COMPUTING FIBONACCI NUMBERS WITH GATES

CHRIS KALTWASSER

August 12, 1994

ABSTRACT. We consider computing Fibonacci numbers in base 2 using binary logic circuits.
Such a circuit consists of a number of simpler components called gates. We consider only
circuits that use two-input gates, which take the number k as input in binary representa-

tion, and produce fj as output, again in binary, for any k, 0 < k < n. Let A = 1—":2£)

v = logg A. The number of gates required to compute fo,..., fn is shown to be bounded
below by nlog, A — %log 5 and above by yn? 4+ nlogn — (v + 1)n. Working solutions for
foy---s f3, fo,-., f7, and fo,..., fis are considered. From these solutions we conjecture that

the required number of gates might be no better than O(n logn loglogn).

1. INTRODUCTION

We will be considering the problem of computing Fibonacci numbers for positive n
in base 2 using a logic circuit. Previous approaches to the problem of the computation
of these numbers has mostly concentrated on the arithmetic model of computation. By -
considering the digital model of computation we hoped to shed some new light on the
problem. The problem of computing the nth Fibonacci number is interesting because the
Fibonacci sequence is generated by a very simple difference equation, making it useful for
investigating general methods for computing solutions of difference equations.

. 1.1 PREVIOUS RESULTS

In their paper [Cull 1989], Cull and Holloway consider several algorithms for computing
the fn, comparing the time in bit operations each requires. By repeated addition, the nth
Fibonacci number may be found using yn(n — 1) bit operations, whereas the best algo-
rithm they examined required only -g-'yn logynloglog~yn bit operations. At this point, the
computational complexity of generating f, has been reduced to a number of multiplica-
tions, which can be done with O(n log nloglogn) bit operations. Babb [Babb 1990] found
a new sequence of algorithms for computing f,, which in the limit reduce the initial con-
stant. During the 1993 Undergraduate Summer Research in Mathematics, Karro [Karro
1993] applied automata theory to the problem of computing f, given n, and showed that
the Fibonacci sequence cannot be generated by a finite state or push-down automaton,
and that any algorithm will require at least log f,, bits of random-access memory. He also
looked for patterns in the binary representations of the Fibonacci numbers which might
prove helpful in computing them in linear time, but did not find any useful bit patterns.
The algorithms of Cull, Holloway, and Babb still do no better than O(nlognloglogn) bit

68 Typeset by Ap4S-TEX

CHRIS KALTWASSER

operations, and the addition algorithm is still quite decent for smaller values of n. Ideally,
we would like to find some algorithm to compute f,, in O(n) bit operations because then
the solution of any difference equation of the form

Unt1 = QoUp + - + QpUp—k

might be as efficiently computed by a similar algorithm. Our approach is to look for
a family of circuits which will complute the Fibonacci numbers with a minimal number
of gates because we know that for any sequencial algorithm the time in bit operations -
should be proportional to the number of gates needed to simulate the algorithm. Hence,
if the Fibonacci numbers can be computed by circuits of O(n) gates, there should be a
corresponding algorithm which requires O(n) bit operations.

1.2 DEFINITIONS -

Let fn denote the nth Fibonacci number, satisfying the recurrence relation

(1) - - fn+1 =fn+fn—1

where fo =0, fi =1, n > 2. Let [,, denote the nth Lucas number, where

lo=2,01 = 1,lng1 = In +lp_1,n > 2.

It is well known that the roots of the characteristic equation for (1) are the golden ratio

and its conjugate, so let A = -1;"245 and) = 1—'235 . Binet’s formula satisfies the Fibonacci

difference equation, giving a non-recursive formula for f,:

)) AR ___Xn

As in [Cull 1989], we will use logn to denote the base-2 logorithm of n and let v =logA
so that yn is approximately equal to the number of digits in the base-2 representation of
fn, since f, is asymptotic to A" /v/5 by (2).

