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Abstract

Fractals, as defined by Dekking, were investigated for properties of connectiv-
ity, percolation, and maximal decay. We extended the proof of x3 Mandelbrot
percolation as defined in Falconer to x4 magnification. Using the dimension
of a random Cantor set, we calculated p such that there is maximal decay
along a column in neighbor interaction fractals. We showed that the neighbor
interaction fractal presented by Dekking is infinitely disconnected, contrary
to popular opinion. '
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1 Introduction

A fractal is a set with the following properties: It has detail on an arbitrarily
fine scale. It is irregular enough to not be effectively described by regular
geometry. It may be self-similar, either approximately or statistically. It has
a larger "fractal dimension” than the topological one. Finally, it may be
simply defined, perhaps recursively.

In our initial investigation into fractals, we encountered Mandelbrot Percola-
tion. This is a method of generating a fractal based on the unit square that
is indeed simple and defined recursively.

Begin with a unit square. Divide the square into fourths. Each of these
fourths will have a probability, p, of remaining. So our initial square may
only have three quarters left. Next divide each of the remaining squares into
fourths. Each of these new squares has a probability p of remaining. Con-
tinue this process forever.

‘We will examine this fractal further and explore others with similar con-
structions. We will develop simple ways to generate these fractals and study
properties that pertain to them.

2 Previous Work

The first random fractal we studied was generated by Mandelbrot Percola-
tion. According to Falconer, in a fractal of this type where a one goes to nine
ones instead of four, there is a positive probability (in fact > 0.9999) that
the fractal joins the left and right sides of the initial square if 0.999 < p < 1.
This simply says that the fractal will percolate from left to right. However,
this model is totally disconnected if it does not percolate. Therefore, it is
desirable to look for another model that may be be more connected.

In the paper, ”"Quad-trees, Mandelbrot percolation and the modelling of ran-
dom sets”, Dekking discusses this shortcoming of Mandelbrot Percolation.
He presents a random fractal with neighbor interactions, and on the surface
it appears to definitely be more connected than the Mandelbrot technique.
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3 Mandelbrot Percolation

Mandelbrot Percolation (Fractal Percolation), as described by Falconer, is de-
fined by starting with a square and then subdividing it into nine sub-squares.
Each of these sub-squares has, independently of the others, probability p of
staying. The process is repeated with the remaining sub-squares. Each sub-
square is divided into nine yet smaller sub-squares, the squares remaining
with probability p. F, is the resulting fractal, and E; is the initial square.
Falconer’s result for this fractal is as follows:

Theorem: Suppose that 0.999 < p < 1. Then there is a positive probability
(in fact bigger than 0.9999) that the random fractal F), joins the left and
right sides of Ey.

The proof of this result is fairly interesting. First a p is picked. Then a sure-
fire way to maintain percolation in m steps is figured. With this in mind, all
the possible ways this can be done are calculated. Because of the self similar
properties of this fractal, an iterative function is fairly easily developed. A
fixed point, #o, for this function is then calculated. This number represents
a lower bound on the probability of maintaining percolation for any number
of steps. As m — oo the probability settles down to this ¢y value. Therefore
1 a positive probability that the random fractal joins the left and right sides
(i.e. percolates).

Now, when we programmed this on a computer, we started by dividing each
square into four sub-squares instead of nine. This was done in preparation
for neighbor interactions where squares would be divided by four. Finding a
surefire way to maintain percolation in m steps must now be figured. This
proof follows Falconer’s exactly and differs only in the numbers. E, is the
starting configuration (i.e. a single 1). E; is the first iteration and so on.
oo
F,= N E.
k=
THEOREM: Suppose that 0.999 < p < 1. Then there is a positive proba-
bility that the random fractal F}, joins the left and right sides of F,.
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PROOF: If I; and I, are abutting squares of Fj and both contain either 15
or 16 sub-squares of Ey, then 3 a sub-square in I; and one in I, that abut
with the squares of Eryq in I; and I, forming a connected unit.

Say Ej is full if it contains either 15 or 16 squares of Eyy. Say E; is 2-full
if it contains 15 or 16 full squares of Eiy;. Say Ej is m-full if it contains 15
or 16 (m — 1)-full squares of Eyyy. If Ey is m-full then the sides of E, are
joined by a sequence of abutting squares of E,,.

