A Mathematica Program for Classifying
Geodesics With k Self-Intersections on the
Once-Punctured Torus

Susan Garner Garille
Lafayette College
gs60@lafibm.lafayette.edu

August 9, 1995

Abstract

This program develops a list of possible geodesics on the once-
punctured torus with k self-intersections. It generates a list of words,
each having & + 1 initial elements, as all combinations of six simple
loops. It then continually eliminates impossible combinations and
reduces words.

Keywords: geodesics, intersections, punctured torus, M athematica

1 Introduction

At the end of June, I was presented with the possibility of working
on the problem of classifying the geodesics that self-intersect non triv-
ially three times on the once-punctured torus. Including myself, there
were four people working on this project. Using results obtained by
previous investigators of the subject, we each worked diligently on de-
veloping a method for determining the answer to the question. Once
some possible methods were established, the work that then needed to
be done was tedious and time consuming. I considered it the kind of
work where it was very easy to make an error. As I wrote down strings
of a’s, b’s, a=!’s, and b~1’s I couldn’t help but continually think that

33



there must be a way to program a computer to do all of this. Al-
though developing the names of the geodesics on your own can be a
rewarding research experience, the results are what people want. The
results are what people will look at so that new information can be
developed. Needless to say, I decided that it could be done especially
with the new theorem we developed in the first weeks looking at the
three intersector case.

This report describes an algorithm that generates a list of words
that describe geodesics on the once-punctured torus with k self-intersections.
The algorithm uses a lemma and a theorem from (Dziadosz, et al.)
and [Butler, et al.), respectively. The main idea behind the algorithm
is to develop a “big” list of all possible words then eliminating impos-
sible combinations and reducing and eliminating duplicate words. I
wrote the program in Mathematica and from here on (except for the
theorem statements) I will refer to a= as A and 5! as B, since this
is the notation I used in the program. The Appendix contains a copy
of the program for the two-intersector case which takes less than two
minutes to run.

2 Background Information

The following results are necessary for understanding and verifying
that my method for developing the initial list of all possible “words”
is allowed. A word is a sequence of a’s, b’s, A’s, and B’s that describes
a composition of curves. 4

Lemma 1 (Dziadosz, Insel, and Wiles) Up to free homotopy, any
loop on T with k transverse self-intersection points can be formed
as the composition of k+1 simple loops, which intersect at one point
[called the “basepoint”].

Theorem 1 (Butler, Carton, and Kraft) Given a generating pair
a,b for II;(T'), any other generator representable by a simple loop is
equivalent to one of the Jollowing siz, up to orientation and reflection:

(i) a
(i7) b
(i) bab~!

34



(iv) aba~t
(v) ab

With this information, I know that a geodesic with k self-intersections
will be a composition of £+ 1 of the loops below (represented by bold
lines). Each of these loops can be described in terms of a and b accord-
ing to its orientation (clockwise (CW), counterclockwise (CCW), left
to right ({—r), or right to left (r—!)) and the orientation of a (CW
or CCW) and b ({—r) or (r—I). Below each picture are all possible
namings of each curve. The letter at the top of each box denotes the
name of the set of all elements in that box. Each non-reduced word
has four elements, each element being the descriptor of one of the sim-
ple loops. In the program, n is the number of elements in the word.
For example, n = 3 for the two intersector cases and n = 4 for the
three intersector cases. In other words, n = & + 1.




b CW |CCW || CW | CCW

[—r || abAB | baBA ||| AbaB | bABa

r—l || aBAb | BabA ||| ABab | BAba

b CW | CCW || CW | CCW
l—r || baB | bAB ||| bAB | baB
r—l || Bab | BAb ||| BAb | Bab

b l—r | 7=l l—=r | r=l
l—=r || Aba | ABa ||| abA | aBA
r—l || ABa | Aba ||| aBA | abA

b [—=r | r—=l ||| l-r | r—I
l—r || Ab | aB ab | AB
r—l || AB ab aB Ab

36




When these loops are combined, some rules apply. One rule is that
the “default” descriptors are a and b. For example, if a composition of
curves does not contain loop a or loop b, then the other curves should
be described by a and b, not A and B.

3 Developing the “Big” List

The first step of the program is to generate a list of all possible com-
binations of the six simple loops for words of n elements. This “big”
list is made up of three smaller lists. The first list is that of all curves
that do not have any generators (i.e. only have loops around the punc-
ture). Since these types of compositions do not contain loops a, b, A
or B, then the only possible elements in the words are the names of
the loops that are formed using @ and b as descriptors: abAB, baBA.
Mathematica has a command, Outer[List, list;, listz, ... ], that
gives you all possible combinations of elements. I used this to develop
this list and the other two that make up the “big” list.

The second two lists are those words that contain at least one gen-
erator. Without loss of generality, assume that one of the generators
is A or a. Since cyclic permutations of a word are equivalent, the
generator (A or a) can always be the first element (denoted w1l or
vl in the program) of these words. A only needs to be considered if
the picture of the composition of the curves is asymmetric. This only
occurs when R or R’ are elements of the word. So, generate a list
where the first element (v1) is A and the rest of the elements (v2,v3

. ,vn) are anything from P/, Q, R’, S’, T, or U’. From this list,
eliminate all words that do not contain anything from R’ (since those
are symmetric and we can re-orient the pictures and force the first
generator to be a).

Next, generate a list of words where the first element (w1) is a
and the rest of the elements (w2, w3, ... wn) are anything from P,
&, R,S T,orU.

Once these three lists are generated and joined, the entire list (de-
noted Listl in the program) of possible words for curves with & self-
intersections has been formed. It is a list of ALL possible words for
geodesics with k self-intersections.

37



4 Eliminating Impossible Combinations

Some combinations of elements are not possible and need to be elimi-
nated from the big list. The next steps of the program find and delete
these cases from List1. The M athematica commands used to find and
eliminate these words were Select[list, criteria], which finds all ele-
ments in [2s¢ that fit the indicated criteria], and Complement[eall, ¢],
which eliminates elements in e from eall.

Words that do not have anything from () cannot have anything
from T or U. These words can be eliminated from the List1 to form
List2. .

If a word has b as an element, then is cannot also have aBAb,
BabA, Bab, or BAb as elements since these loops are described using
B as a generator. b takes priority over B as a generator to describe
loops. Eliminating these words from List2 forms List3.

If word has B as an element, but not b, then the loops on this word
are described by B. So, these words cannot have abAB, baBA, baB,
bAB, Ab, or aB as elements since these are formed using b, not B as
a generator. List4 is formed by deleting these cases from List3.

