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ABSTRACT. In his doctoral thesis, David Crisp looks at isolated values of the Markoff spec-
trum. This is a further investigation of this topic, and includes an examination of the use
of backwards continued fractions, as well as the application of Crisp’s technique for showing
that sequences have isolated values in the Markoff spectrum.

INTRODUCTION

The purpose of this paper is to examine isolated Markoff values. Our work was based on
Chapter 6 of David Crisp’s thesis, The Markoff spectrum and geodesics on the punctured
torus, University of Adelaide. We define what it means for a sequence to have an isolated
Markoff value, and note those which are known to have isolated Markoff values. We then
outline the method Crisp uses to prove that certain families of sequences have isolated
Markoff values. We divide his method into three steps, and state the lemmas necessary to
accomplish each step.

We worked to convert his lemmas from using ordinary continued fraction to using back-
wards continued fractions. Our hope was that backwards continued fractions might sim-
plify the process of looking for isolated Markoff values, however problems occured with the
conversion of Crisp’s lemmas towards this purpose.

As an alternative, we began examining specific sequences using Crisp’s method. We
were able to show that several infinite families of sequences had locally isolated Markoff
values. We also worked through specific sequences, showing that Crisp’s method could be
adapted for use in a systematic manner. It seems likely that this technique could be applied
for automated use. In addition, we extended Crisp’s method using specific computations
of Markoff values. It appears that this may also be adaptable for use by computer.

This paper was completed as part of the 1994 Research Experience for Undergraduates at Oregon State
University. Sincerest of thanks to our advisor, Tom Schmidt, who provided support and encouragement
throughout the summer .
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DEFINITIONS

Definition. The ordinary continued fraction representation of a real number « is

1
o = [ap;a1,0az,a3,...] = ag + 1

a; +

az +
as +

s
where a; is a positive integer for ¢ > 1, and qo is a non-negative integer. If o has a finite
continued fraction representation, then it can be expressed as the ratio

K(ap,a1,az,...,a,)
K(al,az,...,an) 7

a = [aﬂ;al.aafh"' 7an] =

where the function K is defined as
K(ao) = Qp,
K(ag,a1) = apa; + 1;
K(ao,al,.. . ,an) = anK(ao,al,. . ,an_l) -I—K(ag,al,. .. ,an_z).
We also know that
V ' K(ag,al,...,an,l,l)=K(a0,a1,...,an,2),
K(ao,al,... ,an) = K(an,an_l,. ..,ao).

(£ 8)=(v (3 8)-(53):

Furthermore, if

then
a = K(ag,a1,...,a5);
sz(ao,al,...,an'_l);
c=K(ay,as,...,a,);
d= K(al,ag,...,an_l);

and
ax + b

(1) f(.'ZI) = C$+d = [ao;a17a27"'7anax]'

The determinant of (Z’ 3) =(-1)"*1, s0

_(ad—bc)(z—y)  (=1)"t(z—y)
(2) @) = f(y) = (cz+d)(cy+d)  (cz+d)(cy+d)
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Definition. Let A =...,a_3,a_2,a-1,0a0,a;,0z,0a3,... be a doubly infinite sequence of
positive integers. The Markoff value of A is

M(4) = sup An(A),

where
An = [an; Qn41, dn+2, .. ] + [0, Op—1,0p—25- .. ]

Note that if A is periodic then it can be re-indexed so that M(A) = Ao(.A). When this .
condition holds, we will indicate the ag position in the sequence with an asterisk.

For the sake of simplification, Crisp concentrated on sequences composed solely of 1’s
and 2’s, and we shall do likewise.

Definition. The Markoff spectrum is defined as
MS = {M(A): Ais a doubly infinite sequence of positive integers}.

Definiﬁon. Let the distance between two doubly infinite sequences, A and B, be
0, if 4 =8
a8 ={ 7 T
1/(k+1), if A#B,
where k is the largest integer such that a; = b; for —k < : < k.

