility that f is not strictly differen-
tiable at . Otherwise we assume that the derivative is continuous whenever it exists.
A population model is globally stable if and only if for all zo such that f(ze) > 0 we
have ' ,
: lim T =1z
t—o0
where Z is the unique equilibrium point of 74y = fze)

A population model is locally stable if and only if there is some small neighborhood
of Z such that for all zo in this neighborhood, z; is in this neighborhood for all t, and
limt_,oo Iy = z. ‘ v :

‘The Schwarzian derivative (Schwarzian) of f at a point z is given by:

| _19@) _3 ("))’
S(h2) = Zy z(f'(z)) |

for any real valued function f with at least three continuous derivatives.

Let {zn} be a sequence of points defined recursively by a function f as Tnt1 = f(zn)
for n = 0,1,2,..., and such that f(z,) = z, for some 1 < p < g. Then the sequence
T = {Zp,Tp41,...,24} is an orbit of period ¢ — p + 1. Given another recursively defined
sequence {yo,¥1,. .. }, we define the distance from any element y; of the sequence to z as
d(yi, z) = ming; e lyi — ;. H limp—co d(yn, ) = 0, regardless of the choice of Yo, we call
the sequence {z,,Tpy1,...,2,4}, a stable orbit. .

- Finally, an endomorphism is a function f : [0,1] — [0,1]. For our purposes we will also
assume that endomorphisms possess at least three continuous derivatives.

Models

Model Function "~ Author . Theorems

. Number Cited Satisfied
1 fi(z) = zer(1-%) Singer AB,S
2 foz)=z(14r(1- ) Singer A,B,S
3 fz(z) = z(1 - rinz) Cull A
4 fa(®) = (5 - d) Cull  AS
5 f5(z) = m Singer - ABS
6 fo(z) = —2—=,b>1 Singer B

(1+%)

Local Stability Implies Global Stability

The following theorems, which we denote .4 and B for convem'enée, were proven by Cull
in order to justify that local stability implies global stability in our seven models.
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Theorem A. If a population model has a maximum z¢ in (0, ) and satisfies:
(1) f'"(z) <0 for z in [z, F);
(2) f®)(z) > 0 for all z such that f"(z) <0 and f" has at most one sign change; and
@) @<,

then the model is globally stable.

Theorem A is used by Cull to prove that local stability implies global stability for
Models 1, 2, 3, 4, and 5. For Model 5, calculation of the third derivative becomes somewhat
tedious. Otherwise, this theorem is an easy way to check that the models are globally stable
whenever they are locally stable (condition (3) of the theorem is a necessary condition for
local stability). However, to prove global stablhty for the remaining two models we must
turn to Cull’s Theorem B.

Theorem B. For a population model f, let k = k(z) = f( 2y~ Let the function g be

defined by £ + =9(z) + Bz where B is a constant chosen to make g(z) nonnegative. If the
population model satisfies:

(1) f'(@)=-1;

(2) ¥ <2o0n|zp,3);

(3) g(z) 20 on [zm, f(zm)];

(4) ¢'(z) <0 on [zy, f(zm)); and

(5) ¢"(z) 20 on [z, f(zm));
then the model is globally stable.

Theorem B is used by Cull to prove that local stability implies global stability for Models
1, 2,5, 6, and 7. Calculation of the derivatives becomes complex for Models 5, 6, and 7.
Consequently, this theorem is more difficult to use than Theorem A. However, it is still
a relatively easy theorem to use, and is necessary to prove global stablhty for the models
that are not covered by Theorem A.

Another of Cull’s theorems will be necessary for the 1mplentat10n of Singer’s theorem to
our models. We will call this Theorem £ as it results in an equivalent definition of global

stability.
Theorem &. A population model is globally stable if and only if it has no orbits of period
two. ‘

Theorem €& is intuitive: clearly if an orbit of period two exists in a population model,
a single limit can not be achieved by any recursively defined sequence which includes the
orbit. The other direction of implication is not so easily seen, but is proven in Cull.
Unfortunately, this theorem is difficult to apply to a given model in order to determine
whether or not it is globally stable. Also of interest is Cull’s Corollary to Theorem &.
Corollary. A population model is globally stable if and only if either:

(1) there is no maximum of f(z) in (0,z); or
(2) there is a maximum of f(z) at zr in (0,%) and f(f(z)) > z for all z in [z, %).