If a word has neither B or b, then since b is the default descriptor,
these words cannot have, as elements, aBAb, BabA, Bab, BAb, AB,
or ab. Removing these from List4 yields List5.

Words cannot have abARB, baBA, baB, Ab, or aB as an element
and also have BabA, BabA, Bab, BAb, AB, or ab as an element since
the elements in the first group are described using b as a generator and
the second group of elements are all described using B as a generator.
List6 is formed by eliminating these cases from List5.

5 Comparing Words |

The original list of words, List1 is drastically reduced now that all
of the impossible combinations have been eliminated. The next step
is to compare cyclic permutations of each word with other words in
List6 and eliminate duplicates. To do this, I defined a Module called
checklist. checklist used RotateLeft[list], which cycles the ele-
ments in /st one position to the left. It also used a while loop that
used the commands !MemberQ[list, form], which checks if form]
is not a member of list. After performing checklist on List6 for the

38



length of List6, List9 is formed.

6 Simple Reductions

At this point, the n elements of each word are joined, using Map[StringJoin

[lzst]], so that they form one string. This new list is called List10.
The strings in this list can be reduced and made shorter. Anytime a
is followed by A or vice versa, or b is followed by B or vice versa, they
cancel and the string is shortened by two characters. These simplifica-
tions can be performed repeatedly to a word until no further reduction -
can be done. To do this, I defined another Moodule called reducing.
reducing uses do loops (each of which runs 4n times since that is the
maximum possible number of reductions per word) and if statements
to apply StringPosition[“string”, “substring”], which returns the
position of “substring” in “string”, and StringDrop|[“string”,m,n],
which deletes positions m through n in “string”, to each of the ele-
ments in List10.

7 Rotate and Compare

List10 has been reduced to List11. After the last step, some words
have been reduced to the identity while others have remained the
same. Many words have been made shorter and may be equivalent
to other words in List1l. Once again comparisons must be made
between the words. Each word is cyclically permuted and compared
to the other words in the list and is discarded if it is a duplicate. This
is done using the same procedure described in Section 5. List13 is
the new list created after performing the eliminations.

8 Dividing the List

Before moving on to the more complicated reductions, a division of
the most recently made list would be helpful. The list is divided into
sublists; each sublist contains words of equal length. Since we are
interested in curves which intersect at least twice, words of length 1
and 2 can be eliminated since these are either a generator or a square.

39



A Module that uses a simple if statement is defined to generate each
sublist.

9 Substitutions

On each of the remaining sublists, substitutions and comparisons must
be performed to again eliminate duplicates. The following substitu-

” &« ” «

tions, using StringReplace[“string”, “substitution,”, substitutiony”, ..,

can be made for a, b, A4, and B.

Substitutions
a|A|A|la | b |B|b|B
b||B|b|B|lal|lal|lAl|lA
Alla|a |A|B|b|B|b
Bllb|B|lb|A|A|la]|a

For example aaBab = bbAba = BBaBA, etc.

These substitutions need to be made on each word of each sublist
and compared to the other words in the sublist so that duplicate words
can be eliminated.

10 More Reductions

It is possible to use more complicated substitutions to determine more
duplications in List27. If I had more time this summer, I would
have continued the process of reducing the list. The algorithm for
the next procedure should be simple since it incorporates procedures
already executed. It should be possible that the final list for the
two-intersector case, after all reductions, contain only 15 words: 8
two-intersector words, 4 one-intersector words, and 3 simple loops.

11 The Final Step

Once the program has been run, the user is left with a list of words —
not all of which describe curves with & self-intersections. The names of
all of the curves with k self intersections are in this list, but extraneous
curves are included. These other curves have greater than or less than
k self-intersections. In order to eliminate these unwanted words, a
Mathematica program used during the Summer of 1994 by the REU

40



students must be implemented. The program allows the user to input
a word and see the described curve represented on the upper half
plane. A quick analysis of these pictures allows the user to determine
how many intersections a given curve has.

12 Conclusion

My goal was to write a program that would make it easier for future
interested parties to classify the geodesics that self-intersect &£ times on
the once punctured torus. Hopefully this program will be implemented
or refined or used as a “check” to those researchers who like to stick
with the pencil and paper method for determining these names.

13 References

Mande Butler, Jeanne Carton, and Emil Kraft, Geodesics With Three
Intersections on the Punctured Torus, NSF REU Program at Oregon
State University (Summer 1995).

Susan Dziadosz, Thomas Insel, and Peter Wiles, Geodesics With
Two Self-Intersections on the Punctured Torus, NSF REU Program
at Oregon State University (Summer 1994). -

John W. Gray, Mastering Mathematica: Programming Methods
and Applications, AP Professional, New York, 1994.

Stephen Wolfram, Mathematica: A System for Doing Mathematics
by Computer, Second Edition, Addison-Wesley Publishing Company,
Inc., New York, 1991.

41



ma

n=3;

wl = {*a"};

w2 = {“a®, A%,
wpw, ups,

“abAB*, “aBAb*, "baBA", "BabA*,

“baB*, *bAB*, "Bab", "BAb~,

"Aba®, “ABa®,

"Ab™, "AB™, *aB%, *abs};
w3 = {%an,wAn,

ups, =g,

*abAB*, *aBAb*®, “baBA", *BabA¥,

"baB", "bAB*, *Bab*, *BAb*,
*Aba*, *ABa*,
“Ab*, "AB®, *aB*, "ab*}; .
vl = {"a"};
v2 = {=A",
wpha wpw,

=AbaB*, "ABab*, “bABa®, "BAba*,

"bAB", *BAb™, *baB*, “Bab",
lmll' lml'
“ab®, "aB™, AB®, *Ab"};
v3 = {"A",
upw, "B,

"hbaB*, “ABab", *bABa", “BAba”,

*hAB*, "BAb", *baB", *Bab",
"aba®, *aBA®,

=abw, "aB®, "ABN, %ALY} ;
{"abAB*, *baBA~};

{"abAB®, "baBA*};

{"abAB", "baBa*};

ul
u2
u3

aGenerators = Outer[List, wl,w2,w3}];

AGenerators = Outex[List, vl1,v2,v3];

NoGenerators = Outer[List, ul,u2,u3};

ASymmetries = Select[AGenerators, (#[[n-1]] ==
|| #[la-111 ==
Il #[(n-21] ==
|| #I[n-11] ==
|| #[[n1] == »abaB~
|| #I[n1] == =ABab*
|| #[[21) == *baBa®

*AbaB»
“ABab®
"haBa»
"Baba™

Susantwoint.ma

Print[*Length Listl = *, Length[Listl]];

