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Abstract

In this paper we classify the homotopy classes of loops with one
and two self-intersections on the punctured torus with genus n. We
rely upon topological arguments to develop the classification of loops
with a given intersection number. We then provide a partial proof of
the distinctness of the homotopy classes for once and twice intersecting
loops on the punctured torus of genus 2.
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1 Introduction

In this paper, we study single self-intersecting closed loops of a general torus
with n holes, where n is a positive integer, and classify the free homotopy
classes of loops on the once punctured two holed torus with two self intersec-
tions. The idea for this paper grew out of the following studies, where the
authors classify once self-intersecting loops and geodesics on the puncture
one-holed torus and study their relation to the Markoff spectrum: [2], [3],
[5], [11] and [12].

In section two, we will define our general terminology, background, and
techniques. In addition, we classify the simple loop on 75 in this section.

Section three classifies single self-intersecting loops on T%, while section
four classifies twice self-intersecting loops and describes the two different
approaches used to do so. The generalization of the once-intersecting loops
on T, is discussed in section five.

Finally, the distinctness of the loops using an algorithm of Whitehead is
shown in section seven.

2 Background

We will note the punctured n-holed torus as T,,. Furthermore, when we speak
generically of the n-holed torus, we will assume we mean the punctured n-
holed torus unless otherwised noted. The fundamental group of 7, m1(T5), is
isomorphic to the free group on 2n letters, F'(as, b1, az, bs...ay, b, ). Thereis a
bijection between free homotopy classes of closed curves on T}, and conjugacy
classes of elements of F'(a4, b1, as, ba...ay, b,). For notation, we will define the
fundamental group of T as being isomorphic to the free group F(a,b,c,d).

2.1 Definitions and Notations

It is convenient to think of T, as the conected sum of n tori. For example,
T3, which is a quotient space of an octagon (see Figure 1), can be viewed as
the sum of two one-tori. We let one of these tori be generated by the curves
a and b, and refer to it as ab-torus, and let the other torus be generated
by the curves ¢ and d and refer to it as cd-torus. By identifying the sides
of the octagon in figure 1, we fix the orientation of the generators of T} as
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drawn in figure 2. Without loss of generality, we can let the puncture lie
on the cd torus, since we could define an appropriate homeomorphism of T5
which makes this the case. In this same manner, T,, can be viewed as the
connected sum of n one-tori. This figure is the quotient space of the 4n-gon
formed in the same manner as in figure 1, namely the segments will be named
a1by dlb_lagbgdgb_g...anbndnb;, clockwise. Therefore, when we identify the sides,
we create 1), with generators oriented as in figure 3. Let the ith one-torus of
this connected sum be generated by the free group F'(a;, b;). Hence, we refer
the ith torus as the a;b;-torus. Without loss of generality, the puncture can
be placed in the a,b,-torus. ‘

In order to define a closed loop, I, on T,,, we will let f be a continuous
function that maps the interval [0,1] to T, such that the initial and terminal
points are the same, ie f(0) = f(1). Hence, [ is the image of this mapping.
The loop is simple if f(:) = f(j) if and only if = 0 and j = 1. Otherwise,
a loop is said to have a self-intersection when f(7) = f(j) for some finite
number of ¢’s and j’s where 0 < 7,5 < 1. When we analyze the various loops
on T', we only consider non-trivial intersecions. A loop has a single non-
trivial intersection provided the intersecion is a transverse one and the loop
is not homotopic to a simple loop. A loop has two non-trivial intersecions
provided the intersections are transverse and the loop is not homotopic to a
loop with a single non-trivial intersection or a simple loop [5].

2.2 Cutting

In this section, we will lay the foundation for exploring closed loops with self-
intersections on T),. Let the closed loop [ be defined as in the introduction.
Since T, is a manifold, there exists an open interval around each point on !
such that when we remove the interior, we will produce two identical copies
of [, I x 0 and I x 1. When we refer to a boundary component of a region or
a surface, we are referring to a single copy of the image of a loop. Hence, we
have created two new boundary components, the edges of [, which are loops.

Furthermore, a loop [ is said to be nonseparating if when cut, the two
boundary components created lie on the same surface. A loop is said to
be separating if it creates two new surfaces, each containing one boundary
component of {.
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Figure 3

2.3 Simple Loops on T;

We will now begin our study of self-intersecting loops on T3. This is then
followed by a generalization made to 7,. Before studying self-intersecting
loops on T3, however, we must establish the following theorem regarding
simple loops on Ts.

Theorem 2.1 On the once punctured, two-holed torus, T, there exists a
homeomorphism which takes any simple loop, I, to an element in the equiv-
alence class of one of the following:

1. the non-separating curve, b,

2. a curve, A, which separates 15 into two one-holed tori which can be
described by the word abab,

3. a loop bounding a disc or the identity,

4 a loop, A described as Eclcc?ba_l;&;which bounds a punctured disc.

Proof We will demonstrate the existence of each of the four classes in the
theorem through an Euler characteristic, and we will use similar arguments
throughout this paper. We will need to prove that loops which yield surfaces
of the same topological type are equivalent up to homeomorphisms. In order
to show that two loops on T, are equivalent (ie. there is a homeomorphism
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of T' which takes one loop to the other), we will have to use the following
argument [14]. We will first consider the case where [ is a nun-separating loop.
Let p be a nonseparating loop on T3 such that when cut, it leaves an orientable
surface F' with two boundary components and an Euler characteristic, which
we will denote as x. Assume there is another nonseparating loop, ¢, that
results in an orientable surface F” also having two boundary components
and the same x as F'. Then, there exists a homeomorphism, A : F — F'.

When cutting p, let po and p; be the two boundary components created
after removing the interior (hence, py = p X 0 and p; = p x 1). Each distinct
point on p is mapped to both a unique point on p, and a unique point on
p1. Therefore, there is a 1-1 and continuous identification between py and p;.
Hence, we can identify each of these two edges by a specific homeomorphism
g : po — p1. Furthermore, there is a homeomorphism Agh™ : g¢ — ¢
where go and ¢; are the two edges of q. Hence, there is a homeomorphism
f : T3 — T3 which maps p onto gq.

Similarly, if m is a separating curve, then T, will be cut into two sur-
faces, F; and F, (only two because each surface must contain one of the two
boundary components). Assume another loop n is equivalent to m. Then
n will create two surfaces F{ and Fj, where F| & F; and Fj & F, and &
will denote equivalence under homeomorphism. Hence F; will have the same
Euler characteristic and number of boundary components as FY. '

Therefore, if two simple loops create a surface or pair of surfaces of the
same topological type without boundary, then there exists a homeomorphism

“taking one loop to the other. In order to see if two surfaces are homeomorphic,
we can use the part of the Classification theorem which simply states that if
two orientable surfaces without boundary have the same Euler characteristic,
then they are homeomorphic [8, pages 10-11].

We have seen that a simple loop will create two boundary components
which are loops. Therefore, we must glue a disc to each bounded surface,
obtaining a surface, without boundary. We must glue in two such faces, so
we increase the Euler characteristic by two, and now x equals 0.

The possibilities of surfaces without boundary which a simple, closed loop
on T3 can create are therefore restricted by x = 0 and the fact that only one
or two surfaces can be created since each surface must contain a boundary
component before gluing on a face. The possible resulting surfaces are as
follows:

16



1. a one-holed torus
2. two one-holed tori, or
3. a two-holed torus and a sphere.

In the first case, there is only one resulting surface, so [ must be a nonsep-
arating simple loop. Without loss of generality, let [ be the loop described by
the generator b, which is a nonseparating curve. Since we have shown that,
when cut, any nonseparating loop will result in a one-hole torus, then for any
nonseparating loop on T3, there is a homeomorphism which maps the loop
onto b. We note that each generator of the free group is a non-separating
curve.

For the second case, the loop divided 75 into two surfaces, so it must have
been separating. We will define a cut which separates T' into two one-hole
tori, with the puncture lying in either one of them, as A. Furthermore, we
have oriented this loop such that it can be described by the word ab@b, where
the puncture will lie on the one-holed torus generated by ¢ and d. Note that
if the puncture lies on the ab-torus, then the name of a loop that divides T,
into two one-tori can be described with the word édcd.

Finally, in the third case, we again have a separating loop [. First, assume
that the puncture lies on the two-holed torus. On the sphere, there will be
a boundary component corresponding to an edge of [, say lp. Since there is
no puncture on the sphere, [ is contractible to a single point, and therefore
[ is freely homotopic to the identity. Now assume the puncture is on the
sphere. The loop is no longer contractible to a single point, but the cut
can be contracted to a disc enclosing the puncture. The word édcdbaba
corresponds to a loop enclosing a punctured disc, and we will refer to this as
A for convenience. Hence, any [ creating a two-holed torus and a punctured
sphere will be equivalent to A.O '

2.4 k+1 Simple Loops

Now that we have established the four simple loops on T3, we can begin
to consider self-intersecting closed loops. Using the language of [5], we can
define a closed curve as having a single nontrivial self-intersection if it has a
single transverse intersection and is not freely homotopic to a simple loop.
In addition, a loop is said to have n non-trivial intersections if it has n
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transverse self-intersection points and is not homotopic to a loop with (n —3)
intersections, where ¢ = 1,2,...n. Using this definition of self-intersecting
loops, we can classify such loops on 75. First, we will establish the following
lemma:

Lemma 2.1 Up to a free homotopy, any loop, I, on Ty with k transverse self-
intersection points can be formed as the composition of k + 1 simple loops,
which intersect at only one point.

The reader is referred to [5] for the proof of this on the one-holed, once
punctured torus. The same argument holds for the two-holed once punctured
torus. With this lemma, we can view the once-intersecting loop, [ as the
composition of two simple loops intersecting at a common point, which we
will call the basepoint.

2.5 Transverse Intersections

To see if an intersection is transverse, we can simply look at the neighborhood
around the basepoint. We can represent this neighborhood with the following
k-diagram:

\\\
1 2’
Here, the number 7, where ¢ = 1, 2 represents the initial segment of the 7th

loop, and ¢’ the final segment. Note that the above diagram can be reflected
such that the second cut can be made first.

2.6 Change in y

Since much of our analysis relies on the values of the Euler characteristics of
the srufaces which are created, we would like to determine how our cutting
and gluing process affects x(7,. Separating T% along two simple loops, I
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and Iz, which share a common basepoint a divides T;, into the following three
regions:

r-="q "7 -t
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Here, region « is bounded by /; and region « by l,. Note that both of the
middle pieces are really connected as one region, namely B, since they are
both bounded by the same loops, ; and l,. Depending on whether or not
one or both of these curves are separating, there can be one, two, or three
disjoint surfaces. '

Note that cutting along both of the simple loops forms three new bound-
ary components. When we separate the regions, an additional vertex is
added. Hence, after separating and removing the boundary by adding three
discs, we will increase the Euler characteristic by 4. Therefore, after cutting
we will have one, two or three surfaces without boundary and a total X = 2.

