Uniformly distributed sequences
| and their discrepancies

Laura A. Pace
Carlos Salazar-Lazaro

Faculty Advisor
Professor Robert Burton

REU Program

Oregon State University
August 1996

69

Chapter 1

Introduction

1.1 What is a uniformly distributed sequence?

1

0

+ *r—o—0—o—0—0 Fi)
3 X6 X1 x4 X7 X2 XS XB

X

0

The p-adic sequence, where p=3

The above sequence of points on the [0,1) interval is an example of a
uniformly distributed sequence. There are no “huge” gaps between the points
or any large groups of points bunched together. In other words, the points are
evenly spaced throughout the interval. A formal definition for a uniformly
distributed sequence follows and can be found in [1].

Definition 1.1 Let {z1,z,,...} be a sequence of points contained in the in-
terval (0,1]. Then the sequence is uniformly distributed if for any interval
(a,0), 0<a<b<1

#{zi € (a,0) |1 <i < N}
N

Imagine an interval, I, of length M < 1. Then no matter where you put
I on the interval (0,1], the number of points contained in I will be nearly

*N—oo (b -_— a).

70

constant. This guarantees that the sequence is uniformly distributed.

Throughout the rest of the paper, the notation #(a,) will be defined as
#{z; € (a,b) | 1 <i < N} and #[a, b] will be defined as #{z; € [a,b]| 1 <
i < N} where N is the total number of points in the sequence.

1.2 What is Discrepancy?

Some sequences are more uniform than others, naturally leading to the ques-
tion of how to measure the uniformity of a sequence. Discrepancy is the mea-
sure of how “non-uniform” a sequence is. When dealing with Quasi-Monte
Carlo Integration, the lower the discrepancy of the sequence, the lower error
of the calculations, which will be discussed further in Chapter 4. Because
the discrepancy of a sequence plays a significant part in error calculations, a
quantitative measure for discrepancy is needed.

Definition 1.2 Let {z1,22,...,zn} be a sequence in [0,1). Then the dis-
crepancy of the sequence is defined as

s BB
DN_OSa<Iﬁ)<1 N (ﬁ)

where #(a,) is the number of points in (o, 3) [1].

By restricting the intervals over which the supremum is calculated, an
_alternative definition of discrepancy is created, which can be found in [1].

Definition 1.3 Let {z1,z2,...,2n} be a sequence in [0,1). Then the dis-
crepancy Dy is defined as

There are some general upper and lower bounds for the discrepancy of all
sequences. Tighter bounds can be found for specific sequences. The following
bounds for discrepancy and associate proof can be found in [1].

Theorem 1.1 Let {z1,22,...,zn} be a sequence of numbers. Then

1
—<Dy<1.
N SUNS

71 -

1.3 Examples of uniformly distributed se-
quences

There are several kinds of uniformly distributed sequences. Each of these se-
quences has its own discrepancy bound, depending on its behaviour as N gets
large. Low discrepancy sequences are sequences for which Dy becomes small
as N gets large. These sequences have bounded discrepancy, often of the
order ¢ %, where c is a constant. Two such sequences are the p-adics and
the rotations. There are several more low discrepancy sequences; however
these were the two that we worked with. Our plan was to use these sequences
to develop a general method to form sequences and use this method to create

a dynamical system. This will be discussed further in Chapter 3.

For both sequences, and the dynamical systems, we need a set of real
numbers, called scales, such that |y1| > |y2| > ... > |y > ... > 0.

1.3.1 p-adic sequences

0. 1
+ *—0—0—0—0—0—0—=o >
X, X, X; X, X, X, X, X,

X

The p-adic sequence, where p=3

The above sequence is an example of the p-adic sequence. There are
two algorithms for creating the sequence. One method involves using base p
notation. The other method uses scales. We will mostly use the algorithm
involving scales because it is easier to generalize to the dynamical system;
however, both are equivalent. We will be creating the sequence on the [0,1)
interval. ’

Let p be a prime number. The nt* scale, ~,, is equal to ;1;. The pointer,
g, points to the z; that you’re on and end list, IV, points to the last z; added
to the sequence. For each point z; in the sequence let b; be defined as the
length between z; and the point immediatly following it. In other words,

72

b; = ming=1,. ~n{(1 —), (zx — z;)|zk — z; > 0}. Initially set 2o =0, ¢ =0
and N = 0. Then follow the following algorithm for n = 1,2, 3,... to create
the sequence.