A gate is a device which computes a Boolean function of two input variables. A Boolean
circust is a directed acyclic graph with a gate at each node. Since each gate will compute
a function of two variables, the in-degree of each vertex (except the sources) will be two.
The sources will correspond to the inputs. Each gate is allowed to have unlimited fan-out
(out-degree). A truth table is a list of all possible input values and the corresponding
output values for a logic circuit. By examining the circuits that compute fy,..., fn we
hope to find a family of circuits which require a determined number of gates. If the number
of gates required were found to be linear in n, then it may be that any similar difference
equation may be easily solvable. We are considering gates with two inputs, f : Zo? — Z,.
There are 222, or 16 such functions which are enumerated in table 1.

Theorems 1 and 2 list the major properties of Boolean algebra. These are important
for the reduction of Boolean expressions, allowing the reduction of the gates required to

implement a function.

69

COMPUTING FIBONACCI NUMBERS WITH GATES

TABLE 1. Binary functions of two inputs and one output. -

0101 "Common Common
Y 0011 Name . Notation
(1) 0000 0
(2) 0001 AND XY or X AY
(3) 0010 XY or (RX)AY
(4) 0011 Y
(5) 0100 XY or X A(RY)
(6) 0101 X
(7 0110 EXOR - XoY
(8) 0111 OR X+YorXVY
(9) 1000 NOR . X+Yor-(XVY)
(10) 1001 NEXOR XY orX eV
(11) 1010 X or =X
(12) 1011 X+Yor(-X)VY
(13) 1100 Yor-Y
(14) 1101 X +Y or XV (-Y)
(15) 1110 NAND XY or (X AY)
(16) 1111 1 ~

70

CHRIS KALTWASSER

Theorem 1. (Properties of Boolean Algebra) Given A,B,C € Zj:

AB = BA
- (a) v . A+B = B+A (Commutativity)
A®B = BoA :
(AB)C = A(BC)
(b) (A+B)+C = A+(B+0C) (Associativity)
(A@B)eC = A (BaC)
AB+C) = AB+ AC
(c) A+(BC) = (A+B)(4+C0C) (Distributivity)
ABeC) = AB o AC
AA =0
(d) A+d = 1 } | (C'omplement)
' AA = A :
(e) o A+ A = 4 } (Idempotency)
04 =0
(D). 144 = 1 } (Constant)
A+0 = A
: 14 = A .
(g) 4 400 = A } (Identity)
Al = A
‘ A(A+B) = A :
(k) A(—l— (AB; — 4 } (Absorption)

Theorem 2. (DeMorgan’s. Laws) Given A,B,C,...,N € Z; the following identities are

true:

(a) ABC - N=A+B+C+--+N
(b) AfB+C+---N=4BC.---N

Hence, one can change between the AND and OR operators and invert the inputs and
outputs, and preserve the function value.

1.3 DISJUNCTIVE NORMAL FORM

A circuit is designed with gates by selecting a basis of one or more gates and combining
those components into the desired function. There are a number of such bases used, one of
~ which is called the disjunctive normal form (DNF), or “sum of minterms”. Given inputs
Zg, - .. , Tm let m; be the product over the AND function of each z or its complement, T,
such that if (zo,...,Zn,) is the binary representation for ¢, 0 <z < 2™, then m; has value

71

COMPUTING FIBONACCI NUMBERS WITH GATES

1. For example, m = 3:

mp = ToT1Z2
mi = ToZ1ZT2
Mg = ToT1T2
ms3 = ZoT1T2
myg = ToT1Z2
‘m5 = :L'of]_l‘z
Mme = ToT1Z2

mr = ToZ122

fz=0,21=1,20=1(0x224+1x21 +1x2° = 3), then M3 = z¢ 2, T, = 1. We have
that for any function f : Zs™ — Zs,

(3) f((l?o,...,.’l?m): \/ m,-(:co,...,:z:m)

where V denotes the sum over the OR function. This result is obvious from examinatiori
of the truth table.