Definition. Let A = {a;}1°°__ be a doubly infinite sequence of positive integers. M (A)
is locally isolated if and only if there exist ¢,6 > 0 such that for every doubly infinite
sequence B, if d(A,B) < § then either

M(A)=M(B) o |M(A)—-M(B) >e
Definition. The doubly infinite sequence A has an isolated Markoff value if and only if
there exists € > 0 such that for every doubly infinite sequence B # A,

if | M(A) — M(B)|<e  then M(A) = M(B).

KNOWN ISOLATED FAMILIES

Before searching for new infinite families of sequences that have isolated Markoff values,
we note the known isolated families. These may suggest new sequences that have isolated
points in the Markoff spectrum. From previous work we know that the following infinite
families of sequences have isolated Markoff values: - :

A ={2,1,...,1} n>1
|

Ay ={1,2,...,2} n>1

As ={1,2,...,2,1,2,...,2} n>1
N et N
2n 2n+2

Gbur demonstrated in [G] that 4; have isolated Markoff values. A; and A3 are shown to
have isolated Markoff values by Crisp [C] .
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AN OUTLINE OF CRISP’S METHOD

In his thesis, Crisp describes two new families of sequences that have isolated Markoff
values. We broke down his method for doing this into the following steps: 4

Step A.  Show that Ao(A) = M(A).
Step B.  Prove that M(A) is locally isolated.
Step C.  Assume M(A) is not isolated. Then there is a sequence . of integer sequences

whose Markoff values converge to M(A). Since the metric space consisting of
integer sequences is compact, there must be a subsequence of these sequences
that converges to a sequence B such that B # A and M (B) = M(A). Prove

that no such sequence B exists.

Because of the periodicity of the sequences Crisp examines, Step A can be accomplished
by showing that Ao(A4) > X\;(A) for —n < i < 0, where n is the period of the sequence.
The following lemmas are useful for showing this. :

Lemma 1. Let A = {a;}}°__ be a doubly infinite sequence with a; € {1,2} for all i.
Then A, < Ap, if ap < ayp. _ ,
Proof. Let a, < @.,. Then it must be the case that an, =1 and a,, = 2. Furthermore, it

can be verified that

_—1-—;——\/5 < [0;a,-,a,-+1,...] < —1+\/§, - for all 7,

and thus,
—1+v3< [0; @iy1,aita,...]+[0; Qim1,Bimzy...] < f2 + 2v/3.
Since a, = 1, it can be seen that
an +[0;8nt1,8n42,...] + [0;an-1, an_o, .. J< —14+2v3,
. and likévﬁse, since am, = 2, it must be the case that
1+vV3<am+ [0; amt1, Gmea, ] +[0;am-1, am;Q, -

Therefore,
An < Am. O

Lemma 2 (Crisp, Lemma 6.5). Let A= {a:}1>° . be a sequence of positive integers

and suppose n > 1 and a1, as,...,an_; is symmetric. Then Ao(A) > A,(A) if and only if

[ao;a_l,a_g,. ] Z [an;dn+1,an+2,. . .].

Step B is fairly easy to do using the following. Crisp adapted this lemma from the work

' of Davis and Kinney [D].
87



ON ISOLATED VALUES IN THE MARKOFF SPECTRUM

Lemma 3 (Crisp, Remark 6.2). Let A be a periodic sequence of 1’s and 2’s with
M(A) = Xo(A). If there is some odd integer k such that ax—; = a; for all integers i, then
M takes a locally isolated value at A.

The following lemmas are used to accomplish Step C. This is the most involved part of
Crisp’s method. Lemmas 6 and 7 as stated here in weaker forms than in Crisp’s thesis,
but are adequate and more clear for our purposes.

