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Abstract

Seven common population models demonstrate the unexpected
characteristic that global stability coincides with local stability. We
search for an explanation that would tie the models together. We ex-
plore several modified Schwarzians, polynomials associated with the
equations, and the implications of Culls theorem stating no two cy-
cles implies global stability for our definition of population models. -
None of these a,pproaches is successful, though the latter is far from

exhausted.

1 Introduction

1.1 Motivation

Biologists commonly use population models to envision the dynamics of a
species or ecosystem. These models are simplifications of the actual systems,
since it would be impossible to include all initial conditions precisely, or even
to identify all related factors. As a result it is extremely important that
a model be dynamically well béhaved, since poorly behaved models could
exhibit dramatically varying behavior from arbitrarily close initial points. If
the take of Coho Salmon is chosen based on an unstable ecological model a
change of a few poached salmon could have disastrous results.
Unfortunately it can be extremely difficult to prove global stability for a
model, therefore it is a common practice in biological research to prove local
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stability of a model and then conclude global stability. Clearly this is not
desirable. Mathematicians exploring biological models noted that the com-
monly used models share the unexpected characteristic that local stability
implies global stability. Our goal is to find some unifying theory that would
explain why this occurs in the seven models we examine. The hope is that
this would suggest a simple test that could be applied to new population
models to determine the presence of global stability.

1.2 Pr_evious. .Work

The traditional method for establishing global stability is to construct Lia-
punov functions as Fisher et al. (1979) and Goh (1979) do. This is a laborious
undertaking, and one not attempted by many biologists. We are hopmg to
find a result that would circumvent this approach.

Cull (1988) has developed two theorems which, together, prove global
stability for the seven models under consideration. Neither is effective for all
seven, and the second is not as simple as might be hoped. Cull also observes |
that the absence of two cycles is equivalent to global stability, by Sarkovskiis
theorem combined with our definition of population model.

Singer (1978) develops several conditions dependant upon uniform neg—
ative Schwarzian, one of which forms the basis for the work of Heinschel
(1994). The ones of interest to us are: negative Schwarzian implies each sta-
ble cycle has a critical point attracted to it and negative Schwarzian implies
no positive minimums or negative maximums in the first derivative of the
function, '

Heinschel’s work is based upon the theorem stating stable cycles have
attracted critical points if negative Schwarzian is present. Since only a single

- critical point is allowed in our definition of population medel, the idea is

that only the known périodic point is allowed. Closer examination revealed,
however, that an additional condition is necessary to eliminate non-stable
two-cycles. This condition is that f(f(z)) > z for z close enough to zero.
" Unfortunately not all the functions under consideration have uniformly neg-
ative Schwarzians. We will be testing the models as they appear in Cull’s
paper for several properties in the hope that a theorem may suggest itself.
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1.3 Definitions

A population model is a function of the form:

Tey1 = f(24)
where f is a continuous function with f(0) =0, and there is a unique positive

equilibrium-point Z such that:

f#)=2 ,
flz)>zfor0<z<z
flz)<zforz <z

and such that if f(z) has a maximum ,, in (0,%) then f (z) is monotonically
decreasing for all z > ,, such that f(z) > 0. Our definition is identical to :

that of Cull.
An enveloping curve is one which satisfies: '

f@)2 fi(z) >z for > 2 >0
f(z) < fi(z) < z for z>Z.

1{x)

%)
\\_ﬁ f,(x)
—

f(x)

We shall use globally stable to mean a function for which lim;_, ., z; = T for all
z, such that f(z,) > 0. A population model is locally stable iff there is some
small enough neighborhood of Z such that for all z, in this neighborhood,
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¢ 15 1n this nelghborhood and im0 24 = Z. For the class of functions we
have defined as population models global stability then implies local stability,
. since we can take the region where f(z) > 0 as our neighborhood.

The Schwarzian derivative 9f f at a point z is given by:

-3 ()

for any real valued function f that is at least C?.

