GEODESICS WITH THREE
INTERSECTIONS ON THE
PUNCTURED TORUS

Mande Butler, J eaﬁne Carton, Emil Kraft
Summer 1995

1 Background

We classify the free homotopy classes of loops on a once-punctured torus
whose self-intersection number is three. In particular, these include the
classes which, for any Riemannian metric, admit geodesics of three self-
intersections. Qur classification is up to homeomorphism type; that is, we
identify two free homotopy classes if there js a self homeomorphism of the
punctured torus taking one class to the other. In the setting of a punctured
torus, this is equivalent to classification of the free homotopy classes up to the
action of automorphisms of the fundamental group. Our work is an exten-
sion of David Crisp’s Ph.D thesis which involved classes of loops with a single
self-intersection [C], and a paper by Dziadosz, Insel, and Wiles concerning
classes of loops with two self-intersections [DIW]. The remaining background
information in this section is as stated in [CDGISW].

Let T be a punctured torus with a Riemannian metric. The fundamental
group of T', 71(T), is isomorphic to the free group on two letters, F(a,b). We
fix such an isomorphism. There is a natural bijection between free homotopy
classes of closed curves on T and conjugacy classes of elements of F(ab). A
free homotopy class is said to be primitive if it is not a non-trivial power of
some other class. '

A closed curve on T is freely homotopic to a geodesic if and only if the
curve lies in a primitive free homotopy class which contains no simple curve
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bounding either a disc or a punctured disc. A geodesic has the minimal
number of self-intersections amongst all curves in its free homotopy class.

J. Nielsen [N] showed that every automorphism of 71(T’) can be realized,
up to inner automorphism, by some homeomorphism. He further showed that
every automorphism of 71 (T) & F(a,b) takes aba=*b7 to z(aba~1671)¥15-1
for some z an element of F'(a,b).

Theorem 1.1 Let T, and T be two Riemannian punctured tori. Let (A;,B;)
and (A;,B;) be fized generating pairs of their respective fundamental groups.
Let n be a positive integer. Let W(a,b) be a word in the letters a and b. If a
geodesic on Ty in the free homotopy class of W(A:,B:) has n intersections,
then any geodesic on T'; in the free homotopy class of W(As, By) also has n
intersections.

For proof see [CDGISW].

Corollary 1.1 A classification for a particular Riemannian punctured torus
of the automorphism classes of those free homotopy classes which contain
closed geodesics which are n-times self-intersecting is in fact valid for all
such punctured tori. ' : :

We have thus shown that the results of [CM], as proven in [C], are in fact

valid for all Riemannian punctured tori. Indeed, the result is a topological

one. In what follows, we specialize to a fixed metric only when we wish to
show a geodesic in a particular free homotopy class has exactly the claimed
number of self-intersections. In fact the surface we use is the quotient of
the Poincaré upper half-plane by the commutator subgroup of the modular
surface, exactly that studied by these other authors. We thus discuss this
specialization.

We consider the particular once-punctured torus T, the quotient of the
Poincaré upper half-plane, H, by the commutator subgroup of the modular
group, I'. This torus has constant curvature minus one - thus, there is at
most one geodesic in each class - and admits H as its universal Riemannian
cover. The action of I on H is given by linear fractional transformations.
We use a standard fundamental domain D for this action - a quadrilateral
with hyperbolic line segment boundaries of vertices -1,0,1,c0.



We take A:(; ;) and B=(_11 —21> as generators of [V = F(A, B).

Thus, given a word W in A and B, by matrix multiplication we find a corre-
sponding matrix in I". A hyperbolic element of I is one of trace greater than
2 in absolute value. Each such fixes an axis - a geodesic of H, thus a semi-
circle with center on RUco. Free homotopy classes correspond to conjugacy
classes in I". A free homotopy class has a closed geodesic in it if and only
if the corresponding conjugacy class in hyperbolic. The geodesic in such a
homotopy class is then the projection of the axes fixed by the elements of the
conjugacy class. Indeed, the geodesic is the 1-1 projection of those segments
of the fixed axes which lie in D. Furthermore, for a reduced word in A and
B representing an element of the conjugacy class, the cyclic permutations
of this word determine all axes which will have geodesic segments weithin D.
We refer to [C] for a more detailed presentation of these standard facts.