The square Eq is m-full (m > 1) if either:

a) E; contains 16 squares all of which are (m — 1)-full, or
b) E; contains 16 squares 15 of which are (m — 1)-full, or
¢) Fy contains 15 squares all of which are (m — 1)-full.

If p. is the probability that Ej is m-full then summing the three possibilities,

P = PP + 5 (12) 1 (1 = pm—a) + (39)9"5(1 — p)plS_,
Pm = P Opio 1 +16p™py2_ ) — 16p™®ple | + 16p'°pl% | — 16popl5 |

pm = 16p"°pl> | — 15p'®ple | (for m > 2)

Furthermore, p; = p'® +16p**(1 —p) = 16p'® — 15p'®, so we have an iterative
scheme p,, = f(pm-1) for m > 1, where py = 1 and

f(t) — 16p16t15 _ 15p16t16
Suppose p = 0.999 then f(t) ~ 15.762¢'° — 14.762¢15.

And a little calculation shows that Zo = 0.9977 is a fixed point of f which is
stable in the sense that 0 < f(t) —to < L(t —to) if to < ¢ < 1. It follows that
Pm 1s decreasing and converges to fo as m — oo, so there is a probability
to > 0 that Ey is m-full for all m. When this happens, opposite sides of F,
are joined by a sequence of squares in E,, for each m, so the intersection

Fp = ) Ef joins opposite sides of Ey. Thus, there is a positive probability
k=0
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of percolation occurring if p = 0.999, and consequently for larger values of p.

Q.E.D.

4 Fractal Dimension

The concept of dimension is usually fairly vague. Sometimes it refers to
whether the object fits in  or 2 or some R". Other times it refers to how
many independent variables the object requires to construct it. There are
many objects that defy these classifications. How would one decide what
dimension the fractals in the previous section are? They fit in 2, but how
many independent variables are required to construct them?

First consider a straight line and a plane. The line is of dimension 1 and the
plane is of dimension 2. If the line is bent at some point, it then sits in the
plane, but it does not take up the whole plane. It should not, then, be given.
a dimension of 2. The more kinky the line becomes, the more it locally looks
like the plane, so the closer its dimension should be to 2. This is exactly what
Hausdorff dimension quantifies. Unfortunately Hausdorff dimension is very
complicated mathematically both to understand and to implement. Fortu-
nately, there is a box dimension that approximates Hausdorff dimension, and
it is both easy to understand and implement. '

The calculation of box dimension starts by putting a box around the image
and rescaling to a box with side length 1. This may be in 2 or some R". We
will suppose for the moment that this is in £2. Count how many boxes con-
tain part of the image (i.e. 1). Now divide each side of the box in half. For
R? this will result in 4 boxes. Again, count how many of the boxes contain
part of the image (e.g. 2). We now want to calculate the slope of the line
between these two points on a log-log plot. Let s be the size of the boxes.
So in our example, s = 1 and then s = 1. Let N be the number of boxes
that are filled for a given size of the boxes. Let k£ be the number of cuts that
have been made. '
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log(N(2=(++D))—log(N(27%)) o N(2-(+1))
) () o (“Ny)

N{ =
e.g. log, (W('(%)Z) e.g. logy (%) =1

These numbers will converge to the box dimension of the image, D € [0, 2],
as k — oo.

This type of procedure can be easily programmed on a computer. The com-
puter program we wrote uses a least squares method for determining the
slope of the line in the log-log plot after as many iterations as the resolution
allows. This gives a number that is approximate for the dimension of the

image.

These dimension ideas have some very strong applications when combined
with two other concepts. The first is the (random) Cantor set. This is
a set constructed by starting with the unit interval and removing middle
thirds. Then repeating this step for each interval remaining. This leads to
a countable union of disjoint closed intervals (dust). Randomness is intro-
duced by varying both the length of the interval removed and the number of
intervals removed at each iteration level.

This kind of behavior ‘can be modeled somewhat by the use of a binary
tree. In a binary tree, each branch represents the remaining intervals in the
Cantor set. So, on the first iteration of the regular Cantor set, the binary
tree has a branch into two limbs. On the second iteration, each limb then
branches into two more. Repeat forever. With randomness introduced, each
branch can lead to any number of limbs. This analogy ignores the length of
the intervals removed but preserves the information of presence of intervals.