Lemma 4 (Crisp, Remark 6.4). Let A = {a;}1>°__ and B = {b;}}>°_ be sequences
of 1’s and 2’s with M(A) = Ao(A) and M(B) = AO(B) Kfa_y,a0,a; =2,2,1 then M(B)
is bound away from M(A) unless b_y,b9,b1 = 2,2,1 or b_1,by,by = 1,2,2. Likewise, if
a_1,a0,a1,a2 = 2,2,1,1 then M(B) is bound away from M(A) unless b_y,by,by,by =
2,2,1,10rb_2,b_1,b0,b0 =1,1,2,2. This result is due to the work of Bumby [B].

Lemma 5 (Crisp, Lemma 6.6). Let A = {G_(51),.--,0-1,80,01,.--,Gn} be a doubly
infinite sequence of 1’s and 2’s satisfying M(A) = A¢(A) and suppose both the sequences

Gmy. 302,01 and a1,az,...,dy

are symmetric and n,m > 0 are both even and a_tm+1) = ag. Then there is a constant
6 > 0 such that if B = {b;}};1°°__ is any sequence of 1’s and 2’s other than A satisfying
M(B) = Xo(B) and b; = a; for —m < i< n then M(B) — M(A) > 6.

Lemma 6 (Crisp, Lemma 6.2). Let A= {a;}}1>°_ and B = {§;}}1°__ be sequences of
1’s and 2’s and suppose there are integers m,n > 0 such that b; = a; for —-m <: < —n. If

further, (—1)”(an+1 — bn+1) > 0 and (—1)m(a_.(m+1) - b_(m+1)) > 0 then

Ao(B) # )\O(A) |

Lemma 7 (Crisp, Lemma 6.3). Let A= {a,}z____oo and B = {b;}1>__ be sequences of
1’s and 2’s and suppose there are integers m,n > 0 such that b; = a; for —m < i < —n
and suppose also that (—1)"(ant+1 — bnt1) > 0. Then Ao(B) # Xo(A) > 0 if

K(a1,a2,...,an,2) < K(a—1,6-2,...,a—m,1) # 2.
Also note that if (~1)™(a_(m+1) — b—(m+1)) > 0, and
K(a-1,a-2,...,6-m,2) < K(ai,az,...,a,,1) #2,

then /\0(3) ;é /\0(./4)

For both of Crisp’s families, Lemma 4 limits the possibilities for B to sequences with
b_1,b0,01 = 2,2,1. (Note that if B is the reverse sequence of B, with b, = bo, then
M(B) =M (B), thus it is unnecessary to also check B’s of the form b_1,b,5 = 1,2,2.)
Similarly, Lemma 5 rules out B’s that have b; = a; near the center, but have dlffenng
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values away from the center. For instance, with A, = {1,2,...,2}, Lemma 5 rules out all
S N’
2n

B of the form
B=...,2,...,2,2*,1,2,...,2.1,....
N——’ N’

2n—-2 2n

This then leaves a relatively small group of possible B’s which need to be tested. -Crisp
divides this group into three cases. The above example is divided into

case . B=...,2,...,2,2*1,2,....2,... 0<j<2n-2
N e’ N e’
Jj+1 J :
case 2. B=...,1,2,...,2,2%1,2,...,2,... 1<j<2n-2;
/ J j
case 3. B=...,2,...,2,2*.1,2,...,2,....
_ N e’ e’

2n~1 2n-1
These cases can be handled using Lemmas 2, 6 and 7, with Lemma 7 used most prominently.

BACKWARDS CONTINUED FRACTIONS

With an understa.ﬁding of Crisp’s method for showing that sequences have isolated
Markoff values, we undertook the task of converting his lemmas for use with backwards
continued fractions. First let us define some terms.

Definition. The backwards continued fractz'én representation of a real number 3 is

1
,Bzubo;bl,bz,bg,...”:bg— 1
b — ]
- ,
? 1
b3 - -
If the function L is defined recursively by
L(ag,) = ao;
L(ag,al) = apay1 — 1;
L(ag,al,...,an)zdnL(ao,al,...,an_l)—-L(ao,al,...,an_z);
then I( )
ap,01,02,...,0n _ .
- L(a1,az,...,a,) = llao; 1,2, an].

