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Abstract

For a ternary code, distance is redefined based on the Towers of
Hanoi puzzle. It is shown that, using Hanoi distance, a perfect one
error-correcting code can be found for any length n ternary code. A
formula for finding the number of codewords is given, and the code-
words are defined. As well,.a decoding algorithm is given and proved.

Keywords: Error-Correcting Codes, The Towers of Hanoi, Graph The-
ory :

1 Intro ductlon

When sendmg information, it is useful to convert messages into strings
of numbers, which will then be received and decoded as the original
messages. I-Iowever due to the imperfection inherent in manmade
channels, some strings will be received incorrectly and must be de-
coded to discover which message was sent. In coding theory, the idea
of the distance between two strings of symbols, called words or vectors,
is used for such decoding. Typically, the Hamming distance (Hill, p.
5) is used for decoding, as it corresponds to a common channel used to
transmit messages. However, a code based on the Hamming distance
does not guarantee that any received vector can be unambiguously de-
coded. I found that when distance is defined dlfferently, as the number
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of moves it takes to get from one configuration to another in the Tow-
ers of Hanoi puzzle, an unambiguous, one-error-correcting code can be
found for any given word length. Although this may not correspond
to any currently used transmitting channels, it is interesting to see
how such a convenient code can be defined.!

2 Previous Work

All definitions in this section are taken from Hill.

In basic coding theory, a code is defined as a g-ary (n, M, d)-code.
Here, q is the cardinality of the alphabet over which codewords will be
written. For example, the alphabet for a binary code is {0, 1},s0 q =
2. The other parameters of the code are the length n of the string of
symbols, called a word or vector, the number of codewords M, and the
minimum distance d between codewords. Thus, if a code C consisted
of codewords {000, 111}, it would be a binary (3, 2, 3)-code. This is -
using the Hamming distance, which measures the number of positions
in which two codewords differ.

If a message is received which is not one of the codewords, errors are
corrected using "nearest neighbor decoding”; that is, a word is decoded
as the codeword closest to it by the Hamming distance. Naturally, it is
desirable to be able to decode any possible word—any length n vector
chosen from the g-symbol alphabet—unambiguously. A code in which
all words can be decoded as exactly one codeword is called a perfect
code. _

With Hamming distance, non-trivial g-ary perfect codes exist for
lengths n that satisfy:

g —1
g—1

for any integer r and prime power q. Perfect codes also exist for some
other parameters specified by Hamming and Golay. Thus, perfect
codes can only be found for certain lengths even when an alphabet
with prime power size is used. Ideally, of course, we would like to be
able to find perfect codes for any set of parameters. But barring that,

1This research was conducted during an NSF Research Experience for Undergraduates
program at Oregon State University. I would like to thank Paul Cull, OSU professor of
Computer Science, for providing direction and consultation.
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it would be useful if fixing some parameter, for example q, led to the
existence of a perfect code for any length n.

Essentially, the Towers of Hanoi code, in which q = 3, yields this
family of perfect codes.

3 'Deﬁnitions

Definitions in this section are similar to those in Hinz.

The Towers of Hanoi puzzle consists of three towers and 1 disks.
Initially, all the disks are stacked, from largest to smallest, on the first
tower. The object of the game is to move all disks onto the third tower
so that they are stacked from largest to smallest. However, only one
disk can be moved in a turn, and at no time can any larger disk rest
on top of a smaller disk. We can name the towers 0, 1, 2, and we can
name the disks 1 through n, with 1 being the smallest disk.

disk1 == T disk 1
disk2 =—=— disk 2
disk 3 ———= — disk 3
Towers: 0 i 2 Towers: 0 1 2
Initial configuration: 3 disks » Final configuration: 3 disks

A code based on the Towers of Hanoi puzzle redefines the distance
between words in a ternary code. Consider a length n vector over the
set {0, 1, 2}. This can be said to represent the positions of n disks on
a three-towered puzzle. Thus, the word 0012 would correspond to the
position: '
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disk 1 == dikk 3
disk 2 === disk 4

The ith position in the word corresponds to the zth disk in the
puzzle, and the symbol in this position is the tower this disk is on.
Notice, each vector corresponds to exactly one configuration, because
smaller disks must rest on larger disks. Also, any word will represent a
Towers of Hanoi configuration, so a bijection exists between all ternary
words of length n and all Towers of Hanoi configurations.