TABLE 2. Truth Table for Example 1

T2

8
[y
8
o
Q

H S OOOO
P HEFOOMKRELER OO
HORPRPROKMKOMFEOO
CO MMM OO MO

Example 1. The truth table for a simple function of three inputs, g, is shown in table 2.
The DNF of g is found by ORing together the three minterms for which g has a value of
one, namely mj,my, ms. This gives the straightforward equation

(4) : g =ZoT1Z2 + ToT1Z2 + T9T1 22
which can be implemented with 2-input gates by grouping the terms in twos:

9= ((zoT1)T2 + (ZT0T1)z2) + (z0Z1)z2.

72

CHRIS KALTWASSER

- | |
N}TDT_D*”'

- D

—
|/

FiGURE 1. Circuit for Example 1

The corresponding gates are shown in figure 1.
By factoring and sharing terms when possible, the number of gates can very often be

reduced. In this example, equation 4 can be factored like so:
- 9 = 29Z1%2 + (To + 20)ZT122
= ZoZT1T2 + 1T122
= Z1(z0T2 + 22)
=T1(zo + z2)

This saves a total of six gates, giving a 2-gate implementation of g.
1.4 CONJUNCTIVE NORMAL FORM

A very similar basis can be arrived at by applying Theorem 2 to the DNF form, but
first we define the “minterms” of zo,...,Z,. Let M; denote the sum over the OR func-

tion of each or its complement. M;(zo,...,2m) = 0 when (zo,...,2s) is the binary
representation of ;. For example, Mg = zo + T + 2.

(@0, Tm) = V mi(zo,-..,2m) (from eq. 3)

= \/ : mi(Zo,...,Tm)

F(mi(zg;---s Ty))=0
0<ic2m

= | /\ Mi(zo,...,zm) (by Thm. 2)

I (M;(zg,...,.zm))=0
0<ic2m

73

COMPUTING FIBONACCI NUMBERS WITH GATES

Example 2. Using the same g as in example 1, we can find the Conjunctive Normal Form
(CNF) of g by ANDing together the maxterms corresponding to the zeroes in the truth
table:

g=(zo+z1+2z2)(z0 +T1 + 22)(To + T1 + z2)(xo + T1 + T2)(To + 71 + T2)

This gives a 14-gate implementation of g, and by factoring we can again reduce the number
of gates considerably by factoring and reduction:

g= (2o + 22 +2171)(To + 71 + z2)(z0To +T1 +T2)

= (2o + z2)(T1 + (To + 22)T2)

= (20 + 22)(T1 + ToT2 + 22F2)

= (2o + £2)T1 + 20ToT2 + T2T0 T2

= (zo + 22)%1
Due to the commonalities of the two bases, it should not be surprising that the two forms
reduce to the same equation.

1.5 POLYNOMIAL BASIS
The other basis we used for finding circuits for Boolean functions is polynomials of the

form:
f(z1,..,2m) = a0 D a1z1 D aszs D a1221 22 @ aszs @ arsz173 D A232223 D a123T1Z2T3D ...

For this ordering of terms we can form the matrix equation:

(11111111(1\
0 1 01010 1 z1
0 0110011 T3
(a0a1 az,a2,0a3,013, 023 0123) 00010001 12
11111111 T3
0 1 01010 1 T1Z3
{0 0110011 ToTs
k\00010001/\x1x2x3

= (£(0),..., £(7))

for m = 7. In general, P, € Z4 X Z is defined recur'sive_ly as

P. P
Py = 1], Pk+1=(0" P:), k>0

Since P = P, !, we can find the coefficients recursively by splitting the vector of
function values in half and applying the matrix multiplication in blocks:

(ao, e ,a'l___k) = (f(O), v ,f(zk — 1)) Py

Pr P
-@n (' 7))

= (BPy, (f1 + £)Py)
This is repeated until the k = 0.
| 74

CHRIS KALTWASSER

Example 3. As an example of how to find the polynomial coefficients, consider again the
function g from examples 1 and 2. We can continually divide the vector of values, copying
the first half of each block into the next row, and then putting the sum of the two halves

next to it:

0o 1 0 o0 1 1 0 0
0 1 o0 o0]1 0 0 0
0o 1]0 1]1 o01]1 0
o] 1o 1|11 [1]1

So for g we get the polynomial equation

g=z1 DxozT1 T2 P z0z2 D212 D ToT123.