(- D )3 7))
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then
a = L(ao,al, e ,an);
b=—L(ag,a1,...,an—1);
c=L(a1,a2,...,an); A . }
d:—L(al,aQ,...,an_ﬂ; ) |
az + b |
(3) (@) = 22 = [log, a1, a2
Since ad — bc = 1711,
(4) 9(e) —9(y) = (cz+d)(ey + d)’

When compared with equation (2) for ordinary continued fractions, this equation is
noticably simpler, lacking the (—1)"** term. Our original hope was that similarly, other = -
equations used by Crisp would simplify when applied to backwards continued fractions.

Conversion Algorithm. Given the ordinary continued fraction
a = [ap; a1, az,as,...]
we can convert it to a backwards continued fraction representation so that

a=[lag+1;2,...,2,a2+2,2,...,2,as + 2,...]].
a.1—1 o a3—1

Thus, given the doubly infinite sequence A,
Mo(A) =[lac+1;2,...,2,a5 +2,2,...,2, a4 +2,... ]
N—— N et

a.1—1 a,3—1
+[0+1;2,...,2,a_5+2,2,...,2,a_4 + 2,...[]
N—— Ne——
a-1—1 a_3z—1

: :[]ao+1;2,...,2,a2—|—2,2,...,2,a4+2,...l]+1
N e’ N

a;—1 az—1
+[0+1;2,...,2,a24+2,2,...,2,a_4 +2,...]] - 1
L N—— N——
a-1—1 a.z—1

= [lao +2,2, ,2,&2 +2,2,...,2,a4 +2, ”

N —’ S——

a1—-1 az—1
+1[10;2,...,2,a2+2,2,...,2,a_4 +2,...]].
e e
a-;—~1 ) T a_sz~—1
We were able to verify this conversion algorithm in the work of Zagier [Z].
90



AMY POOL AND SUZANNE ZAWISTOWSKI

Definition. Let 4 = {a;}f i - be a doubly infinite sequence of integers with 2 < a;.
Then we define

3n(A) = [|an; ant1, @ntas - [] + [|0; ety Gnss ... |l

Likewise, we define

It M (.A) M (A), then we shall say that A is the converted sequence of A.

Examinatlon of Known Families as Converted Sequences. Having armed ourselves

with a conversion algorithm, we thought it might be of interest to look at the converted

~ sequences of the families which we already knew to have Jsolated Markoff values. The
converted sequences of the first two known families are

A1 ={2,1,.. 1} A1 =1{23,...,3,4,3,...,3,2} ap =4
Ne—— S—— N e’
2n n. n
Ay ={1,2,..,2} A =1{4,2,...,4,2,3,2,4,...,2,4}  a_1,a0,a1 =4,4,2
- \"__/ ) (. - J ~ - _’
2n npairs npairs

- No pattern was immediately apparent, but further examination might suggest new se-
quences to investigate.

Results and Difficulties with Conversion of Lemmas. We were interested in con-
verting Crisp’s lemmas into analogous forms for use with backwards continued fractions.
Our hope was that this would simplify the steps necessary to prove that an infinite family
of sequences had isolated Markoff values, or alternatively, that these new lemmas would
suggest new families for testing. We found that the analog to Lemma 2 holds for backwards

continued fractions.

Lemma 8. Let A= {a;} e o be a sequence of integers with 2 < a; for all i, and let a;,
@z, ..., Gn—1 be symmetric for somen > 1. Then

Xo(A) > X,(A) if and only if [Jac; a—1,a—2, - .. ] = [lar; Gnt1,anta,--- |]-

Proof. Define o = [lag;a—1,a_3,...[], and B = [|an;an+1,an+2,-..|], and let f be the
function defined as '

ax+b

() = cx + d
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. Then

Xo(4) = An(4)
@[[ao;al,ag, ce ” + [|0;a_1,a_2, . l]

> [|@n; @nt1; @nt2, - - - [] +[|0; @n—1,an-2,...|]

<[|0;a;,az,...]] +a > B+][|0;an-1,8n-2,...,01,00,.-.]] |

<[|0;a1,a2,...,8n-1,8n,-.. || + @ > B+][|0;a1,a2,...,80-1,80,a-1,8-2,...]]