S(f,z)=

1.4 Models

The »models we use are bfrom Cull.

one =z e(T (1-%))

o =2 (147 (1~ 2))

three—x(l——rln( })
. faur_a:(b—z[—c:c— )

(1+b)
, zr
ven =
5¢ I+ (r—1)z°

2 Schwarzian Explorations
2.1 S(£(f),x)
A ‘theorem in Singers paper states that :

Theorem 1 If S(f) < 0 for all z, then the functzon &' cannot have either

a positive local minimum value or a negative local mazimum value.

Heinschel showed that functions 3,6 and 7 do not have uniformly negative
Schwarzian, however we hoped that the Schwarzians might be negative for
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the second iterations of these functions. It is known that succesive itera- .
tions of a function with negative Schwarzian have negative Schwarzians, so
it was unnecessary to test functions 1,2,4 and 5. Unfortunately exploration
quickly showed that all three functions had nonegative values. S (fe(fe)) had
a particularly interesting graph: '

S{£6{£6)). a=1000

,’5%:"4' f‘i } ] ]/ l L’r’
P e
i c',z:éi‘;;’fq$:0$‘::0§$‘\i" “ i
4 )
IR W
J SIS |
0.5 I k
h 1 - . 0.4
1.6 . 0.8

22 Smoa(f(z))

- We then explored a modified Schwarzia,n, formed by taking the Schwarzian of
the integral of ﬂfl The Schwarzian was not uniformly negative for functions
3,4,6 and 7. At this point we abandoned exploration into the Schwarzian.

3 Polynomials
~ We then looked into polynomials formed by examining g(x) = %ﬂ "We

 searched for simple polynomials of the form P; (g’ (z)) = Pa(g(z)) + Ps. The
hope was that if sufficiently simple polynomials could be found we would be

148



able to formulate a theorem suggested by them. For equations 1,2, 3,4,and

-6 such polynomials existed. (See appendix A) However for equations 5 and -
7 we could find no suitable simplification. We were left with the choice

between simple polynomials and second order differential equations or first
order differential equations with relatively complicated polynomials. Neither
suited our purposes. o ‘

The idea we hoped to pursue was that we could find constraints on the
functions, in this case the first derivative of an associated function, and ‘prove
the constraints hold for our models.

let f(z) = zg(z)

we know  f(f(z)) >z

0 fag(2) = 29(2)e(ag(z)) > =
- h=g(z)g(zg(z)) > 1forz < 1
finally - D(k) = g'(z)g(z9(2)) + 9()g'(f) f'

We know if D(k) < 0 on (Zm,1) then global stabiﬁty holds. If simple poly-
nomials had existed, this might have proven quite easy to establish. It is
possible that further exploration along these lines might prove fruitful.

4 Imphcatlons of two—cycles

Our final method of exploration involves geometrlc approaches suggested by
Culls theorem:

Theorem 2 A population model is globally stable iff it has no cycles of period
2. . ) . .

* Our work is based on two observations:

Observation 1 Let 1,z be the two values comﬁrising a two-cycle. Then

1 fe) ~ f)

slope =
P (21 — 22)

Observation 2 the points z; and = are equidistant from any point on the
z =y line. :
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To demonstrate our ob‘s_er%zations, consider the geometric qualities of a two

cycle:
(x, £x)) (f{x), £x))=b
(x, x) —.__| (f(x), x)
.C
B %
Clearly ‘

f) = @) _ fla) o _ |
'(931 - 502) T — f(&?l)
To observe the second fact, we note that using the standard metric,
d((z1, f(21)),8) = d((z3, f(rcg)) b). Further, the line connecting (zy, f(z1))
and b is horizontal and the line connecting (xz, f(z2)) and b is vertical. Thus
they form a right angle bisected by the line z = y and by the side-angle-side

theorem we have d((z1, f(z1)),(c,¢)) = d((a:z, (f(z2)), (¢, €)).