3 The classification of loops with a single
intersection on 7,

Using the cutting and gluing technique outlined in the previous section, we
can now classify the free homotopy classes of loops with one non-trivial in-
tersection on T; up to homeomorphisms of 7;. Using the k-diagram and
the total Euler characteristic requirement, we can determine the possible
combinations of the topological types for each region.

Without loss of generality, we may assume that the first cut corresponds
to one of the four cannonical representations for a simple loop. We are
only looking at loops with one non-trivial intersection which are not freely
homotopic to either a simple loop or a single point, so we only need to
consider the cases where /; is a non-separating curve, a A, or A. Choosing
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one of these three loops as [; restricts the possibilities for the types and
numbers of surfaces that the three regions can form. We may now make
some generalizations which will reduce the possibile combinations of surfaces
in the three regions for our classification.

Claim 3.1 If region o or vy yields a sphere without a puncture, the region is
bounded by a loop which is freely homotopic to the identity. If region B yields
a phere without a puncture, l; is homotopic to .

Proof Consider the case when region a or v yields a sphere without a
puncture. Prior to adding a face to the region we had a bounded disc.
The boundary of this disc is comprised of a single loop. On this disc, any
simple loop, including the boundary, is freely homotopic to a point. Thus
the boundary of this disc must correspond to the identity in the free group.

Now consider the case where region # is a sphere without a puncture.
Prior to adding the face to the region, we had a disc whose boundary is
comprised of /; and I/, now joined at two vertices (recall that in the separating
process we made two copies of the original vertex). We know that on a disc,
any path between two fixed points is homotopic to another path between the
two points. On the disc in region 8, l; and l; are both paths between the
two fixed points which are the two copies of the vertex, and we can smoothly
deform [y into /s, ie. [; is homotopic to {5. ¢

We can now state the following theorem which classifies the loops with a
single transverse intersection.

Theorem 3.1 On the once punctured, two-holed torus, Ty, there exists a
homeomorphism which taks any closed loop, |, with one transverse self-intersection
to one of the following:

1. A,

>
o
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. AA,

. bb,

6
7. Ab,
8

9. bAb,

10. bd,
11. baba,
12. bededb.

Proof There are three basic cases that we must consider: cutting along A,
A, or a nonseparating curve as [;. First consider the case where A is the first
cut we make. When we cut along A we are left with two 1-tori. Our second
cut, /> must be freely homotopic to a curve which lies completely on one of the
tori so that we only have one transverse intersection. If we cannot smoothly
deform /; so that the only intersection point is the basepoint, ie. so that
the curve does not lie entirely on one torus, we would have more than one
intersection. Recall that we have defined A so that we assume the puncture
lies on the cd torus, and [, may lie on either torus. Thus, after cutting along
{5 we will be left with a 1-torus and one or two other surfaces. The sum of the
Euler characteristics of all the remaining surfaces must be 2; however, the
Euler characteristic of a 1-torus is 0, so our second cut must yield surfaces
which will increase the Euler characteristic by 2. We will assume that region
.« corresponds to the 1-torus on which the second cut is not made, so region
a will be a 1-torus when we are done cutting. After cutting along I, we may
be left with the following combinations of regions.

1. Region f is a sphere, region v is a torus.
2. Region f is a torus, region « is a sphere.
3. Regions § and v are a sphere.

When case 1 arises, the puncture may be in one of the tori or in the
sphere. First assume the puncture is in a torus. We have seen that when
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region [ is an unpunctured sphere, /; must be homotopic to l,. We have
chosen /; to be a A so I3 must also be a . In the free group, the word that
corresponds to case 1 with the puncture on a torus is thus A\. When case 1
arises, the puncture may also be in the sphere. Since the puncture is in the
sphere, [; is no longer homotopic to l,. We have chosen the puncture to be
on the cd torus, so I; must be on the cd torus, and éded) the word which
describes the combination of {; and /,. or I.

When case 2 arises, the puncture must be in region 7. If the puncture were
not 1n region v, then the region would be bounded by a loop which is freely
homotopic to a point, and so /; would be the identity; but we can ignore this
situation. Prior to adding a face to region vy, we have a punctured disc which
has a boundary component consisting of a single loop, lo. Thus, I, is a loop
which bounds a punctured disc. The cut along I, was made on the ed torus
missing a disc. In terms of the generators of the torus and the missing disc
whose boundary component is described by A, the word corresponding to a
loop which is in the free homotopy class of I, is édedbaba, which we recognize
to have the same name as A. In order to have a transverse intersection, the
word which describes this loop is AA.

When case 3 arises, the puncture may be in the torus or in the sphere.
Assume the puncture is in the torus. The puncture is in the ed torus, so I,
must be in the ab torus. Since the cut along I, leaves us with a single piece,
[, must not separate the 1-torus. We claim that the non-separating curve
on the one-torus missing a disc is also a non-separating curve on the 7T5.
When we proved 2.1 we showed that a cut along a non-separating curve was
homeomorphic to &. There is a simple homeomorphism on 7, which takes b to
each of the loops which corresponds to a word consisting of one of the letters
which generates the free group (ie. a,b,c,d) thus each of these loops is also
non-separating. Consider a T3, a 1-torus with a single boundary component.
Assume we cut along one of the curves which corresponds to a generator of
Ts, we will not separate Ty. As with a one-torus without boundary, a non-
separating curve yields a sphere with two boundary components, however
on T; one of the boundary components is comprised of two loops. Any non-
separating curve on T3 will yield a sphere with two boundary components, one
of which arises from two loops, and we can define a homeomorphism between
any non-separating loop on 7} and any loop corresponding to a generator of
the free group on two letters that is isomorphic to m1(7%). When X is cut, we
are left with two 1-tori, each missing a disc, so the free groups corresponding
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to the 1-tori are f(a,b), and f(c,d). Assume that I, is made on the ab torus.
We know that b is a non-separating curve on T3, and it is a non-separating
curve on T3, so cutting along a curve homotopic to b will yield a sphere. The
word corresponding to this cut is Ab. Alternatively, l, may be cut on the
cd torus, in which case we know that d is a non-separating curve on T} as
well as on T3, so we will obtain a punctured sphere by cutting along any
loop freely homotopic to d. The word corresponding to this case is dA. Note
that this last case is equivalent to the case when [l;lies on the ab-torus, and
the puncture lies on the ab-torus rather than the cd-torus. Hence, we can
describe this same ! with the word &dcdb. :

Now consider the case where the first cut is in the free homotopy class
of a loop described by A. Since A bounds a punctured disc, when we add a
face we obtain a sphere in region «, with x = 2. We may have one or two
other surfaces, and again the requirement that the Euler characteristic of all
of our remaining pieces must be 2 limits the possible topological types of the
remaining surfaces. Since the puncture must be in region a, the remaining
regions will not have a puncture. We may have the following combinations:

1. Region B is a sphere, and region v is a 2-torus.
2. Region f is a torus and region « is a sphere.

3. Region § and v are connected as a tdrus.

4. Region § and region ~ are both 1-tori.

When case 1 occurs, we know that a sphere in region 3 implies that /; is
homotopic to l; so the any such curve is in the free homotopy class of AA.
When case 2 occurs, region 7 is a sphere without a puncture, so I, must be
homotopic to a point, and we may ignore this case.

When case 3 occurs, l; must be a non-separating curve on the surface
since regions 3 and v are connected as a 1-torus. When we had cut along A
as I; we were left with the sphere in region « and a 2-torus missing a disc. We
claim that a non-separating curve on the 2-torus which is missing a disc is
also a non-separating curve on T;. When we cut along a non-separating curve
on a 2-torus missing a disc, we increase the euler characteristic by 1 since we
add a vertex. We must then add two faces to fill in the boundary components
and we obtain a surface without boundary with Euler characteristic 0, ie. a
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torus. Similarly when we cut along a non-separating curve on T, we were
left with a torus after adding in the appropriate faces. The topological type
that results from the cutting and pasting is the same for a non-separating
curve on T3 and on the two-torus missing a disc, and if we could deform /;
to a point, the boundary of the two surfaces would be equivalent. So, the
non-separating curve on the 2-torus missing a disc is non-separating on 7T%.
Hence, without loss of generality, we can describe the loop which yields case
3 with the word Ab.

We note that case 4 is in fact a reflection of case 2 of the cuts where
ly = A so there must be a homeomorphism between the loop which gives rise
to this case and AA.

Now consider the case where we cut along b first. Since b is non-separating,
at least two of the three regions must be connected. The combinations of
topological types for the regions that arise are restricted by the requirement
that we must be left with one or two surfaces after our cutting and pasting
process, and the Euler characteristic of all of our surfaces must be 2. The
following combinations of surfaces may occur:

1. Region o and f are connected as a torus, and region + is a sphere.

[\

. Region a and B are connected as a sphere and region 7 is a torus.
3. Region o and 7 are connected as a torus, and region £ is a sphere.
4. Regions o, B3, and ~ are connected as a sphere.

5. Region o and 7 are connected as a sphere and region £ is a torus.

We have already addressed cases 1 and 2. Case 1 is a reflection of the third
case for which A is the first cut, and case 2 is a reflection of the third case
for which A is cut first.

When case 3 occurs, the puncture may be in the sphere or in the torus.
If the puncture is in the torus, we have a sphere in region 8 thus /; must be
homotopic to /;. The word which corresponds to this loop must be 5. If the
puncture is in the sphere, the two loops would be homotopic on the unpunc-
tured 2-torus, and the word that describes the loop is bAb = babaadcdcb.

When case 4 occurs l; must be a non-separating curve on the 1-torus
missing two discs since we are left with one piece, a sphere after making
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the cuts. In order for two curves, l; and /5 to not separate T3, they most
correspond to nonseparating curves of each of the two single tori which are
the connected sum which form 75. View T3 as two one-tori, the ab-torus
and the cd-torus. We know that on a one-torus, cutting a generator, say b
doesn’t separate. We have seen, though, that cutting along a second b does
then separate the torus (see case 3), since it does not form a generating pair of
the one-torus. Allowing the second cut to be a would not separate, however,
we know that the intersection of these two loops would be non-transverse.
Hence, this argument along with a similar one for the cd-torus, allows us to
claim that a loop which creates case 4 is equivalent to two nonseparating
loops from different one-tori. Thus we have described this curve as bd.
Finally, consider case 5. This case arises when the two loops correspond to
two nonseparating curves from the same one-tori which would not be homo-
topic to each other on the unpunctured 2-torus. Without loss of generality,
we can assume that they both lie on the ab-torus. Therefore, we can then
let I; be b. First, let the puncture lie on the one-torus, or region B. If the
intersection were trivial (ie the orientation of /; were reversed), we see that
bl would be homotopic to A and would therefore have the same name to
describe it as A. Hence, we can call [ baba On the other hand, if the puncture
lies on the sphere of region « and v, then we have bl; being freely homotopic
to the curve described by the word dédc. Therefore, we can describe { with

the word bédedb. &

4 Classification of loops with two self-intersections
on the two-torus

We now classify the free homotopy classes of loops on the once punctured
two holed torus, T3, with two self intersections. Consider any loop with two
self intersections and look at a neighborhood that encloses both intersection
points. The resulting figure will look like Figure 4a.
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Figure 4a. A neighborhood around the two intersection points
of a loop with two interections.