&[|0;a1,a2,-..,an-1,0]] + a > B+[|0;a1,az,...,an-1,|]
&f(B)+a> B+ fla)

Sa— 2 fla) - f(B)

a—p

P2 T A+

Sa—-F2>0

sa>f

©llag;a-1,a-2,...(] = [|ar; @nt1;Gn42,... [l O

Unfortunately, Lemma 5 presented difficulties when we attempted to convert it. Crisp’s
proof of this lemma begins as follows:

Set a3 = [aGn+1;%n+2,Gn+3,-- -]
Qo = [a_(ym_,_l);a_(m+2),a_(m+3), .o ]
Br = [ba+1;bnt2,bngs, .- -]
B2 = [b—(m+1); ~(m+2)s b= (m3)-- -]
Then M(A) = [ag;a1,a2,-..,an,01]+ [0;a-1,0-2,...,8-m,q2]

M(B) = [ao;a17a27" . 7an:ﬂ1] + [07 a-1,0-2,... ’a—m7ﬁ2]-

These equations are of the same form as equation (1). Keeping in mind that the hypothesis

of this lemma requires that n and m are even, Crisp uses the fact that (—1)**1 = —1 and
thus f(a1) — f(B1) = —(chﬁ)—_(stl—m> and similarly with m. This is a condition that

can never be achieved with the simpler form found in equation (4). Directly converting
this lemma for use with backwards continued fractions is not possible, although it may be
possible to develop a lemma or lemmas that would provide a similar tool.

PuTtTiNG CRISP’S METHOD TO WORK

Having encountered a stumbling block in our work with backwards continued fractions,
we turned our attention to using Crisp’s method on select sequences of 1’s and 2’s. Our
sequences included both infinite families similar to those examined by Crisp, and specific

sequences.
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Some Infinite Families. ,
We were able to show that several similar infinite families were locally isolated, including

A, ={1,1,2,...,2}

2n :
Ay=1{1,2,...,2,1,2,...,2}, n<m-2
2n 2m :

A=1{22,2,1,.,1}
. .
2n
A ={1,...,12,...,2}%
N e N,
2n 2n+42

We were also able to apply Lemmas 4 and 5 to these families, thus limiting the remaining
possible cases for B. However, when testing the analog of Crisp’s case 1, problems occured.
Crisp’s primary tool for proving each case is Lemma 7. With our sequences, we were unable
to fill the hypothesis of K(ai,az,...,04,2) < K(a-1,a—2,...,a—m,1) necessary to show
that Ao(B) # Mo(A). With A,, A., and Ay, the additional 1’s to the right of ag force
K(ay,az,...,an,2) to always be greater than K(a_1,a-2,...,a—m,1). In the case of Aj,
a similar problem occured. This hypothesis of Lemma 7 created an obstacle to selecting

sequences for which this method would work.

SOME SPECIFIC SEQUENCES

'Ae = {1’232}
Ar ={1,1,2,2}
A, =1{1,1,2,2,2}

The first two of these sequences were both already known to have isolated Markoff
values. A. is actually the case of n=1 in Crisp’s first family. A represents one of the
Markoff numbers, which are already known to be isolated. Our interest in these sequences
was in how Crisp’s tools could be used to determine if a sequence had an isolated Markoff
value. We were unsure if 4, had an isolated Markoff value, but suspected that it did since

its Markoff value fell in the area of the spectrum where there are no intervals.
All three sequences had locally isolated Markoff values and we were able to apply Lem-

mas 4 and 5 to greatly limit the number of possible B sequences which might have the

same Markoff values. With A, and Ay it was then possible to use Lemmas 2, 6 and 7 to
show that none of the remaining possible cases for B (or subcases of B) could have the