4.1 Using our Observations

We recogmzed that functions made from our observations' could be manipu-
lated into equations of the form g(z;) = g(:zrg) ‘We hoped that these functions
could then be graphed and would be found to be obviously i increasing or de-
creasing in the area of interest-to us. This area may be constrained by noting
that to correspond to a two-cycle a solution pair must have one member on
either side of z = 1, and recognizing that the point furthest from+0, 0) before
z =11s (zp, f(:cm)) so all points £ > f(z,) may be discarded. Thus we
are only concerned with pairs of solutions in a limited area. Unfortunately
in each case we have explored, functions which have pairs of solutions tend
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to exhibit this behavior around z = 1, the hieart of our region of mterest
We had hoped that perhaps by comblnlng more than one of the functions
on the same graph we would find that their areas of solution pairs did not
overlap, but this is not graphically clear. We are still catalogueing which
functions fail in the critical area for each equation and hope to include this
in an appendix at a later time:

g = flz1) + 1 This was the first attempt, using only the fact m = —1.
h=f(z)?+2®>  Next we use only the fact d(z1,c) = d(z3,c¢) N
p = f(z)z Here we take ¢g? and substltute in h. This was the
first attempt to use both facts.
q= (f(z) — ) + (fl=z) - d)2+(:z:—-c)2—|—(x — d)? where c,d €
' Here we recognize the fact that only points with the
quahtles we desire are equidistant from two points on the z = y line.
Unfortunately our equation also admits points with equal combined distance
from the two points. We are currently working to rectify this.

To outline the procedure we are using, we submit our-first attempt: using
only m = —1: We mampulate

/ (501) - f(xz)

I1— 22

tog_ef .
F(@1) + 31 = flz2) + 22

(see proof) We hoped that the function g(z) = f(z) + = might prove strictly
increasing or decreasing for our seven functions. Unfortunately this was not
the case, and indeed we doubt it would often prove to occur. For those few
cases when it does, we offer

Theorem 3 If g(z) = f(z) + z is strictly monotonic and f is a population
model then f(z) is globally stable. :

Proof 1 Assume a two cycle exists. By Observation 1 we know a two cycle
consists of two points connected by a line of slope -1.

since _ ﬁf—;f%%)- = —]1
then 1 C flz) = fz2) =20 — 24
S0 ‘ (-’171) +z = (1'2) +.$2
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Thus if the function. g{z) = f(z) + z is strictly monotonic, only z; = z,
satisfies this equation, and no two-cycle e:z:zsts By Cull’s theorem the model
must be globally stable.

It became clear with further thought that we must also invoke the additional
information that z; and z, are equidistant from the z = y line. While it
would be possible to show that our function preserves distance proportions,
it does not appear useful to state that the points (z1, g(z1)) and (z2, g(z2))
are equidistant from the line 2z = y. Similar processes have been used in the
other cases.

5 Cdnclusion

Clearly we have failed to find a uniform method to show global stability for
our models. Our methods encompassed the range from exploration with min-
imal motivation to theorems relieing on conditions which are neccesary, but
proved insufficient for our purposes. It is our belief that further exploration
into Schwarzian will prove fruitless. It is possible that further search into
simple polynomials as described in section 3 may be useful. Our exploration
into the conditions m = —1 and equidistance are ongoing.. At the moment
we are pursuing additional equations that might be both neccesary and suf-
ficient and plan to catalogue which functions are useful for which models.
We are also considering the idea that while measuring distance to a finite
- number of points on the z = y line is insufficient, perhaps some method for
taking the limit as additional points are added might prove useful.

A Appendix

The polynomlals P, (g{z)) = P»(g(z)) + Ps found by taking g = f(; ) for the

seven models:

one , e(~7-—r:t) g’: _‘2
two i+r(1—x) '—lr—l—[lm—lr]
three 1—rin(z) zg' = —r
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1

fi btemy — d
our bil-cib ( _c’)g g+
+ae r_ 2 abelba)
) five 1 + ae(bz:) . g =9 1+aelbz)
1 .
s1X (—(1—_;%)-)—- | (1 + a:v)g' = —bag
seven a. , g2zt Ve(a—1)
e =
A 1+(a—1)z° » 9= a

For models 5 and 7 it is certainly possible to find polynomials that form a
first order differential equation, however these polynomials are not simple:
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