If we consider symmetry agruments, then the only configurations that
we have to consider are displayed in Figure 4b. By a lemma stated earlier,
when considering loops with two intersections, we only need to consider the
compositions of three simple loops. So we collapse the configurations of
Figure 4b along some axis. For configurations 1 and 2, no matter what axis
we collapse along, we will get some rotation or reflection of the corresponding
base point graphs 1 and 2, shown in Figure 5. For both configurations 3 and
4, no matter which axis you collapse along, a rotation or reflecion of base
point graph 3, shown in Figure 5, will result. Therefore, when going through
the analysis of the two intersector case, we need only consider the three base
point graphs shown in Figure 5. We note that a and a’ denote the initial and
final segment of a single simple loop, as does b and b’ and ¢ and ¢’.
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a’ 3 b’ e 4.

Figure 4b. The four possible configurations for 100st with two intersecions.

When we consider free homotopy classes of loops on Ty with two self
intersections, we will need to consider the Euler characteristic. When you
cut along the composition of three simple loops, you will produce two copies
of each simple loop. This cutting will produce two additional vertices, no
edges, and some number of boundary curves. In the end Xnew=Xoa+2+ #
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of boundary curves, where x,ig=-2. Therefore, Xne,= # of boundary curves.

O
o

b?

b’ a

o
<

3.

Figure 5. The corresponding base point graphs that need to be considered in
the analysis of loops with two intersecions.

Consider basepoint graph 1 of Figure 5. After connecting the initial and
final segments correctly and cutting along each of these simple loops, Figure
6a will result.
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Figure 6a. The configuration corresponding to base point
graph 1 after cutting along the simple loops.

After cutting along the simple loops a total of twelve loop boundaries
will result. We define each boundary curve by starting at one loop’s initial
point, and follow the loop’s paths through the two copies of the loops. noting
which of the other segments we cross over in the order we cross over them,
until we come back to the segment that we started with. We name each
of the other boundary curves in this fashion until all the segments have
- been accounted for. We note that each segment will be used once. We
have the following boundary curves for base point graph 1: C; = ¢} — ¢,
Co=c —=ch = b —b —a —ay, C3=0 — b,and Cy = a; — a}.
There are a total of four boundary curves, therefore, yp.,=4. We also note
that four regions are defined by these boundary curves. We let region I be
enclosed by Cj, region I be enclosed by Cs, region I11 be enclosed by Cs,
and region I'V be enclosed by Cj.

Consider basepoint graph 2 of Figure 5. After connecting the initial and
final segments correctly and cutting along each of these simple loops, Figure
6b will result.
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Figure 6b. The configuration corresponding to basepoint
graph 2 after cutting along the simple loops.

We have the following boundary curves for base point graph 2: C; = ¢; —
¢y, C2 = ¢ — cg — by — b, C3 =by — b) — a}, — a1, and Cy = ay — d}.
There are four boundary curves, therefore, yno,=4. We also note that four
regions are defined by these boundary curves. We let region ¢ be enclosed by
C1, region 4 be enclosed by C3, region ¢ii be enclosed by C3, and region iv
be enclosed by Cjy.

Consider basepoint graph 3 of Figure 5. After connecting the initial and
final segments correctly and cutting along each of these simple loops, Figure
6¢ will result.
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Figure 6¢c. The configuration corresponding to basepoint
graph 3 after cutting along the simple loops.

We have the following boundary curves for base point graph 3: C; =
bp = by and Cy = by — by = a1 — a, = ¢] = ¢ca — a] — a3 — ¢ — ¢
There are a total of two boundary curves, therefore, xne,=2. We also note
that two regions are defined by these two boundary curves. We let region €
be enclosed by C; and region é be enclosed by (.

In our analysis, we outline two approaches. In the first approach we
consider the base point graphs of Figure 5. We notice that in all three cases
we have an initial and final segment of a single simple loop right next to
each other. We let that curve be given as one of our simple loops. We
then analyze each base point graph and the regions that are defined by the
boundary curves by considering every possible combination of surfaces that
give us the desired Euler characteristic.
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4.1 The First Approach
4.1.1 Let the given curve be a ) or a écd curve

Let the given curve be either a A curve or a éded curve. We note that no
other simple loop can enclose either of these curves, since this would create
too many intersections. For the first case, we consider basepoint graph 1.
For the second case we consider basepoint graph 2 and for case 3 we consider
basepoint graph 3. In each of the cases, the initial and final segments of the
other undetermined simple loops will be set, as defined by the configuration
of each of the base point graphs considered.

Case 1. We now consider basepoint graph 1. We let the given curve
start at c and end at ¢’. We let the simple loop that starts at b and ends
at b’ be l; and the simple loop that starts at a and ends at a’ be Is. The
actual orientations of these loops will be considered later. Refer to Figure
3a and the explination of the boundary curves. Recall we have ypen=4. We
note that C consists of a copy of either the A curve or the éded curve, C,
consists of copies from all three simple loops, C5 consists of a copy of I, and
Cy consists of a copy of ls. We know from the one intersecting case that A
seperates off a 1-torus from 75, which has a x=0. So region I is a 1-torus.
This leaves us with the following subcases:

ot

region II be a sphere, region II] be a sphere, region IV be a 1-torus.
region /1 be a sphere, region 111 be a 1-torus, region IV be a sphere.

region /] be a 1-torus, region I11 be a sphere, region IV be a sphere.

=~ w N

regions II and I11 be a single sphere, region IV be a sphere.
5. regions I/ and IV be a single sphere, region I11 be a sphere.
6. regions I/ and IV be a single sphere, region I be a sphere.

Subcasel Let region 11 be a sphere, region 111 be a sphere, and region IV
be a I-torus. We have yet to introduce which region the puncture is located.
In this subcase, the puncture must be located in region III, otherwise I,
would bound a disc and would be homotopic to a single point. This implies
that the given loop is a éded curve. Prior to adding a face to region II1,
we have a punctured disc with boundary curve Cs. So, I, must bound a
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punctured disc which we have shown is homotopic to A. We are left with
regions 1 and IV. Since these are seperate surfaces, l3 must be a seperating
loop. Consider region I'V. Prior to adding a face to region IV, we have a
1-torus with boundary curve Cy. So I3 must have seperated off a 1-torus with
boundary curve Cy4, which consists of a single copy of /5. We have shown that
this type of loop is homotopic to A. We note that with this combination of
simple loops, region 11 will be a sphere. In order to have only two transverse
intersections, a word that describes this loop is édedA.

Subcase2 Let region 11 be a sphere, region /1] be a 1-torus, and region
IV be a sphere. This argument is the same as Subcasel. Since we have
the same number of boundary curves, Euler characteristic, and orientability,
there is a homeomorphism of 7, that will take this loop to the loop described
in Subcasel.

Subcased Let region 1] be a 1-torus, region 111 be a sphere, and region IV
be a sphere. This case cannot happen. Consider regions 1] and IV. Prior to
adding a face to both of these regions, we have two discs, one with boundary
curve C3 and the other consisting of Cs. Now we have only one puncture, so
either I, or I3 will bound a disc and will therefore be homotopic to a single
point. This would produce a loop with only one transverse intersection.

Subcased Let regions I1 and I1] be a single sphere and region IV be a
sphere. In this case, the puncture must be in region IV, otherwise I3 would
be homotopic to a single point. This implies that the given curve is a éded
curve. Following the same argument as in Subcasel, I3 is homotopic to A.
We are left with regions /I and I11. Since we have a single sphere, [ must
be a non-seperating loop. Recall back to case 3 of the single intersecting
case when the given cut was A. It was shown that a non-seperating loop
on a l-torus missing a disc is also a non-seperating loop on 75. It was also
shown that the A cut did not effect the non-seperating curve, that is, the
non-seperating curve on 7T is still non-seperating after a A cut is made. We
claim that after a éded and A cut on Ty, a non-seperating cut will still be
non-seperating. Consider T5. After making a édcd cut you will be left with a
1-torus missing a disc. This 1-torus has a boundary component consisting of
a copy of the éded curve. After making a A cut you will be left with a 1-torus
missing a disc. This 1-torus has a boundary component consisting of copies
from both the éded and A curves. So after both cuts, we will be left with
a 1-torus missing a disc. Therefore, a non-seperating cut on the resulting
1-torus missing a disc will be non-seperating on 7. It was shown that any
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non-seperating loop was homeomorphic to the curve 4. In order to have only
two transverse intersections, a word that describes this loop is édcdAb.

Subcase’ Let regions I and IV be a single sphere and region I/] be a
sphere. The argument for this subcase is the same as that done in Subcase4.
Since we have the same number of boundary curves, Euler characteristic, and
orientability, there is a homeomorphism of T that will take this loop to the
loop described in Subcased.

Subcaseb Let regions I1] and IV be a single sphere and region II be a
sphere. Recall that regions 171 and IV are both bounded by a single copy of
one of the simple loops. Since the two regions are connected to form a. single
sphere, the two simple loops must be non-seperatng ones. We note that
since regions I1] and IV are seperate from region I, I, and /3 do not form
a generating pair. In fact, if you consider /; and /5 as seperate curves, one of
the curves be freely homotopic to the other, assuming the puncture does not
get in the way. Prior to adding the faces to regions IIJ and IV, we must
have had a cylinder with two boundary components. Up to homeomorphism,
the only way for this combination of surfaces to arise is shown in Figure 7.

Figure 7.

The only question is where the puncture is located. It can be on region
I, region II, or on regions I1] and IV. Consider the puncture on region I.
In order for there to be two transverse intersections, a word that describes
this loop is babbab. Consider the puncture on region /1. In order for there to
be two transverse intersections, a word that describes this loop is édcdbaba.
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Consider the puncture on regions /7] and IV. In order for there to be two
transverse intersections, a word that describes this loop is édcdbédcdb.