These two ideas (the Cantor set and the binary tree), along with dimen-
sion, lead to a new tool. The boundary of a fractal column that doubles in
resolution at each iteration can be thought of as a binary tree. A limb is
removed if the boundary has a block on the boundary at that iteration. A
limb stays if the block on the boundary is removed. The binary tree can then
be thought of as a random Cantor set. With these analogies, the dimension
of the resulting random Cantor set can be calculated. If the dimension is
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non-negative then there is something left, and the fractal has decayed exten-
sively. If the dimension is zero then there is nothing left, and the fractal has
not decayed very much. This way of thinking about boundaries can be an
extremely powerful tool.

5 Neighbor Interactions

Neighbor interaction consists simply of changing the probability of staying a
one based upon the ones and zeros nearby. In the case most studied by us
this picture sums up the information:

1 1
11 0:»'1 Pl and 1 0 0=-,»|0 0

p 0 : , 0 0

0 0 ;

In this basic model, each square will go to four new squares. Whether the
new squares contain zeros or ones depends both upon whether the original
square was a one or a zero and upon the neighbors. Neighbor interaction
is accomplished by looking at the values adjacent to a corner of the square.
This picture details exactly which values are important. ‘

o 1 o
=>|:||:|'

When we first wrote a computer program to model neighbor interactions, it
was extremely simple and we even had p fixed at % With later programs
it became apparent that many different situations could easily be handled.
Out of this context came the way we define fractals now:

! P Dy L " P
11 0=|%2 “{land 1 0 0 =|"2% '}
0 P1 Do 0 P1 Do

The superscript denotes whether the probability refers to a starting one or a
starting zero. The subscript denotes the sum of the two neighbors involved
in the calculation. For example, if the neighbor above is a 1, the neighbor to
the left is a 0, and the original square was a one, then the sum is 1 and the
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probability of a one in the upper left sub-square would be p}. Note in this
case the result (a sum of 1) is independent of where the neighboring zeros
and ones are placed.

Once this way of looking at the fractal was discovered, we quickly wrote a
program to implement the possibilities. The program was called growth-
movie8. This program allows input of six different probabilities, written
[p3, P2, pol, [P}, P}, pi], to cover the three possible sums for either a zero or a
one in the original square. These pictures were useful for looking at models
that might percolate or be connected.

5.1 Photo Album

After developing growthmovie8, we decided that the best way to view the
models would be in a photo album or catalog of models. This allowed us
to look at the fractals in relation to each other. The organization of the
photo album is simple. Each model is first categorized by initial culture (see
Appendix). They are then placed in numerical order based on the first entry
of [x,x,x],[x,x,x]. Once that is done they are placed in numerical order by
the second entry and so on. Any model that is a progression of iterations,
instead of a final picture at, for instance, iteration level 7, is placed at the
end with others of this type.

The photo album is an excellent way of "seeing” what changing a parameter
in growthmovie8 does. For example in [0,0,0],(0,0.5,X], look at the picture
when X = 1. Now look at the picture for X = 0.75. Changing that parameter
only slightly, disconnects the model considerably. Look at [0,0,0],[0,0.5,0.75]
again. Flip to [0,0,0],(0,0.75,0.75]. This parameter also increases the number
of ones, as would be expected, since the fifth parameter is the probability
of remaining a one if surrounded by a mixed signal. Picture [0,0,0],]0,1,0.75]
substantially increases the number of ones present. We suggest that you
look at other models to explore how changing the probabilities of different
parameters changes the model.

As has been shown, trends in percolation and connecﬁvity can be explored

by looking at the various pictures. For a given initial condition, such as
culture A with parameters [0,0,0],(0,p,1], we can easily see what happens to
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the model as p varies from 0 to 1 by small increments. The first picture,
[0,0,0],[0,0,1], appears to be a minimal case. From then on the center of the
fractal seems to "grow” as a one has an increased probability of remaining a
one. All of these models appear to percolate.

There are infinitely many models that could be produced. The photo album
is only a tool, however. Each of the pictures is only an example of what a
fractal with a particular p-value might look like. To make conjectures about
percolation based on the pictures without proof would be foolish. The most
important reason for the creation of the album is it is a useful tool that allows
us to categorize the fractals more effectively.

6 Maximal Decay

The [0,0,0],[0,p,1] fractal with the A culture is interesting for two reasons:
The column in the center remains iteration after iteration, and Jp € [0,1]
such that the fractal will decay maximally to reach that inner column on
both sides in the same place. The proof of this requires the concepts of the
random Cantor set from before and a theorem from Falconer.