WordsWithTU = Select[Listl, (#[[n-1]] == “Aban

#[[n-1]] == *pBa®
#[[n-1]] == ®abw
#[[n-1]1 == “AB"
#[[n-1]] == "aB®
#[[a-1]] == ®abn
#[[n]] == "aAba®
#[[n]] == =aBa»
#[[n]] == =ab»
#[[n]] == =aB"
#[[n]] == =aB*
#[[n]] == "ab" &)]; |

WordsWithTUQ = Select [WordsWithTU, (#[[n-1]] == *b~
|| #[{n~1]] == =p=
[l #1Inl] == "b»
I #0011 == =B=. &)1;

WordsWithTUnoQ = Complement [ thTU,

thTUQ) ;

List2 = Complement [Listl,WordsWithTunoQ]

Print[*Length List2 = =, Length([List2]};
WordsWithb = Select[List2, (#[[n-1]] ==

upn

[| #[[nl1 == =b* &)J;
NonWordsWithb = Select[WordsWithb, (#[[n-1]] == *aBAb*

List3 = Complement [List2, NonWordsWithb]

Print[*Length List3 = =, Length[List3]];

#[[n-1]] == *Baba®
#[[n~1]] == *Bab%
#{[n-11] == “BAb"
#[[n-1]] == =aB~
#[[n-111 == =ab"
#[[n]] == "aBab"
#[[n]] == "Baba®
#[[n]] == =Babv
#[[n]] == "BAb®
#[[n]} == "am*
#[[n]] == "ab* &)];

i

|] #iIn11 == =paba* &)1;
Symmetries = Complement[. S es]; WordswWithB = Select[List3, (#[[n-1]] == =B®
BigList = Joinl y es, 1; | #[[n]] == =B» &)]; .
Listl = Flatten[BigList,2]; WordsWithBb = Select[WordsWiths, (#[[a-1]] == wb® !
|| #[[nl1 == *b~ &)1; I
Susantwoint.ma Susantwoint.ma 4

WordswithOnlyB = Complement || thB dswithBb] ; || #[In-211 == »aB=*
NonWordsWithB = Select[WordsWithOnlyB, (#[[n-1]] == =abAB* #[[n-1]) == =abaB*

#[[n-1]] == “"baBA® #[[n-1]] == "baBa®

#[[n-1]] == “baB" #[[n-1]] == *baB*

#[[n-1]] == “haB~ #[In-1]] == "han=

#[[n-1]] == *Ab~ #[[n-1]] == "Ab"

#[[n-1]] == "aB* #[[n-1]] == "aB

#[[n]] == =abaB" #[[n]] == =abap»

#[[n)] == “bama* #[[n]] == “baBA"

#[[n]] == “bap* #[[n]] == “ban=»

#[[n}] == *baB~ #[[n]] == “bAB*

#[[n]] == =aAb" #[[n]] == =ab"

#[[n]] == "aB" &)]; #[[n]] == vaB® &)]1;

List4 = Complement[List3, NonWordswiths};

Print{*Length Listd4 = *, Length[Listdl};

WordswWithoutBandb = Complement [Listd,Wordswithsb];
NonWordsWithoutBandb = Select [WordsWithoutBandb,

{(#[[n-2]]
#[[n-2]11
#[[n-2]]
#[[n~2]11
#[[n-2]]
#{[n-2]]
#[[n-1]]
#[[n-1]1
#[[n-1]]
#[[n-1]]
#[[n-1]]
#[[n]] ==
#[[n]] ==
#[[n]] ==
#[[n]] ==
#[[n]] ==

.Im.
"BabA*
"Bab*
=RAL®
“AB®
wab*
“aBAbS
*Baba=
lml
=AB®
Iab!

“aBAL®
“Baba®

“Bab*

uppw

“ab* &)1;
List5 = Complement[Listd, NonWoxrdswWithoutBandb);

Print[“Length List5 = », Length[List5]];

WordsWithRSUb = Select[List5, (#[[n-2]] == *abaB™
|| #[[n-2]1 == “baBa®
|] #[In-21] == =baB=
|} #[(n~2]] == =bab=
|| #[[n-2]11 == =ab=

42

NonWordsWithRSUb = Select [WordsWithRSUb,

(#[[n-2]] == =aBAb™
#[[n-2)] == “Baba*
#[[n-2]] == “Bab"
#[[n-2]] == =Bab"
#[[n-2]] == *aB~
#[[n-2]] == "ab»
#[[n-1]] w= “aBab=
#[[n-1]] == “Babax
#[In-1]] == =Bab+
#[[n-1]] == “BAb™
#[[n-1]] == =AB~
#[[n-1]] == "ab"
#[[n]] == =aBab=
#([n]] == *Baba
#[[n]] == *Bab~
#[[n]] == *pab=
#[[n]] == =aAB~
#[[n]] == =ab~ &)];

List6 = Complement [List5,NonWordsWithRSUb];

Print[“Length List6é = *, Length[List6]];
Ligt9 = {List6[[1]]};

checklistim_ ] =
Module[{Wordl = List6{[mll},
j=1;
X = RotateLeft [Wordl];
While[iMemberQ([List9,X] && J < =n,
X = RotatelLeft[X]; § = J + 1];
If[X == List6[[m]], AppendTo[Lisgty

£X111;



Susantwoint.ma

Dolchecklist[m}, {m,2,LengthlList61}];
Print["Length List9 = *, Length[Ligt9]]);
Ligtl0 = Map[StringJoin,List9];

Listll = List[ ]1;

reducingfi_ ] :=
Modulef{Wordl=Listl0[[i]]},
Do[PosaA = StringPosition[Wordl, “aA"];

If[Pogsan == List[ ],

Wordl,

Wordl = StringDrop[Wordl,Posaa[[11]11]1;
PosbB = StringPosition[Wordl, *bB*];
If[PosbB == List[ 1,

Wordl,

Wordl = StringDroplWordl, PosbBI[[111]1];
PosAa = StringPosition[Wordl, =Aa®];
If[PogAa == List[ ],

Wordl,

Wordl = StringDrop[Wordl, PosAal[[11111;
PogBb = StringPosition[Wordl,"Bb*];
If[PosBb == List[ 1,

Wordl,

Wordl = StringDrop[Wordl,PosBb[[1]1111

«{3,6}1;

AppendTo[Ligtll,Wordl]];

For[i=zl, i<=Length[Listl10], i++, reducing(ill;
Print ["Length Listll = ", Length[Unlon[List11]]];