' The first claim of the theorem allows Cull to eliminate a number of cases before applying
Theorems A and B. Additionally, it indicates that these cases are in some sense trivial.
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Accordingly, we can consider ignoring cases with no maximum in (0,Z) when trying to
adjust our models to better meet the requirements of Singer’s theorem.

The Schwarzian Derivative

Hoping to find a single set of sufficient conditions for global stability, we consider the
work of David Singer. We call Singer’s result Theorem S (for Singer or Schwarzian).

Theorem S. Let G be the set of all endomoqibisms which satisfy:
(1) f(0)=f(1)=0; 4
(2) f has a unique critical point in [0,1); and
(3) S(f,z) <0 everywhere. '

Then for any f in G there is at most one stable orbit in (0,1).

From the Corollary to Theorem £ we know that all of the models of particular interest
to us have a unique critical point (zs) in the closed interval [0,Z]. Clearly, a corresponding
theorem with any other closed interval replacing [0,1] (in all parts of the theorem as well
as in the definition of endomorhism) would yield the same results. Our models are of the
form £ : [0,00) — [0, 00). Ideally we would like our models to have negative Schwarzian for
all values of ¢. Given this result, we could choose a closed interval [a, b] such that for all
Zo € [a,b], z; € [a,d] for all ¢ and also so that £, € [a,b] and % € [a, }] allowing our model
to meet the requirements of the theorem. Suppose a model given by f(z) satisfies the
conditions of Theorem £ in a closed interval containing #. The requirement that f(#) = z
in a population model creates a stable orbit of period one, namely {Z,z,,... }, within the
interval. This must be the single stable orbit guaranteed by Theorem S. Hence the model
can not have a stable orbit of period two in the closed interval. It follows from Theorem
€ that the limited model is globally stable. :

Consequently, we must begin by finding the Schwarzian derivative of each of our models.
Singer claims that condition (3) of his theorem holds for Models I, II, V, and VI, which

we attempt to verify. :

Calculation of the Schwarzian -

(Model 1) -
fi(z) = ze"(-E)
file) = (1- 2 )eri-
0=~ (- ) 00
() = g- (3-2) -
() = — (l‘f%)z (52 - +)
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(Model 2) '
z
fo(z) =z (1 +r (1 - 7;))
file) =147 2%
(o) =27
£:2(z) =
_67-2
S ’ -
(f2 m) k2 (1—r 2?)
(Model 3)
f3($) = .'B(]. _'rln.'l:)
 fig)=1—r—rinz
Y= ~7
1) = 5
2 —-5r —2rinz
S(f37z) = 1‘[21‘2(1 -7 — TITLJE)}
(Model 4)

faz) == (b-}-lc:c -d)

b
HORS el
weoy_ . —2be
4("’)“(6+cz)3
3)
(z) = (T.,.—c‘m?
5(f4,z)= e

[ — d(b + cz)?]?
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(Model 5)

' rT
_fs(z)  14e-40-3)

: o ) 1 + (1 - %)e—A(l_f’)
f5(z)=r
| “ [ (1 + .«3““(1—§))2

9(e) = A e-atr-3) [ # (1 -e.‘"(“‘%)) - (;)w; e““l“;‘))]
. 1 +e—A 1-£ '

0= (%) | |
[2 (1 —em4(178)) 12 (1 +e74078)) + (1- 22) 40 5) 4 1}
| AC~5) (14.740-9))°

(st

B eA(1-%) (1 + e_A(l‘i'))4

)=~ (i)

242 15-62Ay2224®  gogza =242

A 18+£TE 6—42A 2242
6+ 2% + eA(1-i—) + 8241 1-§ ; + es‘j 1-%)

(e D) i 1 ) 0]