THEOREM: For a random fractal F of type [0,0,0], [0,p,1] with starting

condition dp € [0,1] such that the Hausdorff dimension of the

OO OO
g g a—
= et e
OO OO

column boundary on one side is strictly positive (i.e. 3 points where the
random fractal I reduces to a minimal state on at least one side).

PROOF: The boundary of the fractal F on one side of the column is con-
verted to a random cantor set as was done in the section on Dimension.
Falconer’s theorem uses some variables to derive its results: Cy, Cq, and N.
Co and Cf represent the ratio of the current interval length to the previous
interval length. Cp is for the left and Cj is for the right. N is the random
number representing the number of C; that are positive (i.e. present). K is
the resulting random Cantor set derived from F.
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Theorem 15.2: The set K described above has probability ¢ of being empty,
where ¢ is the smaller non-negative root of the polynomial equation:

f0y=F PN =5 =

With probability 1 — ¢ the set K has Hausdorff and box dimension given by
the solution s of

E (é) Cj) =1
In this case, m = 1, and we solve f(t) = t where f(¢) = _leP(N = j)t
which is equal to =
P(N =0)+ P(N = 1)t.
Sop2+(f)p(1—p)t=t¢)t= m,f‘(?r_p—)-
Atp=0,t=0s0g=0.

With probability 1 — 0 = 1 the set K has Hausdorff dimension s given by:

E(_iOCj)=1

Note that in this case:

w-o-{ Tk ey 05
ECi+C) =1«
EQ2C) =1«
E(C) =3+
E(C)=3(1-p)+0p=3&

logg(1—p)=s—-1¢&
s=log(1—p)+1 for p<3
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For all p < 1, s is strictly greater than 0.
2

Now, in order to achieve maximal decay in the same place on both sides of
the column, the intersection of two of these sets is taken together as a new
random Cantor set.

With this new Cantor set Cy and C; become:

L with probability (1—p)®

Co=0C1 = { 0 with probability P

E(Ci+CY) =1«
F1-p’=3%
1-p=2"%
2logr(1—p)=s—-1<%

- s=2logs(1—p)+1

For s > 0, find p such that 2log2(1 — p) +1 > 0, so logz(1 — p) > —1. Now,
(1—p)>25,s0p<1—27% = 0.2929.

Therefore, for p < 0.2929, s is strictly greater than zero. This implies that
there will exist points where the column is defined, on both sides, by its
minimal width.

Q.E.D. |

The power of this result truly lies in the use of the random Cantor set to
convert the problem to one where a formula exists for calculating the dimen-
sion. Figuring out that the Cantor set intervals are spaces in the fractal was
a key step that seems obvious after the fact.
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6.1 Connectivity

A set is connected if it cannot be decomposed into two disjoint non-empty
subsets. For our purposes a connected fractal is one where a line can con-
nect any two points in the given fractal. This line may have right angles,
but only horizontal and vertical components (no diagonal). A connected
component is one in which the elements of that component are connected.

The fractal studied in the Maximal Decay section, [0,0,0],[0,p,1] beginning
with the A culture, appears to be connected for some values of p- Another
fractal using the same parameters but beginning with the F culture is clearly
not connected for some values of p. (see growthmovie8(F,7,[0,0,01,(0,0.25,1]))
In fact neither of these models will be connected for pe (0,1). To prove this,
first it must be known when a component will not be removed.

LEMMA 1: For a fractal generated by [0,0,0], [0, p, 1], if iteration level n
contains a 4-block (i.e. 1), then iteration level n + 1 contains a 4-block.

PROOF': Suppose at iteration level n 3 a 4-block.

*k ok * ok ok %k
* 1.1 = * 1 1 %
# 11 = % 1 1

* ok E I -

iteration n =>iteration n + 1
(Where each * is a zero or a one as defined by the fractal.)
NOTE: 3 a 4-block in iteration level n + 1.

Q.E.D.

To prove that the fractal will disconnect, we will show that there exists a
positive probability that at each iteration the random fractal will disconnect
in a finite number of steps. Then we will apply the following theorem which
says: an infinitely occuring event that has a positive probability of discon-
necting in a finite number of steps will eventually disconnect.

THEOREM 2: If V interation levels 3 a greater than zero probablity of
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disconnection in a finite number of steps, then the fractal, K, will disconnect
with probability 1.