Thus, to find the number of self-intersections of the unique geodesic in the
(hyperbolic) class [W], for a given word W in A and B, we find the number
of intersections within D of the axes of those matrices which arise from the
cyclic permutations of the word of W. That is, for each cyclic permutation
of W we find the corresponding element- M€I” as a matrix. There is a
straightforward formula for the endpoints p;,p, €R. of the axis of M. Thus,
we find each axis. We then simply count the number of intersections which lie
in D of these finitely many axes. Note that this determination of the number
of self-intersections of the geodesic of W has been reduced to arithmetic.

2 Introduction

Our goal is to classify geodesics on T with three transverse self intersections.
To do so, we consider four simple loops, as justified by the following lemma
taken from Crisp, Dziadosz, Garity, Insel, Schmidt, Wiles [CDGISW].

Lemma 2.1 Up to free homotopy any | on T with k transverse self inter-
section points can be formed as the compostition of k +1 simple loops which
intersect at a single point.

In answer to the question of what types of simple loops are found on the
punctured torus, we state a result that follows directly form the classification



of surfaces. See Birman and Series [BS] for a discussion of this and other
results about simple loops on surfaces.

Theorem 2.1 The conjugacy class of a simple loop 1 of T is either,
(i) the identity and [ bound a disc, |

(i) one of [aba1b™1] or [bab™a"] and | bounds a punctured disc, or

(i) [w] where w is a generator of (T) and | does not separate T.

In the next section we classify the types of generators found on T up to
reflection and orientation. The method by which we schematically represent
T'is from [C]. T is cut along some loop I whose image in 71(T') is a generator to
obtain a disc bounded by ! containing the puncture and a hole also bounded
by I. This operation is illustrated by Figure 1.
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3 Discussion of Loops

Theorem 3.1 Given a generating pair {a,b} for m, (T), any other generator -

representable by a simple loop is equivalent to one of the following siz, up to
orientation and reflection,

(i) a
(i) b
(iti) bab~!
(iv) aba™?
(v) ab

proof: Cut T along a. Now a and b can be schematically expressed as in
Figure 2.

A loop, I, can either start and end on the same side or different sides of
a.

Assume it starts and ends on the same side of a. If [ bounds nothing it is
an identity loop and hence not a generator (by Theorem above). If I bounds
just the puncture it is not a generator. If / bounds the puncture and the
hole, it is homotopic to a. If it bounds the hole but not the puncture it is a
seperating curve and thus a generator. '

Figure 2



Ii the loop, b, is present in the bouquet, all loops around the hole but not .
the puncture intersect it more than once except for bab™!, ba~1671, b1gp,
and b~'a~'b which are the same up to orientation and reflection.

If the loop, b, is not present, all such loops can be deformed to the above
four. Refer to this class of generators as bab-! (iii).

- Assume a loop, [, starts and ends at different sides of a. Then I starts and
ends at either the same side or different sides of b. Suppose I starts and ends
at the same side of b. If the puncture is not contained in the region strictly
bounded by 4 and I, the loop [ is homotopic to b. If the puncture is contained
in the region strictly bounded by b and /, the loop is aba™, ab~la"!, g=1pq,
or a1, which are all the same up to orientation and reflection. Refer to
this class as aba™? (iv).

Suppose it starts and ends at different sides of b. All such loops #tersect
a or b more than once except ab, a~'b, ab™l, a1p71, g, b~*a, ba~?, or b71g1
which are all the same up to orientation and reflection. Refer to this class as
ab (v). ©

We now present a lemma before introducing a theorem classifying the
possible generators on 7.

Lemma 3.1 Given three non-homotopic generators of m1(T), representable
by simple loops, that intersect only at the basepoint, each one of them must
form a basis with at least one of the other two.

proof: Suppose Iy, Iy, and I3 are such non-homotopic generators. WLOG
cut along [; - call it a. Assume neither I3 nor I3 forms a basis with ;. 1; and
I3 are not homotopic but bab~! is the only generator which doesn’t form a
basis with a so we have a contradiction. Q.