If b, > v, then
e add zy41 = 24 + 7, to the sequence

e add byy1 =0, — Vs

o set by =,
° setq=q+1
eset N=N+1

If b, < 7, then
e If pointer is not the end of the list then set ¢ = ¢+ 1
e If pointer is end of the list then

— set pointer to 0
— replace v, by Yot

As you can see from the p-adic sequence, the 7,’s are used to partition the
intervals at each stage. A v, stage is when you go through and add points to
the sequence for that v, . Unless stated otherwise, «, will be positive. v, > 0
will indicate foward direction, and v, < 0 will denote negative direction.

The second method of generating the p-adic sequence uses base p nota-
tion. First n is written in base p. In other words, a; € {0,1,2,...,p;} and
n = X_sa;p'. Then, z, is defined as the reflection of n around the decimal
point. Basically, z, = X]_ga;p~"* which means that z, € [0,1). It can be
shown that this method and the algorithm for creating the p-adic sequence
are equivalent [3].

The p-adic sequence is a low-discrepancy sequence. It has been shown
that the discrepancy of the p-adic sequence is bounded by c¢ * IL‘NE—, where ¢

is a constant.

73

1.3.2 Rotation sequences

7 X

1

The above sequence of points is the rotation sequence. This sequence is
formed similiarly to the p-adic sequence except the 7. s are defined differently.

In the rotation sequence, each v, is defined recursively. Pick an irrational
number, a. Then 79 =0, 1 = @ (mod 1), zo = 0 and z; = ~;. Continue
adding points to the sequence by “going foward” a distance ;. Since v; is
irrational, the points will not evenly divide the interval [0,1), so there will
eventually be a point z; such that 1 — z; < 4;. The remaining distance will
be v,.

e | P
G, G, \
O+ - —— —— ® - 1
X, X, X5 X, X5 /
Xo

Then fill up each subinterval of [0,1) with points by going “backward”
from each point a distance of v, until there is no more room. The remaining
distance will be 73

G3 GZ\
0 o —- *—e- *——o --——e -

74

By continuing in this manner, we get the recursive definition for 7,

Tnt+1 = (_1)n+1 * (7n—1 — Yn ¥ [7n_1J)

Tn

where 71 > 0,7 < 0,73 > 0,...,7n, < 0,92041 > 0,... Thus the ~,’s are
alternating in sign. We informally call this an alternating sequence.

For the algorithm to generate the rotation sequence, b;, the pointer ¢
and end list N are defined the same as in the' p-adic sequence. Let ¢;
be defined as the length between z; and the point immediately preceding
it. Then ¢; = ming— .~ {(1 —), (z; — z;)|z: — zx > 0}. Let r; and [; be
the indices for the points immediately right and left of z;. In other words,
r; = k such that zy — z; = b; and I; = k such that z; — z; = ¢;. Initialize
zo = 0,N = 0,¢ = 0, and ¢o = 0. Then the following algorithm generates
the rotation sequence.

For the stages where v, > 0
o If b, > ~, then

—~ add zy41 = 24 + 7, to the sequence
— add bN+1 = bq — TIn and CN4+1 = n
— set by = v, and ¢,, = by
—setg=¢g+land N=N+1

o If b, < 7, then

— If pointer is not the end of the list then set ¢ = ¢+ 1
— If pointer is end of the list then

* set pointer to 0

* replace v, by Yn41

For the stages where v, < 0

o If ¢; > 7, then

75

— add znx41 = 24 — 7, to the sequence
— add by41 =7, and eyy1 = ¢; — Yo
— set ¢; = v, and b, = ey
—setg=g+1land N=N +1

o If ¢, < 7y, then

— If pointer is not the end of the list then set ¢ = ¢+ 1
— If pointer is end of the list then

* set pointer to 0 |

* teplace v, by Yn+1

Another way to describe the algorithm is as follows. Wrap the unit in-
terval [0,1) into a circle, S’. Let zo = 0 and = = o (mod 1). Then “rotate”
from 0 to z and let z; = z. Continue rotating foward distance z. From this
rotation we can see that z, = na (mod 1).

Any irrational number o can be written in continued fraction form as
below.

O!=C60+ 1
@+ ————
as +

az+ -
ao = |a]. When going through the 7; stage you can get a certain number
of points in the [0,1) interval before running out of room. The number of
points 'added to the sequence at that stage is a;. In the second stage, the
number of points added between 0 and z; is as. From this we get our con-
tinued fraction.

76

O+—t ° *—o * o—o ° *—o ® ® >1
X9 Xs X) Xyo X6 X2 Xn Xq X3X Xg X4
X0
l—————i
a, =2

The continued fraction sequence is also a low discrepancy sequence. In
[4], Niederreiter proves that if there is a postitive integer K such that for
:=1,2,3,..., a; < K then the discrepancy of the sequence is bounded by

o=l

77

Chapter 2

Theorem on Finite
Calculations

Recall that discrepancy was given in Definition 1.2 as

Dy = sup #@f) (B —a)
o<a<p<1| N
for a given sequence {z1,zs,...,zy}. This definition involves a supremum
over an infinite number of intervals. Unfortunately, this makes estimating
discrepancy on the computer impossible. For this reason we developed a
theorem which computes Dy over a finite number of intervals, rather than
an infinite number. This makes computing Dy possible.