Case 2. We next consider basepoint graph 2. We let the given curve start
at ¢ and end at ¢’. We let the simple loop that starts at b and ends at b’
be [, and the simple loop that starts at a and ends at a’ be 3. The actual
orientations of these loops will be considered later. Refer to Figure 6b and
the explination of the boundary curves. Recall we have ypc,=4. We note
that Cy consists of a copy of either the A curve or the éded curve, C, consists
of copies from the A curve or the éded curve and I, C; consists of copies of
ly and 3, and Cy consists of a copy of I5. We know from the one intersecting
case that A seperates off a 1-torus from T3, which has a x=0. So region 7 is
a 1-torus. This leaves us with the following subcases:

1. region 1z be a sphere, region iz be a sphere, region v be a 1-torus.
2. region ¢ be a sphere, region iz be a 1-torus, region iv be a sphere.
3. region ¢ be a 1-torus, region 72z be a sphere, region v be a sphere.
4. regions ¢ and 22t be a single sphere, region 7v be a sphere.
5. fegions ¢t and v be a single sphere, region 7i be a sphere.
6. regions :2z and v be a single sphere, region 7 be a sphere.

The analysis of these subcases are all similar to that done for Case 1. So
what follows is a list of our results accompanied with a picture of the loops
that produce each subcase.

Case 3. We next consider basepoint graph 3. We let the given curve start
at b and end at b’. We let the simple loop that starts at a and ends at a’ be
l; and the simple loop that starts at ¢ and ends at ¢’ be l5. Refer to Figure
6c and the explanation of the boundary curves. Recall we have ype,=2. We
note that C; consists of a copy of A or édcd and C, contains copies of all
three simple loops. We know that a A or éded curve seperates off a 1-torus
from the two holed torus, so region ¢ is a 1-torus. This implies that region §
is a shpere.

The analysis of this case is similar to that done for Case 1. So what
follows is a list of our results accompanied with pictures of the loops that
produced this case.
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List 1. The list of results for Subsection 4.1.1, Case 2.
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List 2. The list of results for Subsection 4.1.1, Case 3.

4.1.2 Let the given curve be a A curve

Let the given curve A. Refer to Figure 5. In Case 1 we consider basepoint
graph 1. In Case 2 we consider basepoint graph 2 and in Case 3 we consider
basepoint graph 3. In each of the cases, the initial and final segments of the
other undetermined simple loops will be set, as defined by the configuration
of each of the base point graphs considered. ' '

Case 1. We consider base point graph 1. We let the given curve start
at ¢ and end at ¢’. We let the simple loop that starts at b and ends at b’
be I; and the simple loop that starts at a and ends at a’ be {3. The actual
orientations of these loops will be considered later. Refer to F igure 6a and
the explination of the boundary curves. Recall we have Xnew=4. We note
that C; consists of a copy of the A curve, C, consists of copies from all three
simple loops, C3 consists of a copy of Iy, and C, consists of a copy of 3. We
know from the one intersecting case that A seperates off a sphere from T,
which has a xy=2. So region I is a sphere. In fact, region I will end up being
a punctured sphere. This leaves us with the following subcases:

1. region I1 be a sphere, region II] be a sphere, region IV be a 1-torus.
2. region I be a sphere, region II] be a 1-torus, region IV be a sphere.
3. region I be a 1-torus, region I be a sphere, region IV be a sphere.

4. regions II and II7 be a single sphere, region IV be a sphere.
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List 3. The list for Subsection 4.1.2, Case 1.

5. regions I] and IV be a single sphere, region I1] be a sphere.
6. regions 111 and IV be a single sphere, region /I be a sphere.
7. regions II, ITI, and IV be a single sphere.

The analysis of these subcases are all similar to that done for Case 1 when
the given curve was either a A or a &dcd curve. So what follows is a list of our
results accompanied with a picture of the loops that produce each subcase.
We also note that any case that is a duplication of a case where a \ or a &dcd
curve was the given curve, is omitted. '
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Case 2. We next consider basepoint graph 2. We let the given curve start
at ¢ and end at ¢’. We let the simple loop that starts at b and ends at b’
be l; and the simple loop that starts at a and ends at a’ be I5. The actual
orientations of these loops will be considered later. Refer to Figure 6b and
the explination of the boundary curves. Recall we have xp.,=4. We note
that Cy consists of a copy of the A curve, C; consists of copies from the A
curve and I, C3 consists of copies of l; and I3, and C} consists of a copy of
3. We have the following subcases:

1. region 1z be a sphere, region 12 be a sphere, region iv be a 1-torus.
. Tegion 2 be a sphere, region i be a 1-torus, region v be a sphere.

. region ¢ be a 1-torus, region ¢ be a sphere, region v be a sphere.

. regions 12 and v be a single sphere, region 7i7 be a sphere.

2
3
4. regions ¢z and 222 be a single sphere, region iv be a sphere.
5
6. regions :22 and ¢v be a single sphere, region 7 be a sphere.

7

. regions 12, 712, and v be a single sphere.

The analysis of these subcases are all similar to that done for Case 1 when
the given curve was either a A or a &dcd curve. So what follows is a list of our
results accompanied with a picture of the loops that produce each subcase.
We also note that any case that is a duplication of a case where a A or a eded
curve was the given curve, is omitted.

Case 3. We next consider basepoint graph 3. We let the given curve start
at b and end at b’. We let the simple loop that starts at a and ends at a’ be
I and the simple loop that starts at c and ends at ¢’ be I5. Refer to Figure
3c and the explination of the boundary curves. Recall we have y,c,=2. We
note that C; consists of a copy of A and C; contains copies of all three simple
loops. We know that a A curve seperates off a sphere from the two holed
torus, so region ¢ is a sphere. This implies that region § is a 1-torus.

The analysis of these subcases are all similar to that done for Case 1 when
the given curve was either a A or a éded curve. So what follows is a list of our
results accompanied with a picture of the loops that produce each subcase.
We also note that any case that is a duplication of a case where a \ or a eded
curve was the given curve, is omitted.
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List 4. The list for Subsection 4.1.2, Case 2.
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List 5. The list for Subsection 4.1.2, Case 3.

4.1.3 Let the given curve be a non-seperating one.

This section follows the exact same format as all the other cases. So what
follows is a list of our results-accompanied with a picture of the loops that
produce each subcase. We also note that any case that is a duplication of
a case where a A or a &dcd curve was the given curve or a A curve was the
given curve is omitted.

4.2 Classification of loops with two self-intersections
on the two-torus: approach 2

4.2.1 Technique

An alternative approach may be used to classify the loops with two self-
intersections on T5. This second approach also relies on the fact that there
are only three basepoint graphs that we must consider. We note that each of
the three basepoint graphs arises from a one-intersector case, ie. in each case
we may remove one of the loops to obtain a loop with a single intersection.
Since each of the possible basepoint graph configurations arises from a once
self-intersecting loop, we will be able to identify all of the classes of loops with
two-intersections by adding all possible simple loops to each of the classes of
loops with single intersection that we have identified in the previous section.
However, if this method is used alone we will find loops which are equivalent
(under homeomorphisms) arise from multiple one-intersectors. In order to
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List 6. The list for Subsection 4.1.3.
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eliminate cases which are equivalent we will look at the Euler characteristics
of the resulting surfaces, using an approach similar to the one-intersector case.
We rely on the fact that surfaces are equivalent up to homeomorphisms if
they have the same number and type of boundary components and if they
have the same Euler characteristic. We know that the Euler characteristic
of all of the surfaces that we create by cutting along the loops must be 4 or
2, depending on whether the loop corresponds to basepoint graph 1 and 2
or basepoint graph 3, respectively. Considering all combinations of surfaces
in the regions that arise after cutting along the loops for each basepoint
graph insures that all possible classes of loops will be considered (up to the
placement of the puncture).

Certain generalizations limit the possibilities for the combinations of sur-
faces in each of the regions for a given basepoint graph. For the first two
basepoint graphs we may have four, three, or two surfaces after cutting along
the given loop, and in the third basepoint graph we may have one or two
surfaces. In the first case, we may not have one surface since that would
imply that the Euler characteristic of the single surface must be 4, which is
impossible. Also, the regions are still defined such that o and v are replaced
by any region with a single loop as boundary, and /5 corresponds to any region
with a single boundary comprised of two loops. An analysis of the possible
combinations of types and placement of surfaces for the regions of a given
basepoint graph yields that there are 44 topologically distinct loops. We will
demonstrate the basic aproach with a few sample cases, some of which are
equivalent to those which were discussed in 4.1. We will close this section
with a table listing all of the cases that we have found through this method
and the method outlined in 4.1.

4.2.2 A demonstration of the approach

We will now explain our approach in detail for the two-intersector cases which
arise from the once-intersecting loops with the name AA. In our analysis of
the one-intersectors, we determined the topological types of the surfaces that
remained after we cut along the simple loops and in the case of AA we are left
with a punctured sphere, a one-holed torus with one boundary component
from a single loop, and a one-holed torus with one boundary component
from two loops. In order to determine the combinations of simple loops we
may add to the one-intersector, we need only consider simple loops which lie
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entirely on one of the three surfaces which remained after our procedure of
cutting. If the simple loop we add lies on more than one surface the loop
must be homotopic to a loop on a single surface. If the loop we consider
adding is not homotopic to a loop which lies solely on one surface, the point
at which the loop crosses between the surfaces will increase the intersection
number, so we will be left with a loop with more than two self-intersection.
Now, we need only consider the topologically distinct loops on each of the
three surfaces that arise from the cuts of our one-intersector, AA.

We will first consider the case where the loop is added on the one-holed
torus with a single boundary from one loop. Using an Euler characteristic
argument, we can demonstrate that there are only two topologically distinct
simple loops on the one-holed torus with a missing disc: a separating loop
and a non-separating loop. The separating loop produces a one-holed torus
with a single boundary from one loop and a sphere with single boundary
from two loops. Because of where the puncture is the boundary loops of the
sphere must be homotopic. The name for this combination of three simple
loops is AAA. This loop corresponds to basepoint graph 2 where region 7 is a
punctured sphere with one boundary from a single loop, region 7: is a 1-torus
with one boundary from two loops, region ii: is a sphere with one boundary
from two loops, and region zv is a 1-torus with a boundary from a single loop.
There is a homeomorphism of T that takes this loop to édedAéded, which
was found in the first approach. If the added loop is non-separating, it will
correspond to a non-separating loop on T5. We have already demonstrated
this correspondence with non-separators on 73 in the discussion of the once-
intersecting loops, and since the non-separator lies on the ab torus, we may
assume the simple loop to be b. The name for this loop will be AbA. This loop
corresponds to basepoint graph 2 where region ¢ is a punctured sphere with
one boundary from a single loop, region 7 is a 1-torus with one boundary
from two loops, region ¢3¢ and v form a single sphere with two boundaries,
one from a single loop and the other from two loops. After comparing this
loop to those found in the first approach, we see that this loop is in the free
homotopy class of AXb.