2. GENERAL BOUNDS ON NUMBER OF GATES

Consider the circuit that will generate any Fibonacci number from f; through f,. Using
Bmet $ equation (2) we know that the number of bits in f, is going to be

() Rog(72)1 = [nlog - J1og5]

but for convenience we are using yn to denote the number of bits in f;.

The obvious lower bounds on the number of gates required is n, provided that none of
the output lines is identical to another, or to one of the inputs. This follows from the fact
that each gate has exactly one output, so there must be at least one gate for every output
in the circuit. By two different methods we have arrived at upper bounds that are O(n?),
one which uses a combination of the DNF and CNF methods described in section (1-3)
and (1-4), the other of which simulates the addition algorithm for computing the f;.

2.1 Look-Up TABLE CIRCUIT

The first general circuit class we considered was the circuit to simulate a simple lookup
in which all of the Fibonacci numbers up to f, are known and are encoded in the circuit.
By applying the general DNF method to each of the digits of fp,..., f, (ORing together
the maxterms that correspond to 1’s in the truth table) we can construct a circuit which
uses only AND gates (plus possible inverted 1nputs) and OR gates. This circuit design is
shown in figure 2.

To AND together logn lines requires logn — 1 gates. There will be n of these AND
trees: mp will never generate any 1’s. There will then be some fraction of these for each
output, sc we will say there are at most n lines to OR together for each output. This
is a very poor over-estimate, but we did not have time to investigate a better estimate.
By using the known results for the residues of f, mod 2% we suspect the number of lines
necessary could probably be reduced by at least Assulmng at most n lines for each of
the yn outputs gives us another yn? — n gates for an upper bound of

(6) yn? + nlogn — (y + 1)n

for the entire circuit.

COMPUTING FIBONACCI NUMBERS WITH GATES

logn
input & .
lines

I 1t !
P U U Y

FIGURE 2. Simulated Look-Up Table Circuit

2.2 ADDITION ALGORITHEM CIRCUIT

The other circuit we considered would simulate the addition algorithm. The look-up
table circuit has the obvious disadvantage that it does not actually compute the n + 1
Fibonacci numbers, but simply connects the correct value to the inputs. Instead, we
would like a circuit which will generate the Fibonacci numbers up to any n, even if we do
not know them all ahead of time.

To do this, we construct a circuit with n — 1 addition circuits to compute the sums
according to equation 1. This will require 5yn — 3 gates per adder for a total of (5yn? —
(57 + 3)n + 3 gates. To get the correct Fibonacci number from this sequence of adders
we will use a full decoder (for all n + 1 Fibonacci numbers), an array of AND gates for
enabling the outputs, and an OR tree to combine these values for each of the outputs.
This totals ' ' ; ‘

(7) Tyn® + nlogn — (5y + 4)n — logn + 4
gates which is obviously much less efficient than the look-up table algorithm, though it is

still O(n?).
76

CHRIS KALTWASSER

logn
input e
lines
| | |
(n+1)(logn - 1)
AND gates
\-_ F
-l 0
N F
LS
N n-1
2 —F e
OR gates
—% >—F -
(@-1)(Syn - 3) yon(n + 1)
From Addition Circuits
From AND
gaies
—F —=
: To OR gates
e —

FIGURE 3. Simulated Addition Algorithm Circuit

3. CIRCUITS FOR SMALL n

We begin by considering three base cases for circuit designs, looking for structure in
the circuits which might lead to a method of constructing any of a family of circuits for

77

COMPUTING FIBONACCI NUMBERS WITH GATES

computing fo ... fn with the fewest number of gates. We consider the cases n =3, n = 7,
and n = 15.