2.1 Formulas for finite calculations of dis-
crepancy

According to Definition 1.2 there is at least one interval that causes the
discrepancy of the sequence to be at its worse. Let (a,b) C [0,1) such that

_ |#(a,0)
.DN—- —N——-(b—a)

and 0<L...<z; 1 <a<z;<... <z;<b< x4 <...<1. This then
leads to the question of what happens to the discrepancy on the intervals

78

(zi—1,2z41) and [z;,z;]. The number of points in each of these intervals
would be the same as the number of points in (a,b) but the length of the
intervals is either increasing or decreasing, which would imply that the Dy
of these intervals would also be increasing or decreasing. Then the intervals
(%i-1,zj+1) and [z;, z;] would be the extreme Dy for the points in the interval
(a,b). This leads to the following Theorem.

Theorem 2.1 Let {z1,%2,...,zn5} be a sequence in [0,1). Then the discrep-

ancy
,b
Dy = sup il?i‘;\%-—)—(b—-a)'

0<a<h<1

i1s equivalent to

=B - - 2L2050)

1<J

proof: .
Let {z1,z3,...,zn} be a sequence in [0, 1) such that the discrepancy Dy of

the sequence is M. Then 3(a,b) C [0,1) such that

[

From Theorem 1.1 we know that Dy > >~
Then M # (6 — a) which implies ——ga—bl > (b—a) or ﬂ]—‘\’,’—bl <(b—a)
Let0< Lz <a<z; <. _<_:cJ b<zj1<...<1.

Case 1: M>(b a)
Then &2 _ (5 —q) >0
Because 0<..<z;1<a<z;Z...82;<b<zju<... <1

#(a,b) = #[zi,z;] and (z; — 2;) < (b—a).

Then ;
0<#—(]%’—2—(b—a)ﬁ ﬂﬁx—ﬂ*(%—%)
But
sup (DA (5 g/ =
0<a<p<1

79

which means that

therefore

#[mia mj] _
- N (zj—z)=M

Case 2: ﬂfv—bl < (b—a)
Then (b——a)-—#—%‘\%bl >0
Because 0< ... < z;_4 Sa<z;<...<z2; <b<zj11<...<1
#(e,b) = #(zi-1,Tj41) and (zj11 — 2ia) 2 (b— a).

Then

0< (b— a) — —W < ($j+1 — i — 1) . #(mi—]l\;xj+1)
But

sup M_(B_a) =M

o<a<p<1| N

which means that

0<(b—a)— #(;, b) £ (5301 — ia) — ‘%(_:C_—jlvjﬂ
therefore
(Tj41 — 2i-1) — #—(361‘7.1\;%_‘”) .y
Then
Dy = e B a2~ B}

The sequence of points {z1,%3,...,zn} can be ordered without any loss
of generality. Thus if we let the sequence be such that 0 = zo < z; <
Tz < ... < zny < zny41 = 1, 1t is easy to see that we will get the the same
discrepancy. Thus we may assume that the sequence of numbers are ordered.
With this we get a more general form of Theorem 2.1.

80

Corollary 2.1 Let {z1,%2,...,2n} be a sequence in [0,1) such that
0=20< 21 <23 <...<2zNy < zNn41 = 1. Then the discrepancy Dy is
equivalent to

(-2 = (2= 2|+ (2.1)

Dy = max
]

proof:
From Theorem 2.1 we have that

Since the elements of the sequence are ordered we have that #[z;,z;] =
J—t+1and #(z;,z;) =7 —¢—1. Then,

Dy = max{M — (z;— xz-)} max{(.’rj —z) — ﬂ‘ﬁzicf_)}

t<J N s N
_ J—i+1 o oo
B Il’:lsa-;x{ N N (:EJ - .’131)} \/IEISB.JX{(QTJ - (L‘,) - T} .

Then,
Dy = max{ (@ = 1) = (@ = 1) + 3} Va2~ L)~ (o - 1) +
NERE\W TN W TN TN VEEN\W TN T T T

Therefore,
1
—0 .
+ N

The discrepancy Dj; also has a general form involving only finite calcu-
lations. The following Corollary shows this and the proof can be found in

[1].

Corollary 2.2 Let {z1,22,...,zn} be a sequence in [0,1) such that
0 =20 <71 <23 <...<2ny < zn41 = 1. Then the discrepancy Dy is

given by
x; N .