For[m=1, m<13, m++,
Listl2 = Union[Listll];
Print [Length[List12]];
Listl3 = Map[Characters,Listl2];
Listld = Map[Rotateleft,Listl3];
Listl5 = Map[StringJoin,Listld];
Ligtl0 = Listl5;
Listll = List[ ];
Forf{i=1l, i<=Length[Listl2], i++, reducing[i]]]l;

Listl2 = Map{Characters, Listll];

Listl3 = {List12[[2]1};
rotatencomparel[k ] :=
Module[{Woxrdl = List12[[k]1},

i=1;

Y = RotateLeft[Wordl];

While[!MemberQ[Lixt13,Y] &% ] < Length[Wordl],

Y = RotateLeft[Y]; § = 3 + 1];

I£[Y == Listl2{[k]], AppendTolListl3,¥]1]l];
Por([ke=3, k<=Length[Listl2], k++, rotatencompare([kll;
Print[*Length Listl3 = *, Length[List13]]l;

Listld = Map[StringJoin,Listl3];
Print["Length Listld = *, Length[Listl14]];
Singles = List[ 1;
FindSingles[i_ ] ==
Module[{Woxd = List1d[[i]1},
If[StringLength[Word] == 1,
AppendTo[Singles, Woxrdlll;
For[i=1l, i<= Length[Listld], i++, FindsSingles[ill;
Listl5 = Complemsnt[Listld,Singles];
Doubles = List[ ];
FindDoubles[i_] :=
Module[{Word = ListiS[[i]1]},
If[StringLength[Word] == 2,
AppendTo [Doubles, Wordlll;
For[i=1l, i<= Length[Listl5], i++, FindDoubles{i]];
Ligtl6é = Complement[Listl5, Doubles];
Print[*Listl6 = ", Length{List161];
Triples = List[ 1;

FindTriples[i_] :=
Module[{Word = Listl6[([i]]},

If£[StringlLengthWord] == 3,
AppendTo [Triples, Word]l]l;

For[i=l, i<= Length[Listl16], i++, FindTriples[i]];
Listl? = Complement [Listl1l6, Triples];

trisubstitutions[i_] :=
Module[{Sub = Triples[[ill},
ListX = List[ 1;
Subla = StringReplace[Sub, {*a® => wgw,
“be -» =ds=,
WAN -> mgw,
mB* > «be}];

i Subl = StringReplace([Subla, {"c® -> "A",

‘ udn o> wBw}];

Sub2a = StringReplace[Sub, {"a" ~> mcw,
AN -> WaN}];

H Sub2 = StringReplace[Sub2a, "c® -> *A"];

: Sub3a = StringReplace[Sub, {*b* -> ®d~,

i ®BH > whw}];

! Sub3 = StringReplace[Sub3a, *d* -> "B%];

Subda = StringReplace[Sub, {"a* -> ngw,
"pE > waw,

i ape -> wow,

i "B -> "A"}];

| Subd = StringReplace[Subda, {“c* -> "b®,

i g > sBe}];

SubS5a = StringReplace[Sub, { a* -> we~,
. 2h® -> ug@=,

Il AR <> wCwW,

{ *B* ~> "D"}];

Sub5 = StringReplace[Sub5a, {“c* -> *B",

/ ngw -> =aw,
wge > wpw,
upe -> WAR}];

Sub6a = StringReplace[Sub, {"a® -> wg»,
wp* -5 m@w,

| wAN -5 wCw,

/ wp* -> sp*}];

Sub6 StringReplace[Subéa, {"c" =-> *"bv,

ugn o> mpw,
wcE -> wpw,
nps -> =a"}];

Sub7a = StringReplace[Sub, * {(*a* -> "c",

lb- -> ldll

43

wAN - wpe,
AN > =a®}];

Sub7 = StringReplace[Sub7a, {“c" -> “B*%,
"dn -> ®A%}1;

ChSubl = Charactezrs[Subl];
ChSub2 = Charactexs[Sub2];
ChSub3 = Charactexs[Sub3];
ChSub4 = Characters[Subd];
ChSub5 = Characters[SubS];
ChSubf = Characters[Subé];
ChSub7 = Charactexs[Sub7];

For[kel, k<sLength[ChSubll], k++,
Z = RotateLeft[ChSubl,k];
AppendTo(Listx, Z1];

For[k=l, k<=Length[ChSub2], k++,
Z = RotateLeft[ChSub2,k);
AppendTo[ListX, Zl1;

For[k=l, k<zLength[ChSub3], k++,
Z = RotateLeft[ChSub3,k];
AppendTolListXx, Z]1l1;

Forlk=1l, k<=Length[ChSubd], k++,
Z = RotateLeft[ChSubd, kl;
AppendTo([ListX, Z]l;

Forlk=1, k<=Length[ChSub5], k++,
Z = RotateLeft[ChSub5,k];
AppendTol[ListX, 2Z1];

For[k=1, k<=Length{ChSub6], k++,
2 = RotateLeft[ChSub6,k];
AppendTo[ListX, 211;

For[k=l, k<sLength[ChSub7], k++,
Z = RotateLeft[ChSub7,k];
AppendTo[ListX, Z]1;

StringlListX = Map[StringJoin,ListX}];

Discards = List[ J;