Next we will consider the case where the loop added is on the punctured
disc. There is only one possibility for this loop: it must separate off a punc-
tured disc from a sphere with a single boundary which is comprised of two
loops. Thus the loop we add must be homotopic to the loop that bounds
our punctured disc, that is the A loop. The name for the composition of
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these two homotopic loops and A is AAA. This loop corresponds to base-
point graph 2 where region z is a punctured sphere with one boundary from
a single loop, region ¢ is a sphere with one boundary from two loops, region
212 1s a 1-torus with one boundary from two loops, and region v is a 1-torus
with a boundary from a single loop. Note that there is a homeomorphism of
T, that takes this loop to édedA?, which was found in the first approach.

The final surface on which we may add a loop is the one-holed torus with
a single boundary from two loops. For this torus there are four topologically
distinct loops that may be added: one of which is non-separating, and the
other three are separating. As in the torus with a single boundary which
arises from one loop, the non-separating loop corresponds to a loop which
is non-separating on 75. Since this non-separating loop will be added on
the ¢d torus, we may assume the loop to be d. The name of the loop will
be AAd. The loop corresponds to basepoint graph 2 where region i is a
punctured sphere with one boundary from a single loop, region % and i%:
form a single sphere with two boundaries both from two loops, and region v
is a 1-torus with a boundary from a single loop. There is a homeomorphism
of Tj that takes this loop to édcdAb, which was found in the first approach.
There are three possible configurations for separating loops; however, two of
the possibilities have already been considered, namely the two loops which
separate a sphere with a single boundary which consists of two loops. In
these two cases, the loop which is added must be homotopic to one of the
two loops which created the boundary of the torus since the puncture lies on
a different surface. The case in which the added loop is homotopic to A had
been considered when the loop was added to the ab torus, and the case where
a loop is added on the punctured sphere corresponds to the case on the cd
torus where the added loop is homotopic to A. The final separating case that
must be considered, then, is the loop which separates off a one-holed torus
with one boundary from a single loop and a sphere with a single boundary
from three loops. This loop corresponds to basepoint graph 1 where region
I is a 1-torus with one boundary from a single loop, region IT is a sphere
with one boundary from 3 loops, region I11 is a punctured sphere with one
boundary from a single loop, and region IV is a 1-torus with one boundary
from a single loop. The name for this loop is AédedA. This loop is the same
as cdcdA ) that was found in the first approach.

A similar analysis may be followed for each of the remaining once-intersecting
loops which are identified in 3.1. This analysis yields the 44 cases which
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appear in the following table. As an example of how to read the table, con-
sider number 5. A punctured 1-torus-1bd,1 loop, is read a punctured one
hole torus with one boundary consisting of one copy of a simple loop. A
sphere-1bd,1 loop..1bd,1 loop, is read a sphere that has two boundaries each
consisting of one copy of a simple loop.

Loops With Two Intersecions on T
| Given Curve |  Word | Components
1 A cdcdA)X | 1-torus-1bd,1 loop; sphere-1bd,3 loops
punctured sphere-1bd,1 loop; 1-torus-1bd,1 loop
2 ededAb | 1-torus-1bd,1 loop; punctured sphere-1bd,1 loop
sphere-1bd,1 loop..1bd,3 loops
3 dAdA 1-torus—1bd,1 loop; sphere-1bd,3 loops
punctured sphere-1bd,1 loop..1bd,1 loop
4 dede 1-torus-1bd,1 loop; punctured sphere-1bd,3 1oops
sphere-1bd,1 loop..1bd,1 loop
5 deddcd | punctured 1-torus-1bd,1 loop; sphere-1bd,3 loops
sphere-1bd,1 loop..1bd,1 loop
6 Aab punctured 1-torus-1bd,1 loop; sphere-1bd,5 loops
7 cdcdab 1-torus—1bd,1 loop; punctured sphere-1bd,5 loops
8 A3 punctured 1-torus-1bd,1 loop; sphere-1bd,2 loops
sphere-1bd,2 loops; 1-torus—1bd,1 loop
9 cdedX? | 1-torus-1bd,1 loop; punctured sphere-1bd,2 loops
sphere-1bd,2 loops; 1-torus—1bd,1 loop
10 ¢dedA* | 1-torus-1bd,1 loop; punctured sphere-1bd,1 loop
sphere-1bd,2 loops; 1-torus—-1bd,2 loops
11 édcdAcded | 1-torus-1bd,l loop; sphere-1bd,2 loops
punctured sphere-1bd,1 loop; 1-torus-1bd,2 loops
12 ¢dedAb | 1-torus-1bd,1 loop; punctured sphere-1bd,1 loop
sphere-1bd,2 loops..1bd,2 loops
13 AbA punctured 1-torus-1bd,1 loop
sphere-1bd,2 loops; sphere-1bd,1 loop..1bd,2 loops
14 cdcdbA 1-torus—1bd,1 loop; punctured sphere-1bd,2 loops
sphere—lbd,l loop..1bd,2 loops

46




Loops With Two Intersecions on 7' (cont.)

I Given Curve l Word ] Components
15 A €dcdbeded | 1-torus-1bd,l loop; sphere-1bd,2 loops
punctured sphere-1bd,1 loop..1bd,2 loops
16 Aa? punctured 1-torus-1bd,1 loop
sphere-1bd,2 loops; sphere-1bd,1 loop..1bd,2 loops
17 ¢dcdacdcdbab | 1-torus-1bd,l loop;punctured sphere-1bd,2 loops
sphere-1bd,1 loop..1bd,2 loops
18 édeda’ 1-torus-1bd,1 loop; sphere-1bd,2 loops
punctured sphere-1bd,1 loop..1bd,2 loops
19 A dAb punctured sphere-1bd,1 loop
sphere-1bd,1 loop..1bd,1 loop..1bd,3 loops
20 dA?%d punctured sphere-1bd,1 loop
sphere-1bd,3 loops; 1-torus-1bd,1 loop..1bd,1 loop
21 deddcdbaba | punctured sphere-1bd,1 loop
sphere-1bd,1 loop..1bd,1 loop; 1-torus-1bd,3 loops
22 alAb punctured sphere-1bd,1 loop
1-torus-1bd,5 loops
23 al\? punctured sphere-1bd,1 loop; sphere-1bd,2 loops
1-torus-1bd,1 loop..1bd,2 loops
24 alA punctured sphere-1bd,1 loop; sphere-1bd,2 loops
1-torus-1bd,1 loop..1bd,2 loops
25 AXb punctured sphere-1bd,1 loop; 1-torus-1bd,2 loops
sphere-1bd,1 loop..1bd,2 loops
26 d*AA punctured sphere-1bd,1 loop; 1-torus—1bd,2 loops
sphere-1bd,1 loop..1bd,2 loops
27 A3 punctured sphere-1bd,1 loop; sphere-1bd,2 loops

sphere-1bd,2 loops; two holed torus—-1bd,1 loop
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Loops With Two Intersecions on T (cont.)

| Given Curve I Word | Components
28 A AdAb punctured sphere-1bd,1 loop
sphere-1bd,1 loop..1bd,2 loops..1bd,2 loops
29 nonsep. dd)\d 1-torus—1bd,2 loops; sphere-1bd,2 loops
punctured sphere-1bd,1 loop..1bd,1 loop
30 ddeddcdbaba | 1-torus-1bd,2 loops; punctured sphere-1bd,2 loops
sphere-1bd,1 loop..1bd,1 loop
31 ddede punctured 1-torus-1bd,2 loops; sphere-1bd,2 loops
sphere-1bd,1 loop..1bd,1 loop
32 d\b punctured sphere-1bd,1 loop..1bd,2 loops
sphere-1bd,1 loop..1bd,2 loops
33 daida punctured sphere-1bd,1 loop..1bd,2 loops
sphere-1bd,1 loop..1bd,2 loops
34 dbc punctured sphere-1bd,1 loop..1bd,5 loops
35 dbd sphere-1bd,2 loops
punctured sphere-1bd,1 loop..1bd,1 loop..1bd,2 loops |
36 dbdA punctured sphere-1bd,2 loops
sphere-1bd,1 loop..1bd,1 loop..1bd,2 loops
37 dbdb punctured sphere-1bd,1 loop..1bd,1 loop..1bd,1 loop
sphere-1bd,3 loops
38 dbAdb sphere-1bd,1 loop..1bd,1 loop..1bd,1 loop
punctured sphere-1bd,3 loops
39 dbabdababd | punctured sphere-1bd,1 loop..1bd,1 loop
: sphere-1bd,2 loops..1bd,2 loops
40 dbabded sphere-1bd,1 loop..1bd,1 loop
| punctured sphere-1bd,2 loops..1bd,2 loops
41 dadA punctured sphere-1bd,1 loop..1bd,1 loop

sphere-1bd,1 loop..1bd,3 loops
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Loops With Two Intersecions on 7' (cont.)

| Given Curve | Word | Components

42 nonsep. dacdc | sphere-1bd,1 loop..1bd,1 loop
punctured sphere-1bd,1 loop..1bd,3 loops

43| : 5 | sphere-1bd,2 loops; sphere-1bd,2 loops
punctured 1-torus-1bd,1 loop..1bd,1 loop
44 bbABA | sphere-1bd,2 loops; punctured sphere-1bd,2 loops

1-torus-1bd,1 loop..1bd,1 loop

5 Generalizing the once-intersecting loop on
1y

Recall that T, is the n-holed, once punctured torus whose fundamental group
is isomorphic to the free group on 2n letters, F'(a1,b1,a2,bs,...,an,b,). In
this section we will limit ourselves to the cases where n > 2, since the cases
where n < 2 has been dealt with either in previous works or in the previous
section. Further, note that for convenience in dealing with 7},, the orientation
of the generators on T, differ from T5 in the previous section (see figure 2
versus figure 3). Therefore, some of the words describing the loops are also
changed in comparison to the naming scheme for the two-intersectors.

5.1 simple loops

Simple loops, nonseparating loops and separating loops are described in the
introduction. The same cutting and gluing technique is used for T, as for
T5. as in previous sections. Using this technique on T},, we can make the
following theorem:

Theorem 5.1 On the once punctured, n-holed torus, T,,, there exists a home-
omorphism that takes any simple closed loop, I, to one of the following:

1. a nonseparating loop, by,
2. a loop enclosing a disc,

3. a loop, A, enclosing a punctured disc, which can be described by the
word a;b1d1b1a2b2d2b, . . . azbdyb,, or
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4. aloop, \;, which separates an i-holed torus from Ty, where 0 < ¢ < n.
This loop can be described by the word a;bidvb; .. . a;b;a;b;.

Proof The Euler characteristic of an n-holed torus is given as 2—2n. After
cutting and separating along [, we must add two discs to remove the boundary
components from the surface(s). By doing so, we have created one or two or
surfaces without boundary and can therefore utilize the classification theorem
for orientable surfaces to verify homeomorphic surfaces without boundary.
Furthermore, if two loops create homeomorphic surfaces, then there is a
homeomorphism which maps one loop onto the other. We will use this fact
throughout the proof.