same Markoff value as the 4 sequence, thus proving that our sequences were isolated.
Lemma 9. The doubly infinite sequence A, = {1,2,2} has an isolated Markoff value.
Proof. Let A, ={1,2,2} with a_y,a0,a; = 2,2,1. Note that
Aci(Ae) = [22,1,...14+10;1,2,2,...] = [0;2,1,...] +[2;1,2,...] = Ao(Ae).
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Also, it follows from Lemma 1 that A;(A4e) < Ao(Ae). Because of the periodicity of A,
this is sufficient to show that M(A.) = Ao(Ae). Since a_;_; = a; for all i, Lemma 3
implies that A, has a locally isolated Markoff value.

Assume A, is not isolated. Then there must exist a doubly infinite sequence B such
that B # A, and M(B) = A\o(B) = M(A.). From Lemma 4, we know that B must be of
the form b_3, 09,01 = 2,2,1 or b_;, by, b; = 1,2,2, but because the Markoff values of B and

its reverse are the same, we can assume that B has the first form. Further, we can rewrite

A, as .
A ={32 1,221} =...,2,2.1,2,2.1,...

thus satisfying the hypothesis for Lemma 5. This 1mphes that if M(B) = M(A.), it must
be the case that B is not of the form

B=...,2%1,2,2,1...

This leaves only three possible cases for B. They are

case 1. B=...,2,2*,1,1,...
case2. B=...,2,2%*,1,2,1,...
case3. B=...,2,2%.1,2,2.2 ....

We shall handle these three cases individually.

' case I. First note that a; = b; for —1 <4 <1, and (—1)"(bpt1—ant1) = (-1} (1-2) >
"~ 0. Also,
K(1,2) S K21)#£2,

which implies Ag(\A) # Ao(B) by Lemma 7.
case 2. By our assumption, A\o(B) > A\y(B). It follows from Lemma 2 that
22,6 s,...1> [%1,bs,...].
Define the function f by
f(z) = [2;2]
and let & = [2;b_3,b_3,...], = [1; ba, bs, . ..]. Thus,

Fe) 2 £(6)

fla) - f(B) =0

(—D)Ya—B)
catd)B+d) ="

But this contradicts the fact that o > 3. Therefore, \o(B) # M(B).
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case 3. We need to consider two subcases for this case. First, let b, = 1. By an
argument similar to case 2, it can be shown that Ao(B) # M(B). Now let 5_o = 2. Note
that a; = b; for—1<z<3a11d

(—1)3((14 -_ b4) >0 ‘ ('—-1)1(a_2 - b;z) > 0

Thus Lemma 6 implies that Ag(B) # Ao(A).
We have shown that there is no B such that M(B) = A¢(B) = M(A). Therefore .A must

have an isolated Markoff value. [
Lemma 10. The doubly infinite sequence Ay = {1,1,2,2} has an isolated Markoff value.

Proof. Let Ay = {1,1,2,2} with a—1,a0,a1 = 2,2,1. Using an argument similar to that
in Lemma 9, it can be shown that Ao(Af) = M(Af) Note that a_1—; = a; for all 7,
so Lemma 3 implies that Ay has a locally isolated Markoff value. Assume Ay is not
isolated. Then there must exist a doubly infinite sequence B such that B # Ay and
M(B) = Ao(B) = M(Ay). Similar to the proof of Lemma 9, we can use Lemma 4 to see
that B must be of the form b_1,b0, 51,52 = 2,2,1,1. Further, we can rewrite Ay as

Ar=1{2,2,1,1,2,2,1,1} =...,2,2%,1,1,2,2,1,1...

i:hus satisfying the hypothesis for Lemma 5. This implies that if M(B) = M(Ay), it must
be the case that B is not of the form

B=...,2*,1,1,2,2,1,1,...