For[j=i+l, j<=Length[Triples], j++,




Susantwoint.ma 9 Susaniwoint.ma 10
If[MemberQ[StringlistX, Triples([[j]]l, "D* ~> maAn}];
AppendTo [Discards, Triples[[411111; Sub6a = StringReplace[Sub, {®a* -> =¢=,
upe -5 wgw,
Triples = Complement[Triples,Discards]]; "A® -> uCE,
“B® _> =pw}];
For[i=l, i<=Length[Triples], i++, trisubstitutions[i]]; Sub6 = StringReplace[Sub6a, {*c* -> ®b=,
=qm —> mpw,
Quadruples = List[ 1; =C® -> wBw,
“DE > waw}]:
FindQuadruples[i_] := Sub7a = StringReplace[Sub, {"a® -> mcw,
Modulel{Word = Listl7[[1]11}, "b* -> maw,
If[StringLength[Word] == 4, EAX > =hx,
AppendTo [Quadruples, Wordlll: ¥B* «> ®aw}];
Sub7 = StringReplaceiSub7a, {"c® -> wpw,
For[i=l, i<= Length[Listl7], i++, FindQuadruples[i]]; "d® ~> WAw}];
ChSubl = Characters[Subl];
Listl8 = Complement [Listl7, Quadruples] ; ChSub2 = Characters[Sub2];
. ChSub3 = Characters[Sub3];
quadsubstitutions[i_] := ChSubd = Characters[Subd];
Module[{Sub = Quadruples[[i]l}, ChSub5 = Characters([Sub5}];
ListX = List[ ]; ChSub6 = Characters[Subs];
Subla = StringReplace[Sub, {*a* -> wc», ChSub? = Characters([Sub7];
ube -> wgnw,
AN -> max, For([k=l, k<=Length[ChSubl], k++,
"B® -> ®bm}]; 2 = RotateLeft[ChSubl, k];
Subl = StringReplace[Subla, {*c* -> A", AppendTo[ListXx, Z]];
»ge -> wpe}];
Sub2a = StringReplace[Sub, {"a® -> wucge, For[kal, k<=Langth[ChSub2], k++,
"AM -> wa®}]: ° Z = RotateLeft[ChSub2,k];
Sub2 = StringReplace[Sub2a, =c* -> “a%]; AppendTo[ListX, Z11;
Sub3a = StringReplace[Sub, {"b* -> ug=,
“Be -> =ha}j; For[k=1, k<=Length[ChSub3], k++,
Sub3 = StringReplace[Sub3a, =d% -> "B~]; Z = RotateLeft[ChSub3, kl;
Subda = StringReplace[Sub, {=a" -> =gw, AppendToiListX, 2]1;
"be -> waw,
AN > wCE, Forlk=1l, k<=Length[ChSubdl, k++,
"B® -> %A"}]; 2 = Rotateleft[ChSubd, k];
Sub4 = StringReplace[Subda, {"c*® -> “b~, AppendTo[ListX, z1};
“C* -> *B"}];
SubS5a = StringReplace[Sub, {=a* -> =c~», For([k=1l, k<=mLength[ChSub5], k++,
"b* -> =d», Z = RotateLeft[ChSubs,k];
A" -> “C®, AppendTo{ListX, 2]1;
=B -> wpw}];
SubS = StringReplace[SubSa, {"c* -> "B¥, Forlk=1l, k<=Length[ChSub6], k++,
ndn -> waw, Z = RotateLeft[ChSub6,k];
uge -5 wpw, AppendTo[Listx, z]1;
Susumwoint.ma 11 Susantwoint.ma 12
=A% -> mgw,
For[k=1, k<=Length[ChSub7], k++, "B* -> “Aw}];
Z = RotateLeft[ChSub7,k]; Sub4 = StringReplace[Subda, {"c* -> =b=,
AppendTo[ListX, Z]]; "C® -> mpE}];
. SubSa = StringReplace[Sub, {*a% -> =c=,
StringListX = Map[StringJoin,ListX]; "b®* ~-> «d=,
AW ~> =gw,
Discards = List[ 1; “B® -> ®"D®}];
Sub5 = StringReplace[Sub5a, {*c™ -> “Bw,
Por[j=i+l, j<=LengthlQuadruplesl, j++, =a= -> maw,
now o5 wpe,
If[MemberQ[StringListX, Quadruples[[§]1]]1, D" -> ®A®}];
AppendTo [Discards, Quadruples[[j1111]1; Sub6a = StringReplace[Sub, {"a® -> ®c=,
. =he —> wgw,
Quadruples = Complement [Quadruples,Discards]]; “A® ~> MCw,
=B* .> mpw}];
For[i=1, i<=Length[Q les]l, 14+, dsubsgtitutions[i]]; Sub6 = StringReplace[Subta, {*c* -> =bw,
. ndqe —> wpw,
Quintuples = List[ ] uge ~> mgw,
“De -> maw}];
FindQuintuples[i_] :m= Sub7a = StringReplace[Sub, {*a" ~> wug»,
Module[{Word = Listl18[[1]]}, ®h* -> mgm,
If[Stringlength[Word] == 5, A% -> whu,
AppendTo [Quintuples, Word]l]l; “B" - man}];
Sub7 = StringReplace[Sub7a, {"c* -> ®B=®,
For[i=1l, i<= Length[List18], i++, FindQuintuples[i]]: =d® ~> maAN}];
ChSubl = Characters[Subl];
ListlS = Complement [Listl8, Quintuples]; ChSub2 = Characters[Sub2];
ChSub3 = Characters{Sub3];
quintsubstitutionsfi_] := ChSubd = Characters[Subd];
Module[{Sub = Quintuples[[i]]}, ChSub5 = Characters[Sub5];
ListX = List[ I; ChSub6é = Characters[Subé];
Subla = StringReplace[Sub, {"a* -> wc», ChSub7 = Characters[Sub7];

=hw® > ugw,
AR o> waw,
“B® -> wpw}];
Subl = StringReplace[Subla, {“c* -> =aw,
"d= -> =B*}];
Sub2a = StringReplace[Sub, {"a® -> wcw,
AR o> waw}y;
Sub2 = StringReplace[Sub2a, %“c* -> "aw];
Sub3a = StringReplace[Sub, {*b* -> =d~,
B _> wpbm}j;
Sub3 = StringReplace[Sub3a, =d* -> *B%];
Subda = StringReplace[Sub, {"a" -> wgw,
mhe —> waw,

44

For[k=1l, k<=Length[ChSubl], k++,
Z = RotateLeft[ChSubl,k];
AppendToListx, 211;

For[k=1l, k<=Length[ChSub2], k++,
Z = RotateLeft[ChSub2,k];
AppendTo[ListX, z11;

For[k=1, k<=Length[ChSub3], k++,
Z = RotateLeft[ChSub3,k];
AppendTo [ListX, 2]1;




ma 13 Susantwoint.ma

For[k=l, k<=Length[ChSubd], k++, =B* -> "b"}];
Z = RotateLaft[ChSubd,k]; Subl = StringReplaca[Subla, {"c*™ -> "a%,
AppendTo[ListX, Z]]; "a« -> "B*}];

Sub2a = StringReplace[Sub, {"a* -> wcv,

For(k=1l, k<zLength[ChSub5], k++, . A% -> *a®}];
Z = RotateLeft [ChSub5,k]; Sub2 = StringReplace[Sub2a, ®*c" -> “A%];
AppendTc [ListX, Z]1; Sub3a = StringReplace[Sub, {"b" -> =a~,

B -> ®"bu}];

Forlk=1l, k<sLength[ChSub6], k++, Sub3 = StringReplace[Sub3a, "d* -> "B"];
Z = RotateLeft [ChSubé6,k]; Subda = StringReplace[Sub, {*a* -> "c®,
AppendTo[ListX, Z]]; . "be -> waw,

upn o> wew,

For[k=1, k<=Length[ChSub7], k++, wBN > wan}];
Z = RotateLeft [ChSub7,k]; Sub4 = StringReplace[Subda, {®"c® -> =b%,
AppendTol[ListX, z1l; - nCe -> wB}];