Then, we can define the Hanoi distance between vectors x and y,
written drog (X, ¥), as the minimum number of moves it takes to get
from x to y according to the rules of the Towers of Hanoi.

Thus, dr.m (000, 100) = 1, but dr.m (000, 001) = 7. This shows
that a Haniming distance of one between vectors is a necessary con-
dition for a Hanoi distance of one, but the converse does not hold.

If we assume {x, y, z} = {0, 1, 2}, and let any word have the
symbol x in the first k positions, with k > 1, we can state the rules
for making one move on the Towers of Hanoi in the following form:

1. For some word w = w;....w,, wy can be changed to y or z.

2. If wgys =y, it can be changed to z. Like wise, a z in this
position can be changed to y.

These are the only changes that can be made in one move.

This generalization is helpful in understanding Hanoi distance, and
will be used in some upcoming proofs.

The Hanoi distance satisfies the crucial properties of distance:

l.drog (X, y)=0&x=y.

2. drom (X,y) = drom (¥, X).

3. dror (%, 2) < drom (X,¥) + drom (¥, 2).

For any Hanoi code, then, a one-error correcting code is one in
which the minimum distance between codewords is three. This follows
from a theorem which states that if a code’s distance is equal to 2t +
1, it corrects t errors (Hill, p. 7.)

Since all Hanoi codes are ternary, my problem was to find all per-
fect one-error correcting codes of this form. As well, I hoped to find a
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formula for the number of codewords in such a code, a way to generate
them, and a reasonable decoding algorithm.

4 The Structure of the Hanoi Code

This structure is also defined in Hinz, although I did not come across
his paper until I had finished my proofs, which will be given here in
full. ‘

This section will construct a graph of ternary n-space in which the
distance between vertices corresponds to the Towers of Hanoi distance
between vectors. I will also present a way of choosing codewords on
this graph which yields a perfect, one-error correcting code for any
length n.

4.1 The Hanoi Graph

Consider a recursive graph G,, such that

G
- / | \
G, — G,

where G is defined:
[ ]

In these figures, a filled in circle represents a vertex, and a line
represents a two-way edge between vertices. Clearly, such a graph will
have 3" vertices, so it has one vertex for each ternary word of length
n. When these words are associated with the graph, we allow the
bottom two Gn_1’s to be rotations of the top G,_;. This preserves.
the symmetry of the graph, but allows the repetition vectors 0...0,
1...1 and 2...2 to be in the corners. For example, GY:
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00

0 0
G, = / Z\
21

11 01 02 22
In fact, if Gz, where z € {0, 1, 2}, is defined to be the graph
Gy, in which all words have z in the n+1th position, and *G,, to be a
rotated graph of GG, we can define:

(}n-l0 »
o=/ \
*G_ 17 xG_.2

Now, I wish to show that a graph of this form is representative of
the Hanoi distance between words.

Theorem 1 The ternary words of length n can be arranged on the
graph G, given above such that the Hanoi distance between words is
represented by the number of edges between the vertices associated with
those words.

Proof: Associate the length 1 ternary words with the graph Gy
as follows:

0
[
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Clearly, the Hanoi distance between distinct vertices is one, and
this is reflected by the edges of the graph.
Now, suppose the theorem is true for Gj_;. Then,

G, 0

- /N

*le

But, since Gy must be arranged with the repetition vectors in the
corners, we know we have:

A
SN

0..01 0..02

N ow, Wlth.m any Gk_1z or its rotation, the edges must represent
Hanoi distance by the induction hypothesis. So, it remains to show

drorr (2..20,2..21) = 1,

drom (1...10,1...12) = 1 and

droH (O...Ol, 0...02) = 1.
This is trivial. Thus, the graph of G}, takes the desired form and the
theorem is true by induction. O

5 A Perfect Hanoi Code

So far, a code has been defined which, like most codes, uses vectors in

n-space as its codewords, but unlike most codes, defines distance based
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on the Towers of Hanoi puzzle. As well, this code has been related to
a graph structure. However, the real importance of this code is not in
its unusual definition of distance, but in its elegant properties. In this
section, I will show that a perfect, one-error correcting code exists for
any Hanoi code of length n. It turns out that the Hanoi codes have
a slightly different general structure for odd and even lengths n, but
both cases can be represented using two models.