Theorem 3.2 Let {ll; b2y ..., 1} be a collection of non-homotopic generators
of m1(T) representable by simple loops which intersect only at the basepoint.
Then n<{ and generators for m1(T) can be chosen so that {ll,lz,...,ln} s
~one of:

() o
(i) a, b;
(iii) a, bab=1;



(iv) a, b, bab™!;
(v) a, b, ab;
(vi) a, b, ab, aba™!.

&

Figure A Figure B Figure C
I I I
Figure D Figure E Figure F

proof: Assume n=1. Cut along /; and call it q (i).

Assume n=2, thus there are two generators /; and I5. Cut along I; — call
it a. Either the I, doesn’t form a basis with [; or it does. Suppose it doesn’t.
Then I, is bab™!, the only generator that doesn’t form a basis with q (iii).
Suppose I; forms a basis with I;. Then take I, to be & (ii).

Assume n=3, thus there are three generators, [y, Iy, and I3. By the above
lemma, each generator must form a basis with at least one of the other two.
So of the pairs (I3, I3), (I, l3), and (I3, 1;), two or three of them form a basis.

WLOG assume (I1, I5) and (I, I5) are both bases pairs and (I3, [;) isn’t.
Cut along I; — call it a. Call I b. Then I3 must be bab™! since bab-! is the
only generator that forms a basis with b and not with g (iv)



Now assume all three pairs form bases. Cut along I} — call it a. Call /,
b. abis the only generator that forms a basis with a and with b so call I3 ab
(v).

Assume n=4, thus there are four generators, I, I, I3, and l;. Assume
each possible pair forms a basis. WLOG cut along I; — call it a. Call {5
b. The only generator that forms a basis with a and with & is ab. So there
do not exist four such generators. So at least one pair doesn’t form a basis.
WLOG say (I, 13) doesn’t form a basis. By multiple applications of Lemma
3.1, I; must form a basis with l; and with 1,. Similarly, I3 must form a basis
with /; and ;. Cut along I} — call it a. Call I3 b. I3 must be aba~! since it
is not a basis with [, (b) and is with Iy (a). Finally, I, forms a basis with [y
(6) and with I3 (aba™1) so I, must be ab (vi). Note that I, and I; are forced
to be a basis pair. ,

Assume n=>5, thus there are five generators. This would be a combination
of every generator from Theorem 3.1. aba—! and bgh-! can’t both exist in the
~same bouquet because they intersect each other more than once. So there
is no five non-homotopic generator case. Clearly, given n>6, there will be
homotopic repeats. Q

€

Theorem 3.3 Any configuration of four non-trivial simple loops on T, which
intersect only at the basepoint, is automorphic to one of the following nineteen
configurations.

proof: Assume there are zero generators and four loops around the punc-
ture. Cutting along any generator will yield:

-

Il T

Figure 3.1



Assume there is one generator and th
along the generator to yield:

ree loops around the punture. Cut

Figure 3.2
Assume there are two generators and two loops around the puncture.

Add a homotopic loop to ; of Figure A (this is denoted in the fo
by adding one loop to (11,A). Cut along [; to yield:

2

llowing text

Figure 3.3

Observe Figure B to yield:

Figure 3.4



Obersve Figure C to yield:

Figure 3.5

Assume there are three generators and one lo

op around the Runcture.
Add two homotopic loops to (11, '

A) and cut along 7; to yield:

[

Figure 3.6

Add one homotopic loop to (11,B) and cut along 15,

or add one homotopic
loop to (I2,B) and cut along [, to yield:

Figure 3.7
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Add one homotopic loop to (11,C) and cut along [y, or add one homotopic
loop to (12,C) and cut along {; to yield:

s

Figure 3.8
Observe D to yield:

Figure 3.9
Observe E to yield:

Figure 3.10
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Assume there are four generators and zero loops around the puncture.
Add three homotopic loops to (I;,A) and cut along /; to yield:

Figure 3.11

Add two homotopic loops to (I;,B) and cut along [;, or add two horﬁotopic
loops to (3,B) and cut along I, to yield:

Figure 3.12

Add one homotopic loop to ({;,B) and one homotopic loop to (I3,B) and
cut along /; to yield:

Figure 3.13
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Add two homotopic loops to (11,C) and cut along

or add two homotopic
loops to (12,C) and cut along I, to yield:

[

Figure 3.14

Add one homotopic loop to ({1,C) and one homotopic loop to (I5,C) and
cut along /; to yield:

)

Figure 3.15

Add one homotopic loop to (11,D) and cut along I, or add one homotopic
loop to (3,D) and cut along I3 to yield:

Figure 3.16

13



Add one homotopic loop to (12,D) and cut along I, to yield:

Figure 3.17

Add one homotopic loop to (I1,E) and cut along [, or add one homotopic

loop to (I3,E) and cut along I,, or add one homotopic loop t& (I5,E) and cut
along /3 to yield:

—o

Figure 3.18
Observe F to yield:

Figure 3.19



4 Cross Method Analysis

Upon classifying the unique pictures of various combinations of four simple
loops on a punctured torus, it is possible to use a technique derived from the
basepoint analysis in [CDGISW]. When dealing with three rather than two
intersections, the basepoint graph of each picture consists of eight segments
joined at a single point (as seen in Figure 4). Yet, with three intersections,
when the eight point star is pulled apart to reveal the individual intersections,
two possible configurations arise (Figures 4.1b and 4.2b).

€ Ak

Figure 4.1a Figure 4.1b

Figure 4 -
Figure 4.2a ‘ Figure 4.2b

In order to simplify analysis we would like to show that the basepoints
of all possible loops with three intersection can be expressed in one of these
forms. A counter-example shows that not all loops with three intersections
can be drawn as Figure 5.

Figure 6.1 . Figure 6.2
Figure 5
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Lemma 4.1 Given a loop on T with three transverse intersections that in-
tersect at only one point, the basepoint can be pulled apart along two segments
as shown in Figure 4.2,

proof: Assume there exists a curve with three self intersections whose
basepoint cannot be deformed to F igure 4.2b. Beginning with three single
crosses, two must first be joined by a segment (Figure 6.1). Next, a third
cross must be joined. When adding a third cross, in order to avoid any con-

leaving the other two to be Joined in a closed loop (Figure 6.2). Yet, after

such a connection is made, the entire three intersecion loop cannot b traced.
Thus every curve with three transverse intersections can be expressed in the
form shown in Figure 4.2b. ©

Now using the fact that all basepoints can be expressed in this form, each
of the unique pictures can be analyzed more, efficiently. The uniqueness of
Figure 4.2b is that the segments labeled a and b must be located on adjacent

Theorem 4.1 The conjugacy class in T1(T) of a loop on T with three non-
trivial self-intersections is one of

(a) [g(a*)]

(6) [(aba=p=1)4] or [(bab™1a1)4]
(¢) lg(a(aba~1p-1)3)]

(4) [9(aa(aba=15-1)2)]

(e) [g(aaba‘lbab‘_la‘lb)]

(f) [g(aaba‘la‘lb‘laba‘lb‘l)]
(9) [g(abab‘la“lbab‘la‘lbab‘l)]
(h) [g(aaaaba‘lb"l)]

(i) [9(aabba=1p"1)]
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() lg(aabab=aba=1p"1]
(k) [9(aaba=1b"1abab1)]
(1) lg(aabab=ta"1bab=1)]

(m) [9(aaaba=la"1p71))
(r) [9(aaaabd)]
(o) [g(aaabab™?)]

() lofacbaat™)]
(9) [g9(abab=ra"tba=1571)]

for some g € Aut 7,(T).

&

proof: Case 1: First the possibility of identity loops must be addressed.
If one of our four loops is the identity, by its nature, the loop must connect
adjacent segments of the basepoint. In fact, if an identity exists, in order
to maintain all three intersections, it must connect segments a and b. If it
were to connect any of the other segments, one or more intersections would
be lost when it was pulled away. By connecting segments a and b, Figure 6.1
appears. Since the center loop is the identity, the basepoint can be pulled
back into a six star which denotes three simple loops. We can refer back
to [CDGISW] where a full case analysis of the combinations of three simple
loops is presented. Two three intersectors were discovered in their analysis,
‘namely (q) and (i) in the previous Theorem. )