SubSa = StringReplace[Sub, {"a® => »c>,

StringristX = Map[StringJoin,ListX]; ’ =he > ®dw,

AR o> wCE,
Discards = List[ 1; . “B® -> "D*"}];
Sub5 = StringReplace[SubSa, {"c" -> *B",
For[j=i+l, j<=mLength[Quintuples], j++, udgm > ug®,
uge -> wpe,
If[MemberQ[StringListX, Quintuples[Ijlll, "D® -> *"A*}];
AppendTo [Discards, Quintuples[[j1]1111; Sub6a = StringReplace[Sub, {=a® -> wc",
Bhe .y wdw,
Quintuples = Complement[Quintuples,Discards]]; MAM -> wQw,
wB® -3 wDu}];
For[i=1, i<=Length[Quad leg]l, 1i++, dsubsgtitutions[il]; Sub6 = StringReplace[Sub6a, {"c™ -> "b%,

ngn .» mpw,
uce -5 =pw,

Sextuples = List[ 1;
"D -> ma"}];

FindSextuples[i_] := Sub7a = StringReplace[Sub, {"a® -> =cw,
Module[{Word = Listi1S[[1]]}, apr -> wax,
If[Stringlength{Word] == 6, np% -> b,
AppendTo [Sextuples, Word]lll; "B -> *a"}];
Sub7 = StringReplace[Sub7a, {%c“ -> *BvY,
For[i=1l, i<= Length[Listl19], i++, FindSextuples[i]]; "gn > wp"}];
ChSubl = Characters[Subl];
Ligt20 = Complement [List1l9, Sextuples]; ChSub2 = Charactexs[Sub2};
ChSub3 = Characters[Sub3];
sextsubstitutions[i_] := ChSubd4 = Characters[Subdl;
Module[{Sub = Sextuples[[i]]}, ChSub5 = Characters[SubS];
ListX = List[ ]; i Chsub6é = Characters[Subé6];
Subla = StringReplace[Sub, {=a® -> "c=, ChSub7 = Characters[Sub7];
ap% > uge,
P ompw o> maw, For[k=1l, k<=Length[ChSubll, k++,
ma . 15 Susantwoint.ma

Z = RotateLeft [ChSubl,k];

AppendTo([Listx, 2]]: For[i=l, i<= Length[List20], 1++, FindSeptuples[i]l];
For[k=1l, k<=Length[ChSub2l, k++, List2l = Complement [List20, Septuples];
Z = RotateLeft [ChSub2,k];
AppendTolListx, Z]11; septsubstitutions[i_] :=
Module[{Sub = Septuples[[i]l},
For[k=1l, k<=sLength[ChSub3], k++, ListX = List[ ];
Z = RotateLeft [ChSub3,k]; Subla = StringReplace([Sub, {ma® -> mc¥,
AppendTo[ListX, Z]1; b -> Wgm,
wAR > waw,
Por[k=l, k<=Length[ChSubd], k++, “B® -> "b*}];
Z = RotateLeft [ChSubd, k]; Subl = StringReplace[Subla, {"c® -> %A%,
AppendTo[ListX, Z]]; E ®g@® -> =*B"}];
Sub2a = StringReplace[Sub, {max -> ngn,
For{ke=l, k<sLength[ChSub5], k++, “A® -> *a"}];
Z = RotatelLeft [ChSub5,k]; Sub2 = StringReplace[Sub2a, "c* -> *A"];
AppendTo[ListX, Z]l; Sub3a = StringReplace[Sub, {"b" -> =g~,
. up* -5 ®be}];
Forlk=1l, k<=Length[ChSub6], k++, Sub3 = StringReplace[Sub3a, =d* -> ®=Bn];
Z = RotateLeft [ChSub6,k]; Subda = StringReplace[Sub, {va" -> wgw,
AppendTo[ListX, Z]]; . wpe o> waw,
A -> woE,
For[k=1, k<=Length[ChSub7], k++, "B" -> "A"}];
Z = RotateLeft [ChSub7,k]; Subd = StringReplace[Subda, {"c* -> "b=,
AppendTo [ListX, Z11; mgw ~> %Ba}];
Sub5a = StringReplace[Sub, {=a® -> =c%,
StringLigtX = Map[StringJoin,ListX]; "be -> wgs,
"AN -> wCw,
Discards = List[ 1; =B® -> =p¥}];
Sub5 = StringReplace[Sub5a, {®c* -> =B%,
For[j=i+1, j<=Length[Sextuples], j++, mdw -> wgn,
=Cw -> whw,
Ifl[ QL 4 1stX, les([[3111, *D® -> ®A¥}];
AppendTo [Discards, Sextuples[[j11111; Sub6a = StringReplace[Sub, {"an -> =¢»,
mbe -5 =dw,
Sextuples = Complement [Sextuples,Discardsl]; =A=
. g
For[i=l, i<=Lengthl. les], i++, tutions[i]l]; Sub6 = StringReplace[Sub6a, {®c*
g
Septuples = List[ 1; L]
upe
FindSeptuples[i_] := Sub7a = StringReplaca[Sub, {"a~
Modula[{Word = Ligt20[[1]1]1}, L -1
If[StringLength[Word] == 7, npw

AppendTo [Septuples, Wordlll: 45 "B™




Sub6a = StringReplace[Sub, {"a* -> =c=,
=br —> ugw,
A" —> wcw,
: e > wpw}j;
Subé = StringReplace[Sub6a, {*c® -> "b*,
g -5 maw,
=C® -> wpw,
“Dm ~> waw}];
Sub7a = StringReplace(Sub, {"a" ~> =cw,
"bE .5 mgs,
"% > mpe,
B -> waw}];
Sub7 = StringReplace[Sub7a, {"c* -> =B~,
nd® > ®aAn}];
ChSubl = Characters[Subl];
ChsSub2 = Characters[Sub2];
ChSub3 = Characters[Sub3];
ChSubd = Characters[Subdl;
ChSub5 = Charactexs [Sub5];
ChSubfé = Characters[Sub6];
ChSub7 = Characters[Sub7];

For[k=l, k<=Length[ChSubll, k++,
Z = Rotateleft[ChSubl,k];
AppendTo[ListX, Z]1;

For[k=1, k<sLength[ChSub2], k++,
Z = RotateLeft[ChSub2,k];
AppendTo[ListX, Z]];

Forlk=1l, k<=Length[ChSub3], k++,
Z = RotateLeft[ChSub3, k];
AppendTo[ListX, Z]];