(Model 6) ‘ —
fo(z) = (1 :5%)6 b>1
fi@) =r [ ———-——l(f fg);? J
wo- 3 [
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3, _Th(b+1) 3+ £(1-0)
Jo'(z) = Bz [ (lf%)HsJ

b{2(b+ D[3+50-8)][1+ 201 —-5)] -3b[2+£(1 - b)]z}

K ,T) = 2
(o) 2B% (1+ £)* [1+ &(1 - b)]
(Model 7) o
f(@) = 1+(r—1)ze
£y < Tl (e 1 = e

[1+(r - 1)e]*

—r(r — 1’)‘c {z°7 e+ 1= (c—1)(r — 1)z°]}
[1+(r = D)ee]?

11
7

O(g) = r(r — 1)cz*?

{(c— 1)(r —Dacle—2—(r—1)(e+ 1)z — (c + 1) [c — 1 — 3¢(r — 1)1;0]}

[+ (r = D)ae]"

S(f, :c) =2(r—1)cz® 21 —(e—=1)(r — 1)z
{(c —D(r—1zfle =2 (r — D)(c+ 1)z — (c+1)[(c — 1) - 3¢(r — 1):,,-61}
2[14(r =)z [1 — (c— 1)(r - 1')3,««:]2 ,
_3(r=1)2c2g?2[c 4+ 1 — (¢ — 1)(r — 1)z
2[1+ (r = 1)z [1 — (¢ — 1)(r — 1)z]?

Interpretation of the Schwarzian

In all of the figures, except for the Schwarzian of Model 7, we fix all but one parameter
and z equal to 1 so that we can graph the Schwarzians in three dimensions. For Model 7,
we fix r = 2. Note the similar troughlike structures of each of the Schwarzian graphs,
particularly in regions where the Schwarzian is negative. a
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FIGURE A. Model 1 Schwarzian

First, we note that the quadratic 22 — 4z + 6 has no real roots. For z = 1 the quadratic
is positive (it equals 3). Consequently, Model 1 has negative Schwarzian for all real values
of ZZ (see Figure A).

Since the third derivative of Model 2 is zero, the Schwarzian of Model 2 is trivially

negative for all z (see Figure B).
For all nonnegative b and d the Schwarzian of Model 4 is clearly negative for all z (see

Figure C).
Model 5 is also negative for all values of z and the parameters, but the proof of this
is somewhat more complex. Note that a negative term has been factored out of the main

fraction in braces. The only negative terms that remain inside the braces are —6% and

——4%.‘ However,

zA z2 A2 TA
> > g2
B2 3 = 2 Bz 2 6 B
zA z%42
_ 62.4(1—3-
and 4 A
e T
—B-' <3 = 6—5 <18
18 — 624
= ey >0
e (I—F)



Thus, in both cases,

NANCY HEINSCHEL

18 — 624 4 22:4° 0
eZA(lf%) =

for all nonnegative values of z,4, and B. Similarly,

and

and

A z2A?
_ >
Bzt T 2
z 2:2 2
L g
S3A(-%) T
zA 3 TA
Tl -
B=3 T 43
6 —4%£
= B.>0
e:>.A(1—]g)
3 zA 33
A i S
2B =1
9 242 ' zA
Z< B2 and = 4—B—

FIGURE B. Model 2 Schwarzian
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FIGURE C. Model 4 Schwarzian

6+2% 33 1 424
3A(1- ) 4 eaA(l—-;—) - eaA(l—-;—)

The same method applied to
: 33 zA < 2625

16~ B ~ 102¢’
2625 < zA < 13182081
1024 ~ B — 4194304°
13182081 < zA < 2.793203758 x 1014
4194304 B ~ 7.036874416 x 1013’

2.793203758 x 104 <-ﬁ < 1.077304333 x 102°
7.036874416 x 101> ~ B — 1.980704062 x 1028

yields that
2 2
6 + Z55- 424

3A(1—3—) S4(1-%)

for all z such that 2 5 < z < 4. Consequently,

6 — 41:.«4 + :: A2
3A(1—-F)
61

>0
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FIGURE D. Model 5 Schwarzian

for all nonnegative z. We conclude that the Schwarzian of Model 5 is negative for all
nonnegative z and 4, and all positive B (see Figure D). ‘
Since Inz is negative for z < 1, the Schwarzian of Model 3 is negative if and only if

z> e(%‘%)