Cases 2-20: Since Figures 3.1-3.19 exhaust all possible combinations
of non-trivial loops, the cross method, performed on each, eliminating all
simple, one and two intersectors, produces a complete list of loops with three
intersections (see Table 1 — Note: Loops are labelled a = ¢;, continuing
clockwise in order of appearance on the basepoint graph.). A sample analysis
is as follows. Q

Analyzing Figure 7.1, we can create its basepoint star as in Figure 7.2.
Exiting the star along a loop is denoted by the number of the loop and
reentering the star is denoted by that same number prime. Since the figure
is not symmetric about the horizontal, all possible adjacent pairs of segments
.on the star must be fit to a and b on Figure 4.2b and tested.
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4 2
Figure 7.2
Figure 7.1
3 3 2 4

2—L3' 3T 2 yT 4 r—1

1 2 3 3
4 —!-_—2 1——}—‘——-4 2‘—}‘— 1 3—{——4

1 4 4 I 1 4 2 1

NO 1372'4 124°3° 12'3°4”

" NO NO '12'4’3 ¥
NO

The eight labelled crosses above allow us to find which loop combinations
can possibly yield three intersections. If a number and its prime are on op-
posite ends of a segment, the loop continually repeats itself and we cannot
trace out three transverse intersections. Therefore, those cases can be elim-
inated. As in the last cross, if only two loops can be traced those cases can
be elimated as well. ‘

Therefore, the only configurations. left to be analyzed are ¢,£;%¢; et
LbA7N057, 00510507 and £4514745. Due to the lack of symmetry in this
particular case, each of these loop combinations and their inverses must be
analyzed. (If horizontal symmetry occurs within the picture, a combination
and its inverse always produce the same word.) Now, assign each loop its cor-
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responding word. {4; = a, £, = aba~1b™1, 45 = aba~1b7, 4, = b, Plugging in
these words or their inverses, £,£;10;1471 yields abab'a"1bab—la=15-! which
can be reduced to aaba~lbab~1a" 0. (6165152"124_1)_1 yields the same word.
614,071457 and its inverse both yield aaba='6"16"1gba~1b~! which through a
series of steps reduces to aaba='6~! which is a one intersector case and can
be eliminated. ¢,£;1¢3%4;! and its inverse yield the same as the first case
since the words for £;* and £;* are equivalent. Finally, £,£;10;1 05 and its
inverse yield abab™'a"?6" aba "6~ which also reduces to the same word as
do the first and third combinations.

To simplify a bit, all pictures consisting of four concentric loops, (Figures
3.1,3.2, 3.3, 3.6, 3.11, 3.14, and 3.15) can be analyzed together using an un-
oriented picture. Figure 8 only produces three intersections with the pattern

51523433. . - %
1 4
-3 __ 1 4
> |
Sl . ll N
1’ 2’
1243
Figure 8

Figure 3.1 yields (aba~'671)%. Figure 3.2 yields aaba~16"'aba =15~ aba~15-1.
Figure 3.3 yields aaaba~'b~'aba6~. Figure 3.6 yields aaaba=16~1. F igure
3.11 yields a*. Figure 3.14 yields aaabab=?, and Figure 3.15 yields aabaab™!.

Continuing this process, each picture can be analyzed. After the possi-
ble three intersection loop configurations are discovered through the cross
method, the words for each loop are joined. Some reduction is still necessary
at this point. Each word must be reduced to shortest length and compared
to see if it corresponds to any simple, one-intersection, or two-intersection
loops. No cases of greater than three intersections occur due to the nature
of the method. Table 1 shows the results of this method in their entirety. ©
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Theorem 4.2 4 closed geodesic on T has three self-intersections if and only
Y it is in one of the Jollowing free homotopy classes

(a) [9(a(aba™671)%)]

() [o(aa(aba—tt-2)2)

(c) [9(aaba=1bab~1a"1p)]

(d) [9(aaba~la b aba—1b—1)]
(e) [9(abab~ a~1bab~la—1bab )]
() lo(aaaaba-it)]

(6) lg(aabba~1-1)

(h) [g(aabab‘laba‘lb‘?] s
(1) [g9(aaba=tb"1abab™1)]