For [k=1l, k<=Length[ChSubd], k++,
Z = RotateLeft[ChSubd, k];
AppendTol[ListX, Z1]1;

For [k=1, k<xLength[ChSub5], k++,
Z = RotateLeft[ChSubs,k];
AppendTo[ListX, z]];

For[k=l1, k<=sLength[ChSubE], k++,
Z = RotateLeft [ChSub&,k];
AppendTo[ListX, z]];

46

Susantwoint.ma 17 Susantwoint.ma 18
Sub7 = StringReplace[Sub7a, {*"c* -> =p=,
g™ -> Waw}]; Septuples = Complement [Septuples,Discards]i;
ChSubl = Characters[Subl];
ChSub2 = Characters[Sub2];
ChSub3 = Characters[Sub3]; For[i=l, i<=Length[Septuples], i++, meptsubstitutions[i]] ;
ChSubd = Characters[Subd]; .
ChSub5 = Characters[Sub5]; Octets = List[ 1;
ChSubé = Characters[Sub6];
ChSub?7 = Characters[Sub7]; FindOctets[i_] :=
Module[{Word = List21[{[i1]},
For[k=1, k<=Length[ChSubl], k++, If([StringLength[Wozrd] == 8,
Z = RotateLeft[ChSubl,k]; AppendTo[Octets, Wordll]l;
AppendTo{ListX, z]1];
For[i=1l, i<= Length[List21], i++, PindOctets[i]] :
For[k=1, k<=Length[ChSub2], k++,
Z = RotateLeft[ChSub2,k]; List22 = Complement[List2l, Octets];
AppendTo[ListX, 21]1;
octsubstitutions[i_] :=
For[k=l1l, k<=Length[ChSub3], k++, Module[{Sub = Octets[[il]},
Z = RotateLeft [ChSub3, k]; ListX = List[ ]1;
AppendTo[ListX, z]]; Subla = StringReplace[Sub, {a* -> =c»,
b > mgw,
For[k=l, k<zLength[ChSubdl, k++, "A¥ > wpw, -
2 = RotateLeft[ChSubd,k]; ®B" -> Wb¥}];
AppendTo[ListX, Z]}1; Subl = StringReplace[Subla, {"c* -> “a®,
=de -> wpx}];
Foxr [k=1, k<zLength[ChSub5], k++, Sub2a = StringReplaca[Sub, {=a" -> wg"~,
Z = RotateLeft[ChSub5,k]; "A® -> waw}j;
AppendTo[ListX, z11; Sub2 = StringReplace[Sub2a, ®“c* -> “A%];
Sub3a = StringReplace[Sub, {*b" -> =a~,
For[k=1, k<=Length[ChSub6l, k++, “B* -> ®h=}];
Z = RotateLeft[ChSubé, kj]; Sub3 = StringReplaca[Sub3a, =d" -> *B%];
AppendTol[ListX, 2]1; Subda = StringReplace[Sub, {“a* -> wc=,
" -y Eaw,
For[k=1l, k<=Length[ChSub7], k++, AN ~> WCM,
Z = RotateLeft [ChSub7,k]; *B" -> "A"}];
AppendTo[ListX, Z]1; Sub4 = StringReplace[Subda, {“c* -> ub=,
\ wer > wpw}];
StringListX = Map[StringJoin,ListX]; Sub5a = StringReplace[Sub, {"a" -> =c=,
"b* -> ®g=,
Discards = List[ ]; %AW -> wCm,
wBr —> wpw}];
For[j=i+1, j<=LengthlSeptuples], J++, Sub5 = StringReplace[SubSa, {*c* -> *@»,
. "d@n —> wax,
If[MemberQ[StringListX, Septuples[[j1]1, “C® ~> wpw,
[pi ’ les[[311113; "D" -> ®A%}1;
S ma 19 Susantwoint.ma 20

For[k=1l, k<wLength[ChSub7], k++,
Z = RotateLeft [ChSub7,k];
AppendTo [ListX, Z11; .

StringListX = Map[StringJoin,ListX];
Discards = List[ 1;
For[j=i+1, j<m=Lengthl[Octets], j++,

If[MemberQ[StxringListX, Octets[[j)11,
AppendTo [Digcards, Octets[[j111]11;

Octets = Complement [Octets,Discards]];
For[i=l, i<=lLength[Octetz], i++, octsubstitutions[i]1;
Nonets = List[ 1;

FindNonets[i_ ] :=
Module[{Woxd = Liat22[[1]1]},
If[StringLength[Word] == 9,
AppendTo [Nonets, Wordlll;

For([i=l, i<= Length[List22], i++, FindNonets([i]];
Ligt23 = Complement [List22, Nonetsg] ;

nonsubstitutionsii_] :=
Module[{Sub = Nonets[[i]1},
ListX = List[ ]1; .
Subla = StringReplace[Sub, {=a" «> =g=,
Hh: - Idl'
AN > uaw,
"B® ~> whe}];
Subl = StringReplace[Subla, {"c* ~> ®a=,
-dl -> IB-]];
Sub2a = StringReplace[Sub, {"a" -> mc=,
AR > waw}];
Sub2 = StringReplace[Sub2a, “c* -> ®a®];
Sub3a = StringReplaceSub, {*b* -> wg~,
=B* -> whm}];
Subd = StringReplace[Sub3a, "d" -> *B"];
Subda = StringReplace[Sub, {"a® ~> =c~®,
mpe -3 waw,
man > wcw,