5.1 The Parity Lemma

One of the main differences between the choice of codewords in the
odd and even cases is the number of repetition vectors which are code-
words. On the graph of G, these are the three corner vertices.

First, a definition is necessary.

Definition A sphere of radius s in the Towers of Hanoi code con-
sists of a word x and all words at Hanoi distance s from x. (Hill, p.
18). For such a code, a sphere of radius one will contain 3 vectors if
x is a corner vertex of the graph, and 4 vectors if x is not a corner
vertex.

Proof. The corner vertices of G,, are the repetition vectors, as
shown above: Since, in this vector, all the disks are stacked on one
tower, only the top disk can be moved. And, there are only two free
towers, so it can only be moved two different places. Thus, there are
two vectors of Hanoi distance one from a corner vertex, and therefore
3 vectors in the radius one sphere.

However, any non-corner word will be Han01 distance 1 from ex-
actly three other words. This follows from the rules given for distance
one moves in section three. O

In an s-error correcting code, all words within the radius s sphere
of the codeword x are decoded as x(Hill, p. 19.) The Parity Lemma
rests on this fact.

Lemma 1 If a perfect, one-error correcting Hanoi code ezists, then
1. For even n, all three corners of Gy, are codewords;
2. For odd n, exactly one corner is a codeword.

Proof. In a perfect code, every vector decodes unambiguously as
a codeword. Thus, the spheres must be disjoint and cover the entire
space. There are 3™ distinct words in ternary n-space, so if there are j
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corner codewords and k non-corner codewords, we need to show that
3j + 4k = 3™.

Case 1. Let n = 2r. Suppose all three corners are codewords.
Then the space is reduced to 3%" - 9 words. If this can be divided
evenly into four, there are spheres of non-corner codewords which
exactly cover the remaining space. And indeed, 3*” - 9 = 1-1 = 0

[mod 4].

However, if 0, 1, or 2 corner codewords are used, it is easily seen
that

321"

3?" - 3 and

32 -6

are not evenly divisible by four. Thus three corner codewords must
be used.

Case 2. Suppose n = 2r + 1. We claim that only one corner can
be used. The argument is as above:

327+l .3 =37 *3-3=1*3-3 = 0 [mod 4].

However, the equivalence does not apply for any other number of
corner codewords. O

5.2 Choosing Codewords on G,

In this section, I will define a method of choosing codewords on G,
respective of the parity of n, and prove that such a choice yields a
perfect one-error correcting code. In this section, the graph G, or
U, will represent a graph in the shape of some G,, on which certain
vertices are chosen as codewords. The choices are positional, not nu-
meric. A hollow circle around a vertex specifies that it is a codeword;
an X specifies that it is not. So, for example, :

and

X 2 R 1

are the same graph, in which the lower right corners may or may not
be codewords.
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For the Hanoi code, the graphs corresponding to codeword posi-

tions are recursive, and defined as follows:

G =/ \

"For even n

n-1 n-1

where the graph U, is defined:

U =

n
For evenn

n-1 n-1

As well, we define

G = © (acodeword) "~ and U

0

G =

Foroddn

\
A\ A

For odd n

\

X (not a codeword)

To show that these graphs create perfect, one-error-correcting codes,

a lemma about the properties of the graph U, is necessary.

Lemma 2 In the above graphs U,,

1. If n is odd, no word at Hanoi distance of one or zero from a

corner vertex can be a codeword.

2. If n is even, no corner vertez is a codeword. As well, no word
at Hanoi distance one from the top corner (in standard orientation)

18 a codeword.

Proof. When n = 0 or n = 1, the given properties clearly apply.
Now, consider n = k, and assume the hypotheses hold true for this k.

Consider k + 1.
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Case 1: k + 1is even. Then

U =
k+1

Since k is odd, by the induction hypothesis no word at distance one
or zero from a corner vertex can be a codeword. Thus, this property

is true of the top corner Ugy;.
Case 2: k + 1is odd. Then

[‘I<+1 = / \\
% E
k k
By the induction hypothesis, the top corner and the words at dis-
tance one from it are not codewords. Now, we want to show this is
also true of the bottom two corners of Uk+1. But, the rotation of the
bottom Ugyi’s has not been strictly defined, we can define it so that

the corners of Uy with the desired property are the corners of Uk41-
O

5.3 Proving the Existence of the Perfect, One
Error Correcting Hanoi Code

Now, we can show that G, constructs a perfect code.