3.1 THE MINIMAL CIRCUIT FOR n = 3

For n = 3, we have that the number of inputs is 2 as is the number of outputs. Any
- such function can be implemented with two or fewer gates since there exists one of the
16 functions of the two inputs for each output. The function can be represented with the
simple truth table shown in table 3.

TABLE 3. Truth Tableforn = 3

=)
= O = O
H O oo
O =0

By inspection, it is clear that the function Fi(zq, z;) is equivalent to the AND function
shown in table 1 and that the function Fy(zo,z;) is equivalent to the EXOR function.
Since neither of these corresponds to one of the outputs, and since each is independent, it
follows that the minimal circuit for the case n = 3 corresponds to the equations

=20z
Fl = ToZ1

This circuit is shown in figure 4.

FIGURE 4. Minimal Circuit for n = 3

78

CHRIS KALTWASSER

TABLE 4. Truth Tableforn = 7

2 X1 Ty F3 Fz Fl, Fo
0 0 o0 0 0 0 O
0 0 1 0 0 0 1
0 1 0 0 0 0 1
0 1 1 0 0 .1 0O
1 0 O 0 0 1 1
1 0 1 0 1 0 1
1 1 0 1 0 0 o0
1 -1 1 1 1 0 1

3.2 CIRCUIT FORNn = 7

The case for n = 7 is nontrivial. By equation 5 we know that for n = 7 the circuit must
have 4 outputs. Table 4 shows the truth table for this case. .

By applying the DNF method described in section (1-3) we get a circuit using 13 gates,
the CNF method results in 14 gates, and a well-chosen combination of the two gives a
12-gate circuit. However, by inspection it is not difficult to find a circuit that uses 10
or fewer gates so these two bases are clearly not optimal for this case. By applying the
polynomial method described in the same section it is possible to find a circuit of only 8
gates. The polynomial method yields the following equations:

Fy=20@ 21 ®z2 ®z072 B T9T122
Fy =z9z1 @ 22 ® 2022 B z1 22
F2 = ZToZ2

Fy =z129
These equations can be factored to give:

Fo=z:02; @zo(1® 22 ®z172)
= (z1 D z2) ® 20T122

F = (20 ® 22)(z1 & z2)

Fy = zqz9

F3 = T1I2

For the two most significant digits, it is clear that the minimal implementation will be one
AND gate for each, but it is less clear how digits 0 and 1 are most optimally implemented.
Without factoring or sharing, the number of gates required is 15. With the above factor-
ization plus sharing of common terms, the number of gates required is reduced to 8, which

is shown in figure 5.
.79

COMPUTING FIBONACCI NUMBERS WITH GATES

FIGURE 5. Eight-gate Circuit forn =17

3.3 CIRCUIT FOR n = 15

The truth table for the case of n = 15 is shown in table 5. The DNF and CNF methods
give unwieldy equations that do not reduce well. The polynomial method, on the other
hand, yields a 36-gate circuit in which the sharing of terms is obviously a large factor in the
simplification of the circuit. This implementation is shown in figure 6. Without sharing of
terms, the circuit would require 47 gates. Those gates which are shared are marked with

a bullet (o). A .
8

CHRIS KALTWASSER

TABLE 5. Truth Table for n = 15

¥y Fg3 F; Fg Fs F, F3 F, F, F

8
W
x]
(]
8
o)
8
o

0 0 0
0 0 1
0 0 1
0 1 0
0 1 1
1 0 1
0 0 o0
1 0 1
1 0 1
0 1 o0
1 1 1
0 0 1
0 0 o0
0 0 1
0 0 1
0 1 0