Susuntwoint.ma 21 Susantwoint.ma 22
=B% -> A®}]; Z = RotateLeft[ChSubd, k] ;
Sub4 = StringReplace[Subda, {"c" -> “b", AppendTo[ListX, Z]j;
wow -> uBu}];
SubSa = StringReplace[Sub, {ma% «> ug=, Forl[k=1l, k<=Length[ChSub5], k++,
b -> *a=, Z = RotateLeft[ChSub5,k];
A -> wgw, AppendTolListX, Z]l;
uBx > wpW}};
Sub5 = StringReplace[Sub5a, {*c* -> "Bw, Forl[k=1l, k<=Length[ChSub6], k++,
udn® o> ug®, Z = RotateLeft[ChSub6,k];
ugr -> mpw, AppendTo[ListX, Z11;
"D* -> ®A"}];
Subéa = StringReplace[Sub, {*a" -> "cg», For[k=1, k<=Length[ChSub7], k++,
*b* -> =a=, 2 = RotateLaft[ChSub7,k];
A" -> meH, AppendTo[ListX, Z1];
“B* -> *D*}];
Sub6é = StringReplace[Sub6éa, {"c” -> *"b", StringListX = Map[StringJoin,ListX];
Digcards = List[ ];
Sub7a = StringReplace[Sub, For[j=i+l, j<=Length[Nonets], Jj++,
If [MemberQ[StringListX, Nonets[[j]]],
"B® -> "a"}]; dTo [Di [13311111;
Sub7 = StringReplace[Sub7a, {"c* -> "B",
"d" -> ®"a%"}}]; Nonets = Complemant [Nonets,Discards]];
ChSubl = Characters[Subl];
ChSub2 = Characters[Sub2]; Forfi=1, i<=Lengthl[ 1, 1++, nc betitutions{ill;
ChSub3 = Characters[Sub3];
Chsubd = Characters[Subd]; Tens = List[ 1;
Chgub5 = Characters[SubS];
ChSubé = Characters[Sub6]: FindTens[i ] :=
ChSub7 = Characters[Sub7]; Module[{Woxd = List23[[i]1},
If[Stringlength[Word] == 10,
For[k=1l, k<=Length{ChSubl], k++, AppendTo[Tens, Wordlll;
Z = RotateLeft [ChSubl, k];
AppendTolListX, Zl]; For[i=l, i<= Length[List23], i++, FindTens[i]]l;
For[k=l, k<=LengthIChSub2], k++, List24 = Complement [List23, Tens];
Z = RotateLeft[ChSub2,k];
AppendTo[ListX, Z1]; Elevens = List[ 1;
For [k=1, k<=Length[ChSub3], k++, FindElevens([i_] :=
Z = RotatelLeft [ChSub3, k]; Module[{Word = List24[{i]]},
AppendTol[ListX, Z11; If[StringLength[Word] == 11,
AppendTo [Elevens, Wordlll;
For[k=1l, k<=Length[ChSubd], k++,
Susuntwoint.ma 23 int.ma 24

For[i=l, i<= Length[List24], i++, FindElevens[i]];

List25 = Complement[List24, Elevens];
Twelves = List[ 1;

FindTwelves[i_] :=
Module[{Word = List25[[11]1},
If[StringLength[Word] == 12,
AppendTo [Twelves, Wordlll;

For[i=1l, i<= Length{List25], i++, FindTwelves[ill;

List26 = Complement[List25, Twelves];

twalvesubgtitutions[i_ ] ==
Module[{Sub = Twelves[[1i11},

ListX = List 1;

Subla = StringReplace[Sub, {"a"
npe
upw
e

Subl = StringReplace[Subla, {"c"
wgn

Sub2a = StringReplace[Sub, { a*
p-

Sub2 = StringReplace[Sub2a, "c*

Sub3a = StringReplace([Sub, {"b"
wpw

Sub3 = StringReplace[Sub3a, “4*®

Subda = StringReplace([Sub, {"a*
lbl
npe
pe

Subd = StringReplace[Subda, {"c"
o

Sub5a = StringReplace[Sub, {“a*
npu

-> wbhm}1;

upe
Sub5 = StringReplace[Sub5a, {"c"
- ugw

uow

up

Sub6a = StringReplace[Sub, {"a*
wp

47

A > wgw,
“B= .> mpu}];
Sub6é = StringReplace[Sub6a, {*c* -> "b=»,
e -y wpm,
ngw —> wps,
“pe —> wa%}];
Sub7a = StringReplacef[Sub, {=a" -> mg=,
wpe -5 ugw,
wA® -> wpw,
“BH > wax}];
Sub7 = StringReplace[Sub7a, {"c™ -> "B%,
, T m@m -> maA%}];
ChSubl = Characters[Subl};
ChSub2 = Characters[Sub2];
ChSub3 = Characters[Sub3];
ChSubd = Characters[Subd];
ChSub5 = Characters[Sub5];
ChSubfé = Characters[Sub6];
ChSub? = Characters[Sub7];

Forlk=l, k<=Length[ChSubl], k++,
Z = RotateLeft[ChSubl,k];
AppendTo{ListX, Z11;

For[k=1l, k<=Length[ChSub2], k++,
Z = RotateLeft[ChSub2,k];
AppendTo[ListX, Z1];

Forf{ksl, k<s=Length[ChSub3], k++,
Z = RotateLeft[ChSub3,k];
AppendTo[ListX, 2Z1];

For[k=1, k<=Length[ChSubd], k++,
Z = RotateLeft[ChSubd, ki;
AppendTo[ListX, Z11;

Forf[k=1l, k<=Length[ChSub5], k++,
Z = RotateLeft [ChSub5,k];
AppendTo [ListX, 211;

Porfk=l, k<=Length[ChSub6], k++,
Z = RotateLeft[ChSub6,kl;
AppendTo[ListX, Z11;

For[k=l, k<=Length[ChSub7], k++,
Z = RotateLeft [ChSub7,k];




Susantwoint.ma

25

AppendTolListX, Z1l;
StringListX = Map[StringJoin,ListX];
Discards = List[ I;

For[j=i+l, j<=Length[Twelves], j++,

If[MemberQ[StringListX, Twelves[[411],
AppendTo [Digcards, Twelves[[§111]11;

Twelves = Complement[Twelves,Discards]];
For[iml, l<=Length[Twelves], i++, twelvesubstitutioms[i]] 7

LiBt27 = Join[Triples,
Quadruples,
Quintuples,
Sextuplaes,
Septuples,
Octets,
Nonets,
‘Tens,
Elevens,
Twelvesl;

Print[*List27 = ", List27];

Print ["Length List27 = %, Length[List27]];

i
I

Susantwoint.ma 26

Length Listl = 621

Length List2 = 361

Length List3 = 341

Length List4 = 321

Length List5 = 233

Length List6 = 221

Length List9 = 200

Length Listll = 165

165

154

145

145

145

145

145

145

145

145

145

145

Length Listl3 = 105

Length Listl4 = 105

Listl6 = 95

List27 = {aaa, aba, AAbb, abAb, AbAb, baBA, aaBab, abAAb,
aBAAB, Abaab, ABaaB, aBAba, AbaBA, ABabA, baBaa, bABaa,
bABAA, BAbAA, baBab, baBAb, bABab, baBBA, bABEA, Babba,

aaabAB, aabAAB, AAbaBB, ababAB, bABAba, bbABBA, abAbABB,
barbaBa, bAAbABa, BAAbABa, bABABab, aabAAbAB, aabAABAD,
abaBAbAB, abaBABAbL, abABabaB, abABABAbL, AbaBAbaB,
ABabAbAB, babAAABa, baBAAABa, bbaBAABa, bbABAABa,

abAbaBAAB, abABabAAB, abABabABabAB}

Length

List27

50

48