Recall that when cutting one loop, /, we can create at most two surfaces,
since each new surface must contain at least one of the two boundary com-
ponents. Hence we have a total y = 4 — 2n for one or two surfaces. Given
these restrictions, only the following possiblities can occur:

a (n — 1)-torus

a sphere and a n-torus,

a one-torus and a (n — 1)-torus,
a two-torus and a (n — 2)-torus,

B Wl Do =

* 2 [n/2] and a n ~ [(n/2)]

Each of these cases creates either a surface with y = 4—2n or two surfaces
whose combined Euler characteristic is 4 — 2n.

Consider the first case. Since there is only one surface left after cutting I,
then ! must be a nonseparating loop. We claim that a nonseparating curve on
the n-torus missing a disc is also a nonseparating curve on the n-torus. The
- analogous claim on Tj is proved in section 2.3 3 and the generalization to tori
of higher genus is trivial. Because a generator of T}, is a nonseparating loop
on T, there is a homeomorphism which takes ! to any of the 2n generators.
Without loss of generality, assume this generator is b;.

Next, assume that upon cutting [, we create case 2. We have a separating
loop since we have divided T7, into two surfaces. First, assume that the punc-
ture lies on the n-torus. On the sphere, there is a loop, say Iy, corresponding
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to a boundary component of /. Since the puncture is not on the sphere,
then [y is contractible to a a single point, and therefore ! is homotopic to the
identity, or a loop bounding a disc. Now assume that the puncture lies on
the sphere. The loop [y is no longer contractible to a single point, but it is
homotopic to a loop enclosing a punctured disc. We will name such a curve
A and describe it with the word a1b;d16ya2b2d20, . . . rbndyby.

Consider the third thru last cases. In each of these, a separating loop
divides T, into an m-holed torus and an (n — m)-torus, for m < [n/2|. Such
a loop will be called A,,. However, the puncture can lie on any one of these
surfaces. Hence, letting the puncture lie on the a,b,-torus, A; will be a curve
which creates an i-holed torus and a punctured (n — 7)-holed torus, where
0 < 7 < n, and the puncture lies on the a,b,-torus. In terms of the generators
stated given, we will describe \; with the word a6, a1by ... a;b;a;b;. Therefore,
any loop which separates a T; from a punctured T, will be equivalent to
Ai. (Note that if ¢ = n we have a punctured sphere and a n-torus which
is A and described by the word ay, by, a2, bs, . ... , an, b, ). Furthermore, if the
puncture were to lie on T3, which does not contain the a,b,-torus, then this
loop is described with the word b,a,bndy, . . . b(,-_,_l)a(z-ﬂ)b(i;l)a(;l_l), which for
convenience we will define as Al ‘

In order to see the orientations of the above simple loops, see figure 6:

Qy \17"\ Qi \91« .

O, Dn

X

VFigure 6

Note that we disregard the identity since it is contractible to a single point.
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5.2 Once-Intersecting loops on T,

Recall that on T3, a closed loop, ! with a single transverse self-intersection
could be considered to be the composition of two simple loops, I; and I,.
This same claim can be made on T}, with the same proof [[14]] applied to the
resulting n-holed torus. Therefore, we can view a loop [ as two simple loops
I, and [; sharing a common basepoint.

Also, recall that when cutting a loop with a single transverse intersection,
we create three regions, , which is bounded by [;, 8, bounded by /; and s,
and 7, bounded by ;. Again we may make use of claim 4.2.1 regarding these
three regions on 7, with the same proof as on T5.

-With this claim established, we can now state the following theorem clas-
sifying once self-intersecting loops on 7.

Theorem 5.2 On T,, for any loop | with a single transverse self-intersection
which is not freely homotopic to a simple loop or a single point, there is a
homeomorphism mapping | onto an equivalence class of one of the following:

1. A, for0 <,k < n,

2. XAy, for0 <i<nandi< k< (n—i),
3. MA, for0<i<mn,

4. XNibj, for0<i<nand0<j<n,

5. AA,

6. Aby,

7. biby,
5. hib,

9. bybs,

10. b\;b; for0 <i<n,

11. b(ip1)Aibisr), for 0 <i < n.
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Proof Recall from section 2.6 that when cutting two simple loops with
a common basepoint we increase the Euler characteristic by 4 (the same
argument used for T applies to T, ), since we must attach discs to remove
the three boundary components, and we have added a vertex. Therefore, by
cutting the n-torus along /, we have altered x so that it equals 6 — 2n. Also,
cutting along ! creates three new boundary components, so there can be one,
two or three new surfaces resulting from the cut. Hence, by cutting [ we have
one, two, or three surfaces with a sum x = 6 — 2n.

We let I, be the composition of the two simple loops /3 and l,. We will
first consider the three possiblities for ly: it is equivalent to A;, A, or a
nonseparating curve, b; (Note that we will ignore any loop or combination of
loops which is freely homotopic to a simple loop or the identity). Then we
can analyze the three differenct possibilities for the regions o, 8 and v given
x.= 6 — 2n and the corresponding ls.

First, assume /; is a A; for some 0 < 7 < n. Cutting \; separates T, into
an ¢-torus, or T3, and an (n — ¢)-torus, or T(,—;). Hence, [ will either create
a total of two or three surfaces after l; is cut. We can assume that T{,-;
includes the a,,b,-torus. If this is not the case when we first cut A;, then there
exists a homeomorphism taking T, to T,, which would make this assumption
valid.

First, let region « be T; and I3 lie in T{,_;). Recall that a loop intersecting
A; at only one point must lie entirely to one side of A;. So, if [; lies on T,,—;),
then it will cut that torus into one or two surfaces with a total y = 2+2i —2n.
This is a straight result from the total Euler characteristic of T, after cutting
[, 6 — 2n, minus the x of T}, 2 — 2z.

For one or two regions with a total x = 2 + 2: — 2n, we have the follow-
ing possibilities for the regions # and v without boundary (recall that the
puncture lies in the (n — 7)-torus) hence it lies in either 2 or v:
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g 7
1 sphere (n — ¢)-torus
2 (n — ©)-torus sphere
3 1-torus (n — 1 — 1)-torus
4 2-torus (n — ¢ — 2)-torus
* (n — ¢ — 1)-torus 1-torus
or
| ** | both regions form a single (n — 7 — 1)-torus. |

First, assume case 1 occurs. If the puncture does not lie in the region
B, then by the claim made before the theorem, I, must be homotopic to /.
Hence, if the puncture lies in v on the (r — 7)-torus, then we can describe [
as A;A;. On the other hand, if the puncture lies between [; and /,, in region
3, then the two loops are no longer homotopic. This case is described by the
word A AL

Next, consider case 2. First, assume the puncture is in Tin-i)- The
boundary component created by I, which lies on the sphere of region + is then
contractible to a single point. This case can be ignored since [/ is therefore
homotopic to a simple loop. Now, assume the puncture lies on the sphere
of region 7. The boundary component of I, on the sphere is therefore no
longer freely homotopic to the identity. Instead, it can be contracted to a
loop around the puncture, which we have labeled as A. Hence, we have [ as
being described by the word \A.

Consider cases 3 thru *. Each of these cases can be generalized to the
following situation: region a is a i-torus, region 3 is a (k—1)-torus, and region
7 is a (n — k)-torus, where k is some integer where ¢ < k£ < n. The second
simple loop, /; is therefore equivalent to A; since it separates a T(k—s) from
T(n—;). Note that it is no longer true that A(k—i) is equivalent to An—(k—i)
due to the boundary components of the surfaces. If the puncture lies in the
(n — k)-torus, which we can assume contains the a,b,-torus, then [ can be
described by the word A;Ar, where 0 < ¢ < k < n. If 8 is the punctured
region, though, / would be-identified as ;).

Lastly, let I, create the case **. Since this cut does not separate Tin—s)
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into two pieces, it must be a nonseparating cut. We have shown that on 7,
a nonseparating cut is equivalent to any of the 2n generators. Similarly, on
T(n—i), which is the connected sum of each of the a;b;-tori for : < j < n any
nonseparating curve will be equivalent to b; for some ¢ < 7 < n. In order to
name this particular [, we will recall that the puncture lies on the original
T(n-i) and can then describe this / by the word A;b;, for some ¢ < 5 < n.

Next, let I3 lie on T;. Therefore, the region « is now T(,_;) and contains
the puncture. We have the following possiblities for # and - given x and the
limit of one or two surfaces resulting from the cutting I, on T;:

B 7
1 sphere ¢-torus
2 e-torus sphere
3 1-torus (¢ — 1)-torus, z > 1
4 2-torus ' (¢ — 2)-torus, z > 2
* (v — 1)-torus, 2 > 1 1-torus
or
*x both regions form a single (z — 1)-torus, if ¢ > 1
o both regions form a single sphere if 7 = 1.

Recall that the neighborhood around the basepoint is symmetric such
that «, 8,~ is equivalent to v, 8, . With this fact in mind, it is obvious that
case one is equivalent to the previous case one, where I, was on Tin-5). We
have already identified this case in the previous section.

Next, consider case 2. Since the puncture is not in the 7 region since it
is in the o region, we have previously shown that /; will be contractible to a
single point, so we can ignore this case.

In cases 3 thru *, we can again make a generalization: region o is a (n—1)-
torus, region f is a (¢ — k)-torus, and region v is a k-torus, for some positive k
less than ¢. Hence, we have [; equivalent to A; since it separates a T(i—g) from
T;. Now, assume that the puncture lies on the (n — 2)-torus. Then, we can
describe [ by the word A;Ag, for 0 < k£ < ¢ < n. (Note that if the puncture
were in the B region, then [ would be labeled as A;A\;. However, there is a
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homeomorphism taking this to A\;\; for a k less than 7, and therefore this is
the same case as in the previous section, cases 3 thru *, where 8 contains
the puncture). Therefore, this case combined with cases 1 and 2 from the
previous section form together for the loop described by A\; A for 0 < 7,k < n.
However, in order to remove duplicates from these lists (for example, on T 9,
A3Aj is equivalent to AzA}, which both satisfy the above restriction on i and
k), we must further limit the values of ¢ and k. Therefore, we have distinct
loops which are described with the word M\, such that 0 < 7 < n and
: < k< (n—1).

Now, consider case **, when ¢ > 1. Since both regions 8 and ~ are one
piece after [; is cut, then /; must be a nonseparating curve. We can describe
this nonseparating loop as b;, where 1 < j < ¢, since I, lies on 7T} which is
generated by the free group F(ay,b1,as,bs,...,a;5;). Recall, though, that
it cannot be the case, here that 7 is one. This is considered in the next case.

Considering case ***, we see that \; was Iy, since i = 1. The second
cut, which lies on the i-torus and is nonseparating, must then be equivalent
to b;. The loop ! can be described as A;b; since the puncture lies on the
(n—¢) = (n—1) holed torus. Hence, together with case ** from the previous
section and the previous case in this section, we have the curve Aib; for
0<iz<nand0<j<n.