Theorem 2 The above construction of the .gmph Gn gives a perfect,
one-error correcting code for any n.
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Proof. For G and G, it is trivial to show these codes are perfect
and one-error correcting. Now, assume that for some n = k, the graph
G yields a perfect, one-error correcting code. Consider n = k + 1.

Case 1: k + 1is even. Since each G can have only one corner
vertex as a codeword, we know"

Thus, since the corners of the G}’s which are distance one from
each other cannot be codewords, any word in G will decode within
G'k+1, which we know is perfect and one-error-correcting.

Case 2. k + 1is odd. Then,

O

\

k k

q(+l

G is perfect and one-error correcting. It remains to show that
there is no ambiguity in decoding the top corners of the U.’s, and
that all other words in Uy decode to exactly one codeword.

By the lemma in section 5.2, the top corner of U; and the words
at distance one from that corner cannot be codewords. Thus, the top
corners of Uy can be unambiguously decoded as the bottom corners
of G. The proof that all other words in U} are at distance one from
exactly one codeword is simple induction and will be omitted here. O
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Thus, the Hanoi code has the useful property that a perfect, one-
error correcting code exists for any word length n.

6 Features of the Hanoi Code

In the previous section, the existence of a perfect Hanoi code was
shown using recursive graph structures. In this section, I will present
some algorithms and formulas that can be used to generate and decode
a Hanoi code.

6.1 The Number of Codewords

By examining several perfect Hanoi codes, I determined experimen-
tally that a recursive formula for the number of codewords is

M(n) = 3(M(n - 1))

for even n and
M(n)=3(M(n—-1)) -2

for odd n. When I converted this to a non-recursive formula, I found

T . r—1i 3" +3
M(n)=9"-6>_9")= 1
1=1
and
r ~gr—iy _ 3" +1
M(n)=9"-2>"9 )=T

=1

forn = 2r and n = 2r + 1, respectively.

Theorem 3 The above formulas for M(n) represent the number of
codewords in a perfect, one-error correcting Hanoi code, respective of
parity.

Proof 1. We know that there are 3" ternary words of length n.
We also know that the radius one sphere of a corner codeword contains
three words, and that of a non-corner codeword contains four. In a
perfect code, each word in the space must be in exactly one sphere.
Thus, if k is the number of corner codewords, we need to show 3k +
4(M(n)-k) = 3™
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Case 1. Consider the formula

M(n)=9" — 6(i 977)

i=1

which applies when n = 2r. Let r = 1. Now, we know that if we
want a perfect code of even length, three corners must be codewords.
So, the space must be covered by 9 + 4 * (the number of non-corner
codewords) = 9 + 4(M(2)-3). Since M(2) = 3, we have 9 - 0, which
covers the nine words in ternary 2-space.

Suppose n = 2k, and assume the hypothesis is true. Then,

k
495 - 60> 95 -3)+9=3%
=1
This implies
k
49 - 6> 9% =3% 13
=1

Consider n = 2(k + 1). Then,

k41 : -k .
4(9FH1—6(>" 9F 17 -3) 49 = 4+9(9%—6(>_ 9571)~27 = 9(3%%43)—27 = 32(k+1)
=1 i=1

Case 2. If n = 2r + 1,
M(n)=9"-2(>_ 9
=1

Consider r = 1. We know we must have exactly one corner codeword
for the code to be perfect, so we have 4(9-2(1)- 1) + 3 = 27 = 33,
Suppose the assumption is true for some r = k. Then

.k
49— 2039 — 1)+ 3 = 3%+
=1
which implies
: k
4(9F — 20> 9kt = g%+ 11

=1
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Thus, when we consider r = k+1, we have

k+1
4(9k+1 _ 2(2 9k+1—i _ 1) _I__ 3= 32(k+1)+1

=1

In the above proof, the cases of n = 0 and n = 1 were not dealt
with, but the values of M(0) and M(1) are easily determined to both
be 1 by the graph structure. O

After I did this proof, another, simpler proof occurred to me:

Proof 2. Unless a codeword is a corner vertex, there are four
words which will be decoded as that word. Thus, if we add one more
word for each corner codeword to the total number of words in the
space and divide this sum by four, we should have the number of
codewords. And indeed, these quotients come out to be the simpler
fractions given above. O

6.2 Generating Codewords

By observation, I discovered a property of the codewords of the Hanoi
code which may facilitate the construction of a generating algorithm.
The following lemma is needed to prove this property.