(see Figure E). In the next section, we consider limiting our concentration to intervals in

which the Schwarzian of Model 3 remains negative.
Singer claims that Model 6 satisfies condition (3) of Theorem S, that is, S(fs,z) is

negative everywhere. However, letting
z = 10.5, B=1, and b=1.5,

we discover that

S(fs,z) = 0.000088303 > 0
contradicting Singer’s claim. We conjecture that Singer may have intended that we consider
only limited ranges for z when calculating the Schwarzian. Indeed, away from the region
in which we chose the values for our parameters, the Schwarzian for Model 6 appears to
be negative, except when b < 1 (see Figures F and G), which Singer does not allow.

Letting ~ ’ :

r=2, and c=1,

in Model 7, yields S(fz,z) = 0 for all poéitive z. However, we notice that for r = 2 and
¢ > 2, the Schwarzian appears to be everywhere negative (see Figure H).
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FIGURE E. Model 3 Schwarzian

63



NANCY HEINSCHEL

FIGURE F. Model 6 Schwarzian

Further Application of Theorem S

We consider only Model 3. It is likely that Models 6 and 7 can be approached similarly,
but time constraints have limited us to concentrate on only one model.

Suppose 7 > 1, this being our primary region of interest, since there is no maximum
in the interval (0,%) for 0 < r < 1. Recall that the Schwarzian is nonnegative only for

z< e(%_%), so we need to avoid this region.

Since we want to concentrate on some closéd interval which contains z M and Z, and
f3(zar) is maximal, we consider using f; (Z) and fa(z M) as our left and right endpoints,

respectively. Note that z,, =e 71 , SO
a(om) = re(3-1)

and

fa(fa(zn)) = r2e3 1),

SO T > e(F=%) for all r > 1. Now, since there is only one maximum of the function, and
it occurs at a value less than z, f;(Z) = {Z, b} where b is a value less than z M. We want

to use b as our left endpoint. Clearly, we can only do so for r such that 4 > e(%"%), so we
restrict our attention to those cases. For z € [b,%) we have

b<z< f3(z) < fa(zm)
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FIGURE G. Model 6 Nonnegative Schwarzian
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FIGURE H. Model 7 Schwarzian
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by definition of population model and zas. For z € [z, f3(z3)] we have
b<zym < fa(fs(zm)) < fa(z) <z < fa(znr)

where the first inequality comes from our choice of b; the second inequality is a result of the
Corollary to Theorem £ (since we know f; is globally stable by Theorem A); the third and
fourth occur because f3 is a decreasing function for z > Z by the definition of population
model; and the final inequality is a result of our choice of z. Consequently, if r > 1 and

r is chosen such that b > e(* 2) we have z; € [b,zp] for all ¢ whenever zy € [b, 2]
Since all areas of negative Schwarzm.n_occur for £ < b, we have found a closed interval in .
which the Schwarzian of f; is everywhere negative and such that any recursively defined
sequence of points initially within the interval remain within the interval. Hence, we can
now apply Theorem S to this limited region of Model 3. :

Conclusion

Theorem S is too restrictive to justify global stability for all seven models under con-
sideration. However, it is a relatively easy test to apply, and four of the models satisfy its
conditions. We can limit the range of our concentration for the other models in order to
allow them to meet the criteria of the theorem. We are left with several questions related
to our study. We still would like to find a single, easy to test set of sufficient conditions
for global stability satisfied absolutely by all seven of our models. Models 3, 6, and 7
could be studied further to see if Theorem S can be better applied to them. Perhaps a
clarification of any limits on the range of z intended by Singer (as indicated by the region
of positive Schwarzian found in Model 6) would aid us in application of his theorem to our
other models. Finally, we are left wondering what relation makes our seven models simple
enough to be globally stable when they are not linked by any of the primary theorems we

have considered.
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