Now, assume that /; is A, a loop enclosing a punctured disc. Therefore, we
have separated a punctured sphere from T,,. Let region a be this punctured
sphere. After cutting /5, the regions B and 5 will form either one or two
surfaces, and we will then have a total of either two or three surfaces. When
the boundary components are removed, we will again have a total x =6-—2n
amongst these two or three pieces without boundary. Hence, we have the
following possiblities:
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B gl
1 sphere n-torus
2 n-torus sphere
3 1-torus (n — 1)-torus.
4 2-torus ‘ (n — 2)-torus
* (n — 1)-torus 1-torus -
or
| ** | both regions form a single (n — 1)-torus. ]

In case one, 8 is a sphere without a puncture. We have established that
this implies I, is freely homotopic to [;. Hence we can describe [ as AA.
In this case, l; lies either on the sphere or the n-torus which /; created.
Furthermore, note that this is the only case where [, can lie on the sphere
created by l;. Any loop on the interior of A must be enclosed by A. If it
weren’t, then the loop would have to intersect A at a second point giving too
many intersections. Recall that the only loop which can be enclosed by A is
one that is homotopic to A. Therefore, the first case is the only case where
l; may lie in the region . Hence, from now on, assume [/, lies on T,.

Counsider case 2. Since the puncture lies on «, it cannot lie on v as
well. Therefore, [, is contractible to a single point, and this particular [ is
homotopic to a simple loop and can be disregarded.

Now, assume cases 3 thru * occur. Again, we can make a generalization:
region « is a punctured sphere, region 3 is a ¢-torus, and region v is a (n —©)-
torus where 0 < ¢z < n. Therefore, [ must be equivalent to A; since it
separates off a T;, and we have a case which is the same as the second case
from the first section of this proof.

Finally, consider case **. Due to the fact that # and 7 are one surface,
[ must be a nonseparating curve. Since /; lies on Ty, it will be equivalent to
any of the 2n generators. Without loss of generality, we can call this curve

Aby.

Now we can consider the final case, where [; is a nonseparating loop.
Without loss of generality, we will assume this cut is b;, for 0 < j7 < n.
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After cutting along /3, we will then have a single surface, T{,_1). Hence after
cutting /5, we will have regions ¢, 5 and v combining in various ways to form
one or two new surfaces. Using the fact that x = 6 — 2n amongst the one or
two surfaces without boundary, we have the following:

a and v are (n — 1)-torus, 8 is a sphere

a and f are (n — 1)-torus, v is a sphere

a is (n —t)-torus, B and v are (i-1)-torus, if i > 1

a is (n — 1)-torus, B and v are a sphere, if 1 = 1

« is (¢)-torus, 8 and + are (n — ¢ — 1)-torus

a, f and v are (n — 2)-torus

a and v are a sphere, and £ is (n — 1)-torus

QOIS U =] o DO =

1 <(n—1)

a and 7 are a punctured (¢ — 1)-torus, and 8 is (n — z)-torus, 0 <

9 a and v are a (n — 1)-torus and S is a sphere

torus where 0 <z < (n —1)

10 a and v are a (n —%)-torus and sphere, and  is a punctured (z —1)-

In case one, we know that if the puncture is not in the 3 region, then
l; is homotopic to l;. Without loss of generality, we will assume that [,
is described with the word b;. Hence, we can describe [ by b1b;. If the
puncture is on the sphere of region 3, though, then the two loops are no
longer homotopic. It must be the case, though, that I is equivalent to a
generator of the a;1b;-torus, since it must lie on the same torus as ;. We will
describe this case with the word b;Ab; = b1b,anbndy, . . . biaibydib;.

Looking at case 2, we see that we have already considered this case when
l; was A, and we have named this loop as Ab;.

Considering cases 3 and 4, we have also seen these previously. They
correspond to the 3rd thru * cases and the ** case of the ); case when [, was
on T;, respectively. :

Case 5 we have also seen earlier. It is the same case as the the ** case of
the second part of the A; argument, where /5 lies on 7| (r—i)-

If case 6 arises, we will have all three regions as one piece. Hence, both
i and l; must be nonseparating curves. However, in viewing T, as the
connected sum of n one-holed tori, it cannot be the case that both ; and [,
correspond to generators of the same one-holed torus, since two generators
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of the same one-tori will separate the surface. Hence, we can describe [ by
the word b;b,.

In cases 7 and 8, we again have two nonseparating loops. Each of these
loops correspond to generators of the same one-holed torus in the connected
sum. However, it is not the case that the two curves would be homotopic
to each other on the unpunctured n-holed torus (as in case 1). We show an
example of this case in figure 7.

Figure 7

Letting [; be b;, we will name [ as b Aib; = b;ba;b:a;. ..bia1b,dy b;, for
0 < ¢ < n. Note that if z = n, we have case 7, where the puncture must lie
in the o and «y region or else this curve is homotopic to a simple loop. For
any other 2, we have case 8. ' »

Cases 9 and 10 are similar to the previous case. Again, they are two non-
‘separating curves from the same single torus which would not be homotopic
on the non-puncutred n-holed torus.” However, they intersect at the other
side of the hole, as follows in the diagram below:

Q, bi QLXD‘\ 7 O\'\i«\ \:> Q. \Dr\

(S

Neorg ¢ 2 >
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In this case, we let I; be. bi+1)- This particular [ is described with the
word b(,_,_l)/\(z)b(z_*.l), for 0 < 7 < n. Note further that if : = 1 we have case 9.

The remainding ¢’s yeild case 10.
<.

6 Distinctness of Loops via Whitehead’s Al-
gorithm

In the preceeding sections, we have classified the free homotopy classes of
loops with one and two-intersections on T, and generalized loops with one-
intersection on the 7),; however, we must now demonstrate the distinctness
of each of the classes. By distinctness, we mean that the loops are distinct up
to homeomorphisms, ie. we must show that there is no homeomorphism of T
or T, which maps a loop which is in one class to a loop in a different class. In
the classification of loops with two-intersections on the one-holed punctured
torus a few different methods are proposed to prove the distinctness of the
equivalence classes, and the method which is used involves a study of the
corresponding loops on an unpunctured torus. [5] Our initial approach to
proving the distinctness of loops on T}, for n > 2 will make use of Whitehead’s
algorithm, a method suggested for the one-holed torus. Through Whitehead’s
algorithm we will examine the distinctness of the classes of words in the free
group which correspond to loops on T,. This will provide a partial proof
of the distinctness of the classes of loops up to homeomerphisms. We use
the fact that homeomorphisms of the n-holed torus induce automorphisms
of the free group of 2n generators. Thus, by showing that two words are not
equivalent, we will have shown that the corresponding loops are distinct up to
homeomorphisms of the torus. However, we know that not all automorphisms
of the free group are realizable as homeomorphisms of the n-holed torus
if n > 2. Hence, equivalence under automorphisms need not imply the
existence of any corresponding homeomorphisms between the surfaces. In
fact, Stallings has identified an automorphism of the free group on three
generators which is not realizable by a homeomorphism, and he discusses the
correspondence between homeomorphisms of a surface and automorphisms
of the free group for more general cases [13]. For classes of loops which are
equivalent under automorphisms we will need further means to prove the
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distinctness of the classes. We determine the distinctness of words within
the free group through an algorithm given by Whitehead [16]. Whitehead
provides an algorithm which reduces the question of whether two words are
equivalent to the question of whether words are ‘Whitehead equivalent’ under
a smaller set of automorphisms, the Whitehead automorphisms which are
defined as follows. [9]

The algorithm uses determines the equivalence of words under the White-
head automorphisms, and thus all automorphisms through the following

steps.

1. From the initial list of words generated in the preceeding section, de-
termine the new list of 'minimal’ words. A word is said to be minimal
if the length of the word is less than or equal to the length of all White-
head automorphic images of the word.

2. We separate the minimal words by word length. Minimal words of
different lengths are not Whitehead equivalent, and thus such words
are not equivalent. If only one minimal word has a given length, it is
distinct from all other words, and we are done. If there is more than
one minimal word of a given length we count the number of times each
generator or its inverse appears in the word. The set of these numbers
is invariant for words which are equivalent, according to Whitehead,
though the generator to which a given number corresponds may change.
Thus, words which have different sets of these numbers are also distinct.

3. Words which are equivalent must have identical sets of occurrence num-
bers of generators; however, words with identical sets of occurrence
numbers need not be equivalent. For the final step in Whitehead’s al-
gorithm we generate families of words which are Whitehead equivalent
to a word of a given length, ie. we perform all length preserving White-
head automorphic images on a word of given length. If two words have
the same length but are not in the same set of Whitehead automor-
phisms then they are not equivalent.

We implement the first step of Whitehead’s algorithm through a com-
puter program in C which is attached at the end of this paper. The num-
ber of occurences of generators and their inverses can easily be calculated
by hand, and the step three of Whitehead’s algorithm may be easily pro-
grammed, though time constraints prevented us from completing step three.
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Included in the comments of the program are suggestions for modifications
which would program step three. The program can be used for free groups
with n generators, though in its current form it runs for free groups with 4
generators. We ran the program for our list of one-intersectors on T3, and
for our two-intersectors on 7. In the following table we present the results
of the program and our implementation of the first two steps of Witehead’s
algorithm. We find that we have now shown 8 out of the 12 one-intersectors
to be distinct, and 12 out of the 44 two-intersectors to be distinct.

Original Word Minimal Word Equivalent Word
abABabAB unchanged

CdcDabAB * unchanged bbabABdCDc
CdcDCdcDbaBA unchanged

dbaBA ** a bd

ddCDc unchanged
CdcDbaBACdcDbaBA unchanged

CdcDbaBAb unchanged

bb unchanged

bbabABdCDc * babADCDc CdcDabAB
bd ** d dbaBA
dabABd unchanged

dCdc unchanged

Our implementation of the first two steps of Whitehead’s algorithm has
proved the distinctness of the classes of loops which are not starred. We must
still prove the distinctness of the two classes with single stars and the two
classes with double stars. It is possible that distinctness of the classes with
single stars may be proved by applying the final step of Whitehead’s algo-
rithm. The two classes which are identified with double stars are Whitehead
equivalent to simple loops. It is clear that an application of the third step of
Whitehead’s algorithm will be useless for these two classes, so an alternate
method of proof must be determined. However, we have found that a par-
tial implementation of Whitehead’s algorithm has reduced our proof of the
distinctness of the 12 once-intersecting loops to a prove of the distinctness
between two pairs of one-intersectors. For the loops with two-intersections
Whitehead’s algorithm again restricts the numbers of cases among which we
must prove distinctness, however Whitehead’s algorithm leaves many sets of
classes which are equivalent under the first two steps of the algorithm so that
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the distinctness of classes within a given class remains to be proved. The
computer program reveals that the classes in the following table are distinct.
(Note that we use the letter X to denote barz )

CdcDabABdCDcB DabABdabAB

abABabABabAB CdcDCdcDbaBACdcDbaBA
CdcDCdcDbaBACdcD abABBabAB
aabABdCDcabABdCDc CdcDbaBAbaBAb
DDbaBACdcDbaBA CdcDbaBACdcDbaBACdcDbaBA
dbDb bbb

Within each of the following tables, the distinctness of the classes of loops
must be proved. The following eight classes are equivalent to minimal words
of length one, which correspond to simple loops.

dACDc dbABdCd
dbd dBc
dbaBAb CdcDBCdcD
CdcDCdcDbaBAB CdcDAB
The following classes are minimal words with length five.
| abABAD | ddCdc I

The classes of loops in the following table are all equivalent to minimal
words of length six. Implementing step two of Whitehead’s algorithm allows
us to determine that the two words in the top row are distinct from the two
words in the bottom row.