Lemma 3 Let [0,] denote the number of 0’s in the word v. Suppose
[0.], [1,] and [2,] are all even numbers when the length of v is even,
and that [1,] and [2,] are even and [0,] is odd when n is odd. Then,
if v and w are words of this form for some n, dro.g (v, w) > 3.

Proof. For some fixed n, suppose there are two distinct words
of the above form, v and w, which have Hanoi distance less than or
equal to three.

However, the words cannot be at Hanoi distance one from each
other, because this would imply a Hamming distance of one between
them. And, changing only one position in such a word would disturb
the parity requirement.

So it must be the case that dr,p (v, w) = 2. This implies that

both words are at Hanoi distance one, and therefore at Hamming
distance one, from some word u. Assume that the symbol x € {0, 1,
2} occupies the first k places of v and the first j places of w. Then,
by the numeric rules for one move on the Towers of Hanoi, we know
one of the following three cases applies:
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1. u = yvs...v, = Yws... Wy,

2. U = 209...Vy = ZWs...Wy, OT

3. u=v1..%. .0, = wy..w;’...wy, Where v;’# v; and w;’# w;

The first two cases imply that v; = w; for all i > 2. However,
if this were true, it would follow that dr,gz (v, w) = 1, which is a
contradiction.

Now, consider case three. If i = j, again it follows that dr.g (v,
w) = 1. Suppose i < j. Now, we know that v; # x and w; # x by
the rules that define Hanoi distance one. But if i < j, we know w; =
x. Since v; can only be changed to y or z, the two words in case three
cannot be the same. ,

Thus the lemma is true by contradiction. O

Now, it remains to show that the number of words of this form is
equal to the number of codewords in a perfect Hanoi code.

Lemma 4 When n is even, there are 22 words where [0], [1] and
[2] are even. When n is odd, there are 351 words where [1] and [2]
are even and [0] is odd. :

Proof. Consider the trinomial expansion of (z+y+2)". If we
assume {x, y, z} = {0, 1, 2}, the coefficient of z¢ y/ zF will be the
number of words of length n containing x in i positions, y in j positions,
and z in k positions. Thus, we can count codewords with a certain
number of zeros, ones and twos using this formula.

Now, define z. to be the number of terms in the expansion in which
x has an even exponent, z, to be the number of words in which x has
an odd exponent. As well, define z, & . to be the number of words
in which the exponents of both x and y are even. We can group terms
according to the parity of the exponents of x and y, since this forces
a z to have a specific parity.

Then, when x=y=z=1, we get all 3" words in the space, and we
can group them as follows:

A+1+1)"=3"=(Ze & Y + T & Yo + Ve & 2o + Yo & T,).

As well, if we consider cases in which x and/or y is equal to -1, we
have

(Fl14+1+1)"=1"=(2e & Ye + 2 & Yo - Ye & T - Yo & T,)

1I-14+1)"=1"= (¢ & Yo - Te & Yo + Ve & T - Yo & %,)

(—1"1+1)n:"1n=(xe&ye‘:Ee&yo'ye&xo‘l'yo&xo)
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Now, if we add these four expressions, all terms cancel except those
in which both x and y have even exponents. Thus, if n is even we have
3" + 3 = 4(z. & ye), which implies z, & y, = 3—“;;5. If n is odd, 3~
+1=4(z. & y.),s0 2. & 9. = @%1. In this case, we can assume z
represents the symbol 0, which appears an odd number of times in a
word in which [x] and [y] are even. O

Thus, there are exactly the same number of codewords as there are
words of the specified form.

The result below follows naturally from the above lemmas.

Theorem 4 If the length of a perfect Hanoi code is odd, the codewords
are ezactly those words in which [1] and [2] are even, and [0] is odd.
If the length is even, the codewords are ezactly those words for which
[0], [1] and [2] are even.

Proof. In a perfect, one-error correcting code any codeword has
distance exactly three from the nearest codewords. Since the code is
perfect, if there exists a set of words with the same cardinality as the
set of codewords, these words must be distance three or less from each
other. But, we’ve shown that no word with the desired construction
can have a distance less than three from any other word of this kind.
Thus, any such word must have a distance of exactly three from the
closest codewords. And it follows that t hey constitute the codewords
of the perfect code. O ,

Because of this property, the Hanoi code is cyclic; that is, any
cyclic rotation of a codeword is also a codeword. I have not written an
algorithm to generate these codewords, but this rule should facilitate
the creation of one.