F—‘HF—‘HF—-‘I—‘I—-‘HOOOOOOOO

HOHOHOHO'—‘OO—-‘OI—*O~|—|O

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

CHoOooOooocoboocooo oo
OOHHooocoooooooo
PHEHOHrOOOCODOCO OO O O o

0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
1

OHOHHHOHOOOOOOOO'

0
0
0
0
0
0
1
1
0
0
0
1
0
1
1
0

HHHHOOOOI—‘E—‘!—!‘HOOOO
HHDOHHOOHPODHI—IQQ

The complete polynomial equations for n = 15, with the factorization I use are:

Fo =20 @71 @ 72 © Toz2 ® T0Z12T2 B T3 D 7173 B ToT123 @,xbxzws ® z1z273
= (zo ® 21) ® (z0T1)z2 B z3(z0 B z1)(z1 @ 2)

‘F1 =20%1 O T2 O ToZ2 @ T122 O ToT3 @ 2123 @ Toz1Z3 B T2x3 O ToT1T2T3
= (20 © 22)(21 @ 22) @ 23 [20(7122) D (71 B 22)]

F, = 2072 ® 23 ® zoz3 O 7273 '
= (20 ® z3)(z2 @ z3)

Fs = 2120 @ z02123 @ 202273 D To1 7273
= (zoz3)(z1 + z2) O T122

Fy = 23 @ 2023 ® zoz12273
= z3(20(2172))

Fs = 2023 ® 2123 ® 0717223
= z3(z1 ® z0(Z122))

Fs = 297123 ® 207273 B T17223

= z3(z0(71 B z2) ® 7172
81

COMPUTING FIBONACCI NUMBERS WITH GATES

Fr = 2223 @ T12223
='51$2£l}3

Fy = 212273 @ 20212273
= Z0T1T2%3

Fg =Z9TiT2T3

Xo Xy X X5

L\] —F,
»:D — [D—~,
D—Fs

FIGURE 6. 36-gate Impleméntation for n =15
82

CHRIS KALTWASSER

4. CONCLUSIONS

From the three base cases examined, it looks as though the number of gates requiréd
to compute f, given n may be O(n?). That is, when we double n, the number of gates
required appears to increase by a factor of 4. There are still a number of unanswered

questions: .

(1) Can we find a binary circuit structure which gives a better upper bound? We
considered only the possibilities that correspond to a table look-up and a direct
addition algorithm. Another possibility would be to construct a circuit which
simulates one of the various multiplication algorithms known for computing fp.
Such a circuit ought to require only O(nlognlog logn) gates, corresponding to the
number of bit operations for these algorithms.

(2) Is there an algorithm to find the circuit with the fewest number of gates? We
considered trying a search of all possible binary circuits, but the search space was
too daunting without better upper bounds on the number of gates.

BIBLIOGRAPHY

Brendan J. Babb, Computing Fibonacci Numbers Rapidly, M. S. Paper, Oregon State University, Cor-
vallis, Oregon (1991).

David J. Comer, Digital Logic and State Machine Design, 2nd ed., Saunders College Publishing, 1990.
Paul Cull and J. L. Holloway, Computing Fibonacci Numbers Quickly, Information Processing Letters

32 (1989), 143-149.
Paul E. Dunne, The Complezity of Boolean Networks, Harcourt Brace Jovanovich Publishing, New

York, 1988. ‘
Eliot Jacobson, Almost Uniform Distribution of the Fibonacci Sequence, Fibonacci Quarterly 27, no.

4 (1989), 335-337.
John Karro, The Complezity of Computing Fibonaccs Numbers, Undergraduate Summer Research in

- Mathematics, Oregon State University, Corvallis, Oregon (1993), (unpublished).
N. N. Vorob’ev, Fibonacci Numbers, Blaisdell, New York, 1961.

DEPARTMENT OF MATHEMATICS, OREGON STATE UNIVERSITY, CORVALLIS OR 97331

[

F-mail: kaltwasc@math. orst.edu

83