() lg(aabab=*a"1bab™1)]

(%) [9(aaaba=ta"1p71)]

() l9(aaaabb)]

(m) [g(aaabab~)]

(1) lg(aabaa~1)

(0) [g(abab=la"1ba~1p71)]

for some g € Aut piy(T).
proof: To find all classes of geodesics with three self-intersection, apply
Theorem 1.2 and eliminate all non primitive loops (namely, a*, (aba=1p71)*,

and (badb™'a™1)*). (The terminology ‘non primitive’ is explained in detail in
(C).) Thus the only candidates left are classes (a)-(o) above.
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TABLE 1

li‘igure | Possible Loops |

Reduced Word

l Intersections H Classiﬁcatioﬂ

3.1 £1€2€4£3 (aba"lb‘l)4 3 (b)
3.2 £1020,05 a(aba=1p71)3 3 (c)
3.3 €1€2€4£3 aa(aba‘lb‘l)z 3 (d)
3.4 N e aaba~tbab~1q=1p 3 (e)
Gl e aaba~lbab~1q"1p 3 (e)
007107, aaba~tbab=1q=1} 3 (e)
(64574571 85) T aaba~'bab1g~1} 3 (e)
Il aaba~tbab=1q~1} 3 (e)
(Gl 81,1 aaba~'bab~1q~1} 3 (e)
00,0710t aaba~'p~t ~ o1
) (Eleggzlfgl)—l aaba'lb‘l 1
3.5 L10,4507" aaba™la 1 Tahg =151 3 (f)
(€1820505 1)1 aaba~'a"1p"1gpg~Tp T 3 (f)
010287 g aaba~la"16"Tqpg 15T 3 (f)
(618507 25)T aaba~ta=1b " 1gpg—Tp-1 3 (f)
300077 aaba~'a=1p1ghg1p 1 3 (f)
(6ad38,05") aaba'a"1b"1gbg1p ! 3 (f)
0051451, abab™la1bab~1a=Tpgp1 3 (g)
(683 45 44)™T | abab~Ta ThabTq-Tpgp1 3 (g)
L4770 aba=tp1 0
(65 07103 T) T aba=1p1 0
3.6 £1498,05 aaaaba=1p—1 3 (h)
3.7 40,450, aabba=1p-1 3 (i)
(61£44505)~1 aaba™1p-1! 1
€1f2£21f3 aaba“lb‘l 1
(21222;“123)‘1 aaba‘lb‘l 1
NI aaba=1p~1 1
(41857 846,)7T aaba=1p~1 1
€1£4€2£3 aaba‘lb‘l 1
(£1€40203)1 aaba=1p~1 1
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| Figure | Possible Loops | Reduced W.
ced Word

l Intersections H Classiﬁcatiorﬂ

3.8 £14,0,0
(5132&33)3—1 cuzl[jailalnz‘lb"1 3
— aaba=1b"1ghad~! 3 - —’
(EIEJSKZ)_I aabaé—laba—lb—l 3 (k)
iy aaba b 1gbab? 3 -
Tt aabab='a"1pad~T 3 5
. cuzbczr,ﬁ‘la"lbab‘1 3 o
G aqba 1= 1abab—1 3 (1)
iy aabab=lqbg—1p~1 3 =
G aaaba=lg=1p-1 3 e
4152152351 ‘aaaba'la_lb'l 3 &
(0l 005 T) T . ; .
3.9 61241351353 ‘ . .
Tt aaba~1bab“1a‘1b 3
e aaba=lbab~1a"Tp 3 E
o aabba~1p-1 3 (e)
e aabba~1p1 3 g
(£1240,051)7T catheTE ; g
) aabba=1p1 3 .
e aabalbab~1q-1p 3 2
T Ellef;lf‘l aaba~tbab1q-1p 3 X
(&54—1[2—1%—?)—1 aaaabd 3 &
] aaaabb 3 e
(5152-134—1{—?)—1 aaaabb 3 o
g.ll — 23 aaaabbd 3 =
12 £14,0,05" a: : 6
00,0505 ; 1 .
3.13 eleseglzl < 1
L abab™?! 1
3.14 Mzej -
3.15 YN €3 e 1
- 3.16 3152&‘2;1 ST g :
00,0514, Zzbﬁz—lb_l ; 8
a"tbab™1 2 -
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LFigure | Possible Loops | Reduced Word | Intersections I Classiﬁcaticm