PROOF: Let X, be the set of elements that lead to disconnection in a finite
number of steps. Let A; be the state of the fractal, K, at iteration level 1.

Therefore K = (] A;. Let € be the positive probability that disconnection
=1
occurs in a finite number of steps. Let M be the maximum number of steps

necessary to disconnect in a finite number of steps.

NOTE: P(X,|4;:i<M)>e€ Vn

The probability of always staying connected is:

?(ﬁX:) < r(Nx)

n=1 n=1
N
= ],___[IP(X:IX:—DaXlC)
N

< J1(-¢

1=1

= 1-¢"

[The probability of becoming disconnected is > € and
the probability of staying connected is < (1 —¢).]

N
1: c) _ 1 AN _
]\}%P (nD1Xn) -—]\}1_1;%0(1 =0

() [=r(Om)=

and P < OO Xn> is the probability of becoming disconnected.
n=1

75



Q.E.D.

Before we prove that the fractal with neighbor interactions will disconnect,
we present the following:

Corollary to Theorem 2: The fractal, X, will disconnect an infinite num-
ber of times.

Proof: Apply Theorem 2 to find m such that the fractal, K, is disconnected
at iteration level m. Repeat. :

Q.E.D.

And now proof that a fractal with neighbor interactions as presented by
Dekking is disconnected.

THEOREM 3: For the following two initial conditions:-

0000 0110
00110 0110
0110011 0
0000 0110

afractal, K, with neighbor interaction (i.e. generated by [0,0,0],(0,p,1]) where
p € (0,1) is disconnected with probability 1.

PROOF: Let A; be the state of fractal, K , at iteration level 7. It is sufficient
to show

Vndm: n<m< oo such that ﬁA,—
=0

1s disconnected with positive probability and apply Theorem 2.

Suppose the boundary of A; has a structure (or rotation of):
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*

* = %
Y e 3
O = O
o
Il
Sy

Where each * is a zero or a one as defined by A;.

The next iteration:

* x 0 0
* p 0 0 * 0 0
* 1 1 P 0 e.g. 1 1 1 0 _
f x 11 p0 %110 ~P
* p 0 0 * 0
*x x 0 0
with probability p(1 — p)® > 0

(note, some *’s and 0’s have been dropped for simplicity)

The next iteration:

0 0 0O
0 0 0O 09
. 0 0 0 * 0 1 1 0
ppp 2% 4 1 1 1 1 0=8B;
+ 111 p0200
_ *= 1 1 0 0
* 1 1 p 0 0 « % 0 0
* * p 0 0 O
with probability p*(1 — p)? > 0

The next iteration:
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0O p p 0O
p 1 1 p O
**pplllpOe.g.
* 11 1 pp p O =
* 1 1 p 0 0 O
* % ok %
* %
* 1 1 =
* + 0 1 1 1 =
« 1110 % « =~
* 1 1 =%
* %

with probability (1 — p)? >0
(NOTE: At this iteration, the set is disconnected.)
The probabﬂity of becoming disconnected is:

P(ByNByN B3N By) = P(By)P(By|By)P(Bs|By N By)P(Bs|Bs N By N By)
= 1-p(1-p)°-pP*(1-p)* - (1—-p)*>0

Now suppose the boundary of A; does not contain any rotations of B,.

In this case thé fractal must contain a four block that is near the border.

In must look like either:

OO

or

* =%
* == %
*

* = %

* X
—t
—t
==

There are now 5 cases to examine.

CASE 1:
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* ok *oE * %
*x 1 1 0
1 1 0 either _ 1 1 0
11O=$>k110_1aor 110_1.b
* 1 *
* ok * 0
*
l.a
* ok k ok ok * ok
1 1 0 * 1 1 p 0 * 1 1 0
11 0==xx11p 0= 1110
x 1 * *x 1 p 0 * 1 0
* * ok *

with probability p(1 — p)? > 0 and with positive probability this becomes
disconnected in a finite number of steps

1.b
. *x ok * ok
11 11 p 0 =110
= % 1 1 p 0= 11 1 0
1 10
« 0 * p 0 * 1 0
0 0

with probability p?(1 — p) > 0 and with positive probability this becomes
disconnected in a finite number of steps

CASE 2:

* % * 0 * 0
*x 1 1 1 1 1 0 - pt p 0
* 1 1 « 0 pm p 0

* % * 0

“x 0
-1 1 0
= 110
* 0

with probability > p* > 0 and with positive probability this becomes discon-
nected in a finite number of steps
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(note p* can be either 1 or p)