The remaining possible cases for B are

case 1. B=...,2,2%1,1,1,...

case 2. B=...,2,2*1,1,2,1,...
case 3. B=...,2,2%112,2,2,...
case 4. B=...,2,2%11221,2,...

case 1. We need two subcases for this case. Let b_2 = 1. Then b; = a; for —2 <1 < 2,
and (—1)%(az — b3) > 0. Also,

K(1,1,2) < K(2,1,1) # 2

so Lemma 7 indicates that Ao(B) # Ao(Af). Now consider b_, = 2. In this case notice
that b; = a; for—1 <7 < 2. Further,

(—1)%(as —b:) >0  (=1)*(as — b_3) > 0.

Thus Lemma 6 implies that Ao(B) # Ao(Ajy).
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case 2. As in case 2 of the proof of Lemma 9, we can show that Mo(B) # M(B) using
Lemma 2.

case >3. Similar to case 1, we need to consider two subcdses. The first, when b_5 =1,
can be handled in the same method as the previous case. Consider when b_, = 2. Notice
that a; = b; for —1 <7 < 4, and (—1) (a_y — b_2) > 0. We can see that

K(2,2) <K(1,1,2,2,1),

and thus by Lemma 7, AO(B) # Ao(Ay).

case 4. This case requires several subcases. The details of the proofs of each subcase
are similar to the cases already discussed, so we shall merely indicate which lemmas were

used to handle each subcase.

subcase a: b_y =2 _ Lemma 6
subcase b: b_p =1,b_5 =2 Lemma 7
subcase ¢: b_p =1,b_3 =1,b_4=1 | Lemma 7
subcase d: b_p =1,b_3 =1,b_4 = 2,b_s5=1 Lemma 6

subcase e: b_y =1,b_3=1,b_4 =2 b_5 = 2,b_¢ =1 Lemma 7
subcase f: b_, = L,bg=1,b_4=2b_5 =2,b_g=2 Lemma 6

Thus there is no B such that M(B) = \(B) = M (As). Therefore A; must have an
isolated Markoff value. O

Our third sequence, 4,, was not so straightforward. Although the majority of cases
and subcases were easily proved using Lemmas 2, 6 and 7, there were two subcases for
which these tools were not enough. In both spots, the subcases had been taken to a level
where b; = a; for —m < ¢ < n and both b_(m+1) # G (m+1) and bpy1 # angy;. The
lemmas remained inconclusive to this point, and looking at any further subcases would
have no effect on the results of Lemma 6 and 7. We continued examining these subcases
without the lemmas by looking at the possible values which Ao(B) could take on. If a
point could be reached in a subcase where the minimum possible Ao(B) was greater than
Ao(A), or the maximum possible Ao(B) was less than Ag(A), then it would be proved that
M(A) # M(B) for that subcase. Using this technique for several levels of subcases did not
produce the results we were looking for, but a continued examination of these subcases
could eventually produce results. The following remark demonstrates the accomplished
progress for showing that A, has an isolated Markoff value.

Remark 1. Progress made towards showing A, has an isolated Markoff value.

Calculations. It can be shown with the techniques above that A, (Ag) = M(A,), and that
M(Ay) is locally isolated. Therefore, if A does not have an isolated Markoff value, there
must be a doubly infinite sequence B such that B # A, and M (B) = Xo(B) = M(A,). We
work to show that no such B exists. The basic cases we need to consider, as determined
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-by Lemmas 4 and 5, are

case 1. B = ., 1,2,2%1,1,. ..
case 2. B = ey 2,2,2,2%1,1,..
case3. B= ...,2,1,2,2,2*,1,1,..
case 4. B= ...,1,1,1,2,2,2*,1,1,...
case 5.  B=...,1,2,1,1,2,2,2% 1,1,....