3.17 E1€3é;1£4 aaaabb 3 (Il)
f1€4€2€51 02 1
3.18 00,077 077 a 0
0030570 T aaba~1p1! 1

3.19 00570510, aabba=1b71 3 (i)
(314;1&7124)_1 a® 2

00307101 aabba=1p1 3 (1)
(bls07e5M) T a 0

5 Distinctness

Note that two loops on 7' cannot be in automorphic conjugacy classes in

71(T) if they are not in automorphic conjugacy classes on the normal torus.
T’. When we remove the puncture from T, loops can be deformed as follows:

(i) [aaba~la"1b"1aba1p1], [abab~'a"1ba~1671] are in [Zd)

(i) [a(aba=1b71)3), [aaba~"bab~1a"1p), [aabba™167], and [acaba™ta=1571]
arein[g ' (a)]

(iii) [ea(aba=15"1)2], ['a.bab‘la‘lbab‘la‘lbab‘l], and [aaaabb] are in [g(a?)]’

(iv) [eaaaba=1b71], [aabab™ aba=1p71], [aaba~'b~1abab™1], and [aabab~ta"1bab™]
arein [g 3)] (a

(v) [aaabab™], and [aabaab~] are in [9(a®)])

for some g € Autmy(T).

With this result, distinctness within each category would imply total
distinctness. To discuss distinctness within the categories we must introduce
the concepts of a minimal word and of direct reduction.

Let w be a word in m;(T). Let [9(w)] denote the automorphism class of
w. Let L(w) denote the length of w. If there exists no word v€[g(w)] such
that L(v) < L(w) then w is a minimal word.
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Let A be the set of all possible automorphisms from 71(T) to itself. Then
fi(a,0) = (b,a),g: (a,b) — (@71,8), and & : (a,b)  (ab, b) span A, and
are named fundamental automorphisms. This is known because f.g,and A
can easily be shown to span a set of three other automorphisms proven to
span A and presented in [C].

Consider an automorphism . Factor it into its fundamental automor-
phisms. '

Y =F9fg9fhgfhgf --- fghgfef

Think of applying v to a word by applying the fundamental automor-
phisms of its factorization one by one. Repeated applications of f or g in
any order will never change the length of a word, only interchanging letters
and inverses. Since any automorphism that factors into only #’s and %’s will
never change the word’s length, automorphisms of this type are called incon-
sequential. Automorphisms that take a word to cyclic permutations of itself,
also never change length and are thus inconsequential.

The only timie a reduction or enlargement can occur is through the ap-
plication of an 2. Now reassociate the string of fundamental automotphisms
into fundimental components, or groupings each of which contain only one

h.
1= (f9f9fhg)(fhaf)--- (fohgfgf)

Let the number of A’s in factorization of 4 be k. Rename the tth funda-
mental component ¢; for all i between 1 and %.

Y = CkCg—q--- C2Cy

Because a given ¢; doesn’t factor into f’s and ¢’s alone it may reduce or
enlarge a word. Automorphisms of this type are then named consequential
automorphisms. Furthermore in factoring v into a composition of fundamen-
tal components we’ve factored 7Y into a maximal number of consequential
automorphisms.

If there exists an automorphism v from some w ¢ 71(T) to a minimal
word such that,

L(w) > L(¢; (w)) > L{czar(w)) > -+ > L(cp_y - - czc1(w)) > L(v(w))

then w reduces directly.
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Conjecture 5.1 Every element in the free group with two generators can be
directly reduced.