DCddcD abABaa
CdcDaa dAabABdA
The following three classes with minimal length seven must be shown to
be distinct from each other. | dADbaBA | dbABdabABd | ddabABd
The following classes have minimal length eight.
| DCdcabAB | dbabABdCDcDb '

The following classes have minimal length nine.
bbabABdCDcbabABdCDc | dbdCdcDbaBA | aCdcDbaBAB
CdcDBabAB ddCddcDbaBA
The classes in the following table all have minimal length ten, though the
classes in the top row are distinct from the classes in the bottom row.

CdcDbaBAdCdcDbaBAb DabABdCDcB

DCddcDbaBA aaabABdCDc
The classes in the following table have minimal length twelve.
| CdcDaCdcDbaB | CdcDabABabAB |
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The following classes both have minimal length sixteen.

| dCdcDbaBACdcDbaBAd | CdcDabABdCDcabAB

For some of the sets of classes which appear to be equivalent, the third step
of Whitehead’s algorithm may work. However, to prove the distinctness of
some of the classes of loops we will require further means of proof. Certainly
we will require an alternate method to prove distinctness for the set of eight
loops which are Whitehead equivalent to simple loops.

7 Conclusion

The techniques used in this paper to develop a classification of the once and
twice intersecting loops on a two-holed once-punctured torus and the once
intersecting loops on the n-holed once-punctured torus may be generalized
to classify loops with higher intersection numbers. However it is evident that
new approaches are required to complete the proof of the distinctness of the
classes which we obtained. The attempt at proving the distinctness of the
classes of loops through Whitehead’s algorithm raises a number of interesting
questions. It would be interesting to determine when Whitehead automor-
phisms and automorphisms of the free group correspond to homeomorphisms
of Ty, and to determine whether the partial results of Stallings [13] would
~ help prove distinctness among the remaining classes. It might be interest-
ing to examine the connection between the Whitehead equivalence classes of
minimal words of a given length and the corresponding geodesics.

Additionally, there are a number of interesting number theoretic questions
that might be interesting. It would be interesting to determine the Markoff
values associated with the classes of geodesics that we have found [11]. Also it
might be interesting to determine whether there is any connection among the
geodesics which are Whitehead equivalent to loops with lower self-intersection
numbers and their Markoff numbers.
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| #include

Aug 16 21:15 /tawa/sd2f/garity/REU/1996/JS/algor.c
. /*My program to use Whitehead’s algorithm to determine whether words representin

<stdio.h>
<string.h>
<stdlib.h>
<ctype.h>

#include
#include
#include

struct key {(char fixed; char subset[8]:};

J struct key automorph[504];

/*read in the values from a function, keep this array of structures as a global

int getauto(FILE *in)

i

int end, numbercheck, fixnum;
char word[10];
char letter:;
end=fscanf (in,
fixnum=0;
numbercheck=0;
for (powers=
{

power,
"%s*, &letter);

power=spower+1)

power<504;

automorph [power] . fixed=letter;
end=fscanf (in, "%s*, automorph([power).subset);
if (end==EOF)
{return EOF;}
numbercheck=numbercheck+1;
if (power%$5==0)
fprintf (stdexr, "\n"):
if (automorph[power] .subset[0]!=‘Z")
{

continue;
]
if (automorph[power] .subset[0]=='2")

fscanf (in, "%s*", &letter);
while (letter==‘'Z’)
“%s*,

fscanf (in, &letter);

power=power-1;
}
return numbercheck:

/*I still need a function to get the permutations*/

; /*this function gets a word from the file of all the words.*/
: char *getword{ FILE *in, chaxr* word)

char *wordptr;
int end, i;

i=0;

wordptr=word;

for (i=0; i<50; i++)

{* (wordptr+i)='\0";}
end=fscanf (in, "%$s", wordptr):
fprintf (stderr, "\n \nThe gotten word is %s\n ",
if (end==EOF)

wordptr="Q";
return wordptr;

wordptr) ;

/*this function will perform an

char *elementary
{
char templ,
char tempword(
char *holdword
int checks=1l;
int i;
holdword=wordp
while (check!=
{
check=0;
i=0;
for (templ
{

‘elementary reduction’ on the word. Ie.

{char *wordptr)

temp2;

100];

tr;
Q)

=*holdword; templ!=’\0’; templ=*holdword)

holdword++;

oldword=='\0")

tempword[i]=templ;
i=i+1;
tempword[i]='\0";

if (*h
{
i=
br
}
temp2=

i+l;
eak;

*holdword;

if (templ==temp2)

{

tempword[i]=templ;

i=i+1;
continue;
}
if ((templ!=temp2+32) &&(templ!=temp2-32))
{
tempword([i]=templ;
i=i+l;
}
if ((templ==temp2 - 32) || (templ==temp2+32))
holdword=holdword+1;
check=check+1;
tempword[il="\0";
strepy (holdword, tempword) ;

}
return holdword;

¥
/*IN order to implement the final step of WHitehead'’'s algorithm,

char *minimal(char *wordptr)
{

int check,
char templ;
char tempword [
char holdwordl
char *redword;
check=1

hold=
fprintf (stderr
strcpy (holdwor:

aut

. i, hold, action;
100];
100];

, "I am now entering minimal with word %s \n", woxrdptr);

d, wordptr);

|char *cyclic(char *wordptr)
{
char *tempword;
char tempfirst, templast;
int count, i, check;
check=count=1;
tempfirst=wordptr(0];
tempword=wordptr;
fprintf (stderr,
while (check!=0)
{

"I am now in cyclic with word %s \n*, wordptr);

check=0;
for (templast=wordptr{count];
! {count=count+1;}

count=count-1;

/*Deal with the case where the word is a single letter*/

if (count==0)

{return wordptr;}
templast=wordptr [count];
if (templast==tempfirst+32]|]|templast==tempfirst-32)

templast!='\0'; templast=wordptr[count])

wordptr [count}=’\0"‘;

tempword=&wordptr{1];

check=check+1;

}
count=1;

\ strepy (wordptr, tempword):
{ tempfirst=wordptr([0];
H tempword=wordptr;

return wordptr;
}

i

';/*chis function determines which of the type 2 (ie. non-permutation) whitehead a
/int morph(char xletter, int aut)

int i, value;
char current;
i=value=0;
current=automorphlaut] .fixed;
| if (xletter==current)
I return 1;
' current=automorph[aut].subset[0];
while (current ‘\0")
{
i if (tolower (xletter)==xletter)

if (current==xletter)
value=value+2;
1f (current==toupper (xletter))
value=value+26;
}
if (toupper (xletter)==xletter)
{
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if (current==xletter)
value=value+3;

if (current==tolower (xletter))
value=value+27;

}
i=i+1;
| current=automorph[aut] .subset[i];

i return value;

while {(check!=
{

check=0;
for (aut=0
{
i=0;
hold=0

/*this for loop performs the actual automorphism,
for (templ=holdword{0];
{

/*if word is one letter,

0)

; aut<504; aut=aut+l)

templ!='\0’'; templ=holdwordlhold})

no more reduction needed*/

if (holdword[l]==‘\0")
strepy (wordptr, holdword);
return wordptr;
}
action=morph(templ, aut):
if (action==0)
{
tempword[il=templ;
i=i+1;
}
if (action==1)
tempword[i]=automorph[aut]. fixed;
i=i+1;
}
if (action==2||action==3)
{
tempword[i]=templ;
i=i+1;
tempword[i)=automorph[aut]. fixed;
i=i+1;
3
if (action==26||action==27)
if (tolower (automorphlaut].fixed)==automorphlaut].fixed)
tempword[il=(toupper (automorphlaut].fixed));
i=i+1;
}
if (toupper(automorphlaut].fixed)==automorphfaut].fixed)
{
tempword[i]=(tolower (automorphiaut].fixed));
i=i+1:
)
tempword[i]=templ;
i=i+1;
}
if (action==28]|action==30)
if (tolower (automorph{aut].fixed)==automorph(aut].fixed)
{
tempword[i]=(toupper (automorphlaut].fixed));
if{toupper (autcomorph[aut] .fixed) ==automorph[aut] . fixed}
{
tempword[i)=(tolower (automorphlaut].fixed));
i=i+l;
tempword[i)l=templ;
i=i+1;
tempword[i]l=automoxrphl[aut].fixed;
i=i+1;
}
hold=hold+1;

a reduc

it might be a g

and afterwards it does




}

tempword[il=‘\0";
redword=elementary (tempword) ;
if (strlen(redword) < strlen(holdword))

strcepy (holdword, redword) ;
fprintf (stderr, "Comparison made, real %s\n", holdword);

fprintf (stderr, "Automorphism was (%c, %s).\n", automorphlaut].fi

check=check+1;

}
¥
strepy (wordptr, holdword) ;
return wordptr;
}

void main()
{
char *word, *reduced, *cyclical, *firstelem, *final;
char empty([100];
char rightreduced[100], holdred([100];
FILE *in;
FILE *automor;
FILE *out;
FILE *cycle;
int numwords, end;
automor=fopen("allauto*, "r");
in=fopen (*loopsl.txt*, °*r*);
out=fopen (*finloop2", *w");
cycle=fopen(“cycle*, "w*);
end=getauto (automor) ;
numwords=0;
fprintf (stderr, "Now I have all automorphisms\n");

/*this loop reads in a word, does an elementary reduction of it, and then saves

for (word=getword(in, empty); *word!='Q’; word=getword(in, empty))
{
firstelem=elementary (word);
fprintf (stderr, "The elementary word is %s*, firstelem);
cyclical=cyclic(firstelem);
reduced=minimal (cyclical);
final=cyclic(reduced);
fprintf (stderr, "\ncyclic final is %$s!!\n", reduced, final);
fprintf (out, *"%s", final);
fpute (’\n’‘, out);
numwords=numwords+1;

fclose (out);

fclose(automor) ;

fclose (in);

fclose(cycle) ;

printf (*I think I am done, you should have %d words", numwords);
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