In order to work with cases similar to those in Lemmas 9 and 10, we shall examine the
reverse sequences of A, and B. Thus we shall think of A, as having the form

Ay =...,1,1,25,2,2,1,1,2,2,2,...,

and likewise with each case of B. In a similar manner to case 4 of the previous proof, we
shall omit the details and list the lemmas which we applied to each subcase.

case 1.
subcase a. b_3 =1 see below
subcase b. b_3 =2 Lemma 7
case 2.
subcase a. b_3 =1 Lemma 7
subcase b. b_3 =2,b_4 =1 Lemma 6
subcase ¢. b_3g =2,b_4 =2 Lemma 7
- case 3. Lemma 2
case 4.
subcase a. b3 =1 Lemma 6
subcase b. b_3 =2 Lemma 2
case 5.
subcase a. b_3 =1 ' Lemma 7
subcase b. b3 =2,b_4 =1 , Lemma 6
subcase c. b_3 =2,b_4 =2,b_5=1 Lemma 7
subcase d. b_3 = 2, b_y =2,b_5 =2,b_g =2 see below

subcasee. b_3 =2,b_4 =2,b_5 =2,b_¢=1,_7=1 Lemma 7
subcase f. b_3 = 2, 6_4 = 2, b_5 = 2, b_s = 1, b_7 =2 Lemma 6

Most of the cases for the B sequence were easily proven using the lemmas. However,
cases la and 5d could not be handled using these methods. As an alternative we compared

the possible values of A\g(B) with M(A,). We can determine that M(4,) = ————45625208‘1'*_16900 \/li;’ ~

3.0046. By computing the minimum and maximum possible values for Ag(B) we hoped to
be able to show that Ag(B) # A¢(Ay). We also continued to use Lemma 2 when appropriate.
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case la. We begin by noting that

Ao(B) =[252,1,0] +[0;1,1,1, 5]
l1+a 1+28
2+4+3a  2+438°

where @ and f represent any continued fraction composed of 1’s and 2’s. We know that

1++3
2

<a,f<1+3,

so 1t must be the case that

2.9780 ~ 2 + 1+ (1+v8) | 14+2(15%)
' 2+3(1+v3)  243(18)

< Xo(B)

1+ (38) 14921+ +3)

~ 3.0220.
24 3(L8 V3) 24 3(1+V3)

<2+

This test is inconclusive, so we examine subcases of it.

subcase a. b—4 =1 2.9780 SAo(B) 5 3.0083
subcase b. b—4 =1,0-5=1 3.0074 Ao (B) 5 3.0391
subcase c. b—4 =1,b—-5=2 2.9780 SAo(B) 5 3.0015
subcase d. b—4 = 2 2.9961 SAo(B) 5 3.0220
subcasee. b—4 =2,b—5=1 2.9984 SAo(B) 5 3.0220
subcase f. b—4 =2,0—5=2 2.9961 SAo(B) 5 3.0187

subcase g. b—4 =2,0—5=2,b—6 =1 2.9961 $Ao(B) 5 3.0183
subcase h. b—4 = 2,0—5=2,b—6 = 2 2.9966 SAo(B) S 3.0187

Subcase a also is inconclusive, but note that subcases b and ¢ both show that Ao(B) #
Ao(Ag). These cover all possible subcases in which b_y = 1. The rest of the subcases
are inconclusive, but Lemma 2 can be used with both subcases e and h to show that
Ao(B) # M(B), thus eliminating the need to examine more subcases in those directions.
Those subcases which remain unresolved (where b—4 = 2,b—5 = 2, and b_g = 1) can
be examined further using these computational techniques. Case 5d can be investigated
similarly. '

COMPUTATIONAL POSSIBILITIES

The systematic techniques used in Lemmas 9 and 10 and Remark 1 suggest that it
may be worthwhile to develop a computer program to assist in testing for isolated Markoff
values. The simplest of such programs could compute the range of possible values of Ao(B)
for a given partially defined sequence B. This would eliminate the most tedious part of
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working through a proof such as case la of Remark 1. In addition, if the program could
be expanded to recognize and test subcases in which applying Lemma 2 might be of use,
entire cases such as la could be handled recursively by the program. It should also be
possible to design an algorithm for a fully automated system which would take a given
sequence A and a possible basic case for B and systematically test B and subcases of B
using Lemmas 2, 6 and 7, as well as using the computational technique above. This could
be a valuable tool for finding new sequences with isolated Markoff values.
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