6.3 A Decoding Algorithm

Due to the recursive nature of the Towers of Hanoi graphs, it seems
natural to define a recursive decoding algorithm which looks at the
last digit of the received word, decides whether to keep or change it,
and the passes the truncated word to another decoding routine. It also
seems natural to have four decoding routines based on the graphs: two
routines each for U, and G,, depending on the parity of n.

However, because some of the graphs are rotated, an adjustment
will have to be made to the word when it is passed between routines.
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If the graph G, is oriented so the vector 2 is in the lower right corner,
we can define:

G0

TG,,)1 —T(G,,)2

- T
where T*(G,,) is the permutation 0 = 2> 1 applied k times to the
words of G,. It can easily be seen that this is the same as the rotated
G, which has been used throughout the paper.

In the decoding algorithm, we first want to determine whether the
received word ¥y = #...%, is or is not a codeword. So, read in n and
determine its parity. Then, define counters [0], [1] and [2], run through
the word and imncrement the value of the counter [x] every time the
symbol x is encountered. When this is done, check the parities of the
counters. If they match the rule given in section 6.2, the word is a
codeword and can be returned unchanged. ,

If the word is not a codeword, begin the decoding algorithm. The
following four routines are used. The variable T is a member of the
set {0, 1, 2}, and represents the number of permutations which should
be performed on the word before decoding begins. The function Ap-
plyT, which will not be defined here, performs this task and returns
the permuted y. The variable y’ will be used to store the decoded
word.

Routine 1: Decodes within G, for even n.
Procedure DecodeGEven (n, y, y°)
store ¥y, in the nth position of y’
set y, = T; remove gy, from y and set n = n-1
call ApplyT(y, T); returns the permuted y
call DecodeGOdd(n, y, y’); returns decoded y’
call ApplyT(y?, 3-T)
return y’
Routine 2: Decodes within G,, for odd n.
Procedure DecodeGOdd (n, y, ¥’)
if n=1, y’ = 0; return y’.
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if y, = 0, store 0 in ¥/,,, call DecodeGEven
when y” is returned, call ApplyT(y’, 3-T)
else if y1:y2=...:yn_1 and y, # 0,
store 0 in y/,; return y’
when y’ is returned, call ApplyT(y’, 3-T)
else store y, in Y, set T= =Yn, truncate y
call ApplyT(y, 2T), call DecodeUEven
call ApplyT(y 2T)
return y’
Routine 3: Decodes within U, for even n.
Procedure DecodeUEven (n, y, y?)
fy, =0and y1=...=gpy
if yp—1=1, let ¢’,,_; = 2 and vice versa
return y’
else if y, = 0 and Not(y;=...=y,)
set T=y,, truncate y
call ApplyT(y, yn), call DecodeUOdd
else if y, # 0, call DecodeGOdd
return y’
Routine 4: Decodes within U, for odd n.
Procedure DecodeU0dd (n, y, y?)
set T=yy; store y,, as ¢/,
call ApplyT (y, T)
call DecodeUEven; returns y’
call ApplyT (y’, 3-T)
return'y’

This decoding algorithm follows directly from the structures of G,,
and U,.

7 Conclusion

A perfect, one-error-correcting code exists for any length n ternary
code in which distance is defined according to the Towers of Hanoi
puzzle. If n is even, there are i’*’— codewords, which are exactly
those words in ternary n space contalmng an even number of zeros,
ones and twos. If n is odd, there are —L codewords, which are exactly
those words containing an even number of ones and twos, and an odd

124



number of zeros. The codes can be represented on recursive graphs,
from which the decoding algorithm is derived.

A few refinements could be made on the perfect, one-error correct-
ing Hanoi code. For example, the algorithm to generate codewords
has not been written, and a more elegant decoding algorithm may
exist. ‘ :
As well, other mathematicians may be interested in finding per-
fect Hanoi codes which correct more than one error, or perfect error-
detecting Hanoi codes. Clearly, the repetition Hanoi code on any
length n corrects n-1 errors perfectly, but nothing is known about
values between 1 and n-1.

Finally, like so many beautiful things, the Hanoi code has no prac-
tical use of which I am aware. Because of the code’s elegant properties,
it would be worthwhile to look for an application of this material.
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