In all of our experiences this conjecture appears to be true.
Theorem 5.1 The fifteen words presented in Theorem 4.2 are each minimal.

proof: Any given fundamental component will be equal to one of only
32 possible automorphisms. It can be seen that none of these 32 possible
fundamental components will reduce the length of any of the fifteen words
on the list. By the above conjecture, if any one of the fifteen words were
not minimal, then there would exist a fundamental component that would
reduce its length. Thus by contradiction, each word on the list of fifteen is
minimal.Q ' :

Lemma 5.1 If two minimal words w and v are such that L(w)#L(v) then w
and v are distinct up to automorphism.

proof: Assume that w and v are minimal such that L(w)#L(v) and
that w and v are elements of the same automorphism class. WLOG let
L(w) > L(v). Then there exists a word v € [g(w)] such that L(v) < L(w),
thus w is not minimal. =<«

Applying this result to the above five categories reduces the argument
for total distinctness to that of showing distinctness between the elements of
{laabab~'aba=167"], [aaba~1b~ abab™], [aabab~'a"1bab~"]} and {[aaabab™],
[aabaab]}. :

Lemma 5.2 Let w; =[aabab~aba™'], wy=[aaba~1b~' ghg1p~1 )y ws=[aabab™'a ' bab=1],
vy =[aaabab™], and u;=[aabaab™']. Then the elements of {wy,we,ws} and
{w,%} are distinct up to automorphism. '

proof: Citing a result from Whitehead [Wh], two minimal words are in
the same automorphism class if one is the image of the other after applying
any finite combination of level transformations. In our context of a free
group with only two generators, Whitehead’s level transformations for any
word w are the fundamental components such that the length of the image
of w equals the length of w.
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So consider w;. An exhaustive set of level transformations for this word
is {p; : (a,b) — (a,a7'b),p; : (a,b) (a,6a71),p3 : (a,b) — (a,ba),py :
(a,8) = (a,ab),ps : (a, b) — (a,a7'71),ps : (a, b) = (a,b7%a™), p, -
(a,b) = (a,b7%a),ps : (a,b) s (a,ab™")}. Each of these level transformations
maps w; to a word that is equivalent to w; up to inconsequential automor-
phism. Say p; has been applied to w;. Let ¢ be the inconsequential automor-
phism such that w; = gpi(w;). Then for pi(w1), {p1g,p2q, - -- ,Psq} consti-
tutes a complete set of level transformations. Note that pigpi(w1) = pj(w,),
which is, as before, equivalent to w; up to inconsequential automorphism.
Continuing inductively, the image of w,, after applying any finite combina-
tion of level transformations is equivalent to w; up to inconsequential auto-
morphism. Since w; and w3 are not equivalent to w; up to Inconsequential
automorphism, no image of w; after repeated level tranformations will ever
be equal to w, or w3. Thus w; 1s distinct from w, and w3 up to automor-
phism. This analysis can be duplicated for the other four words.Q

Theorem 5.2 The fifteen words present in- Theorem 4.2 are distinct up to
automorphism and thus the list is minimal.

proof: This result follows directly from the preceding discussion.Q
Each of the fifteen words from Theorem 4.2 are illustrated on the once-
punctured torus in the following F igures 9.1-9.15.
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Figure 9.1 A loop on T in the free homotopy class [aaba‘lb“laba"lb"laba“lb‘lj

©

Figure 9.2 A loop on T in the free homotopy class [aaaba‘lb‘laba‘lb‘l]
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Figure 9.3 A loop on T in the free homotopy class [aaba~1bab—1q-1 b]
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Figure 9.4 A loop on T in the free homotopy class [aaba“la“lb“laba‘lb‘l]

Figure 9.5 A loop on T in the free hémotopy class [abab™"a" bab~ a1 bab ]

©

Figure 9.6 A loop on T in the free homotopy class [aaaaba=1b7]
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Figure 9.7 A loop on T in the free homotopy class [aabba=1571]
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Figure 9.8 A loop on T in the free homotopy class [aabab™laba=1b71]

>

Figure 9.9 A loop on T in the free homotopy class [aaba~'b"1abab™!]



Figure 9.10 A loop on T in the free homotopy class [aabab™ a=1bab™]

Figure 9.11 A loop on T in the free homotopy class [saabaa~1p-1]

\
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Figure 9.12 A loop on T in the free homotopy class [aaaabb]



Figure 9.13 A loop on T in the free homotopy class [aaabab™!]

Figure 9.14 A loop on T in the free homotopy class [aabaab™]

Figure 9.15 A loop on T in the free homotopy class [abab~a"1ba"1571]
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