CASE 3:
* ok * 0 * 0
* 1 1 1 1 10 pt p 0
x 1 1 1 = pt 1 p
* ok * pt pt
* 0
. 1 10
1 1 0
* %

with probability > p?(1 — p) > 0 and with positive probability this becomes

disconnected in a finite number of steps

CAS*E%; * 1 x pt pt
111 110 - pt 1 p
11 * 0 = pt p O
* ok * 0 0

* ok
110

1 1 0

* 0

with probability > p*(1 — p) > 0 and with positive probability this becomes

disconnected in a finite number of steps

CASE 5:

* % * 1 pt pt
« 11 1 110 cept 1 p
£ 11 « 1 pt 1 p

% x pt pt

* %
=>-l].0

1 1 0

* ok

with probability > p? > 0 and with positive probability this becomes discon-

nected in a finite number of steps
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We have now shown that every iteration has a positive probability of becom-
ing disconnected in a finite number of steps. Apply Theorem 2 to obtain the
result:

The fractal, K, is disconnected with probability 1.

Q.E.D.

By applying the Corollary to Theorem 2, it is easily shown that a fractal
of the type [0,0,0],[0,p,1] with starting culture A or F' becomes disconnected
infinitely often. This implies that the fractal is indeed disconnected, contra-
dicting the purpose for its creation, to increase connectivity.

7 Future Topics

There are a number of topics that we consider interesting that we did not
have an opportunity to explore. The first relates to the Minimal Distance
proof. Instead of beginning with culture A, use F. For the case, [0,0,0],[0,1,1],
the fractal forms a diamond shape. We believe it can be shown that as p
increases, the boundary of the fractal increases until it touches the outside
of the diamond. This proof could incorporate the Cantor set.

Another topic that we were unable to study in depth was dimension. The
dimension of the boundaries of many of these fractals would be nice to know.

This leads into the pictures of fractals that we did not have an opportunity
to study. Most of these begin with the G culture and many oscillate between
zeros and ones. Questions concerning connectivity, percolation and dimen-
sion immediately come to mind.

We did not study models where the ones were constant and the zeros could
change. This would be a dual of the decay model, except the initial culture
would be different. It seems redundant to study this model in this manner.
A more efficient method would be to change the initial culture.
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The last topic that requires additional research is the idea of stochastic mono-
tonicity. This pertains to the idea that the fractals can be ranked according
to the number of zeros and ones they contain. If, for instance, a fractal con-
tains all the ones that another fractal does and they are in the exact same
locations, then that fractal would be the same size. If it contained all the
ones that another fractal did, in the same locations, plus a few more, then
it would be larger. This topic is much more intense than it appears and
requires more study to understand it.

8 Conclusion

Our research yielded four results. The first is the proof that a fractal gen-
erated by Mandelbrot Percolation will percolate for p large enough. The -
second is that there exists a p such that maximal decay occurs. The third is
that if there exists a positive probability of a fractal disconnecting in a finite
number of steps, it will disconnect. Finally, we have shown that a random
fractal generated by [0,0,0],[0,p,1] Wlth initial culture A or F will disconnect
infinitely many times.

We enjoyed researching this topic a great deal. We learned what research in
mathematics really means and have a greater appreciation for it. We found
that communication between each other and our advisor was the key to not
becoming unnecessarily idle. On many occasions we became frustrated by
our lack of progress; this was the best time to talk to our advisor. He really
helped us to focus on a particular fractal with a property that we previously
overlooked. We enjoyed exploring this topic and wish we had more time.
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Cultures

001 1 0]
01 1 0
A= 01 1 0 = [0000111111110000]
10 1 1 0l,.,
[0 0 0 0]
0 1 10
F= 01 1 0 = [0000011001100000]
—O 0 0 O-J43:4 |
[0 0 0 1 10 0 0]
0 001 1000
0 0011 000
c_|000 11000
/00 011 000
0 001 1000
6 001 1606O00
0001100 0f,,

NOTE: command line notation:

growthmovie8(culture,iterations,[pd, p9, P91, [P, pt, Pi]);
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‘growthmovieB(A,7,[0.5,1,0],[0,0,0]);

5

growthmovie8 (A,7,[0.5,1,01,[0,0,01);
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