(@i~) — (2 — %)

Dy = max
1<g

?

v g
D3 = max max? |z; — —
N i=1,..., : N

81

For our computer programs calculating discrepancy we used another ver-
sion of Theorem 2.1 given in the corollary below. This formula allows for
lower computer computation time. It can formed directly from Corollary 2.1.
Niederreiter also presented this as a theorem in [4] and his proof can be found
there.

Corollary 2.3 Let 0 =zo < 21 <22 < ... < 2y < Tny1 = 1 be a sequence
in [0,1). Then the discrepancy, Dy, is equivalent to

1 i) 1
o=y (me)-mm(r-e) e

proof:
From Corollary 2.1 we know that

(@i —)= (@~ 2|+

Dy = max
2,7

To get the maximum Dy we want the first value, z; —]—’;,-, to be as large as
possible and the second value, z; — &, to be as small as possible. Then we
get

Dy =~

+loz (== 5) - i (- 5))
Then,
Do — o . (. i)D
v=r+ e (oy) e (g
2.2 Calculating Dy in higher dimensions

So far, we have talked about discrepancy in the first dimension over intervals.
Discrepancy can be applied to several dimensions as well. Before we define
discrepancy for multiple dimensions we need to introduce some notation.

a<zr<c
b<y<d

R((a,8), (c,d)) = {<w,y>

is the interval over the open cube in R2.

Rl(a,b),(c,d)] = {(f"y)‘ ny <Sd

82

is the interval over the closed cube in R2.

The definition of discrepancy can naturally be extended to the multi-
dimensional case [1].

Definition 2.1 Let {x1,X2,X3,...,Xn} be a sequence in R*. Let J = (cu, $1) X (az, B2) €
[0,1)X[0,1) and J = (0, 81)X(0,5:) € [0,1)X[0,1). Then Dy and D% are
defined as follows

Dy = sup #h (J) IJI‘
7
DFV:S}IPI#-—N{—_U*I

Similiarly, Dy and D} can be reduced to open and closed regions of
points as in Theorem 2.1. The proof is similiar to the one in Theorem 2.1.

Theorem 2.2 Let {x1,X2,X3,...,Xn} be a sequence in R2. Then Dy and
Dy are equivalent to

DN=m@X{#£‘['Xi7—XJ] | R[xi, %;] }\/mm{]R(Xz,XJ)I —————R(Xi’xj)}

i N N
DY = m?x{ﬂw - IR[O,Xz’]l} \/mj”fl{‘R(O’Xi)I - ﬂ(NO,—Xi)}

In R, by ordering the points in the sequence it is easy to count the num-
ber of points in the intervals. Unfortunately, for R?, this is not so easy.

83

O 7

0 XIXZ x3 X4X5 XG x7 XS X

Xo

The graph below shows a sequence of points in R?. The z and y points
are ordered, thus the points in the sequence are of the form (z;,y;). Our plan
was to find a way to calculate the number of points in the shaded regions.
However, we ran into several problems. When trying to calculate the number
of points in the bottom left region, we found that there’s no way to separate
off the rest of the points without doubling the number of points in the top
right region. | ‘

84

Another problem found was if you have two points, such as (z;, y;), (s, yx)
or (z;,9;), (zk,y;), then the points would only get counted once in the z or y
indexing, but there are actually two points. This causes difficulty in finding

an exact formula for counting the points.
ymL
%

% e

¥%
A ik S !

LT T SR

Xg

85

In Theorem 2.2 we need a method for counting points in both open and
closed intervals. In open intervals, the boundry does not present a problem
since all points on the boundry are not counted. However, in the closed
interval the points on the boundry are included. As seen from the above
example, there is a possibility of 1, 2, or 3 points being on the boundry and
as of yet we have not found a way to count the number of points.

2.3 Using Matlab and C to approximate Dy

Theorem 2.1 and Corollary 2.1 are useful when calculating the discrepancy of
sequences, because they only require a finite number of calculations. In fact,
using matrices on MATLAB™ allows for simple computations of Dy. We
wrote Matlab programs to calculate discrepancies of different sets of points.
The first programs used equation 2.1. Later on, equation 2.2 was found for
the one dimensional discrepancy in Neideireiter [4], which takes less amount
of computations than the previous formula. Most of the programs written,
used equation 2.2. Matlab was used to produce plots of discrepancies, C pro-
grams to calculate discrepancies and reproduce sequences. The C programs
were based on linked lists, which were used to reproduce sets of points using
a given algorithm. The complete program can be found in Appendix A.

86

Chapter 3

Dynamical Systems and
Discrepancy

The main goal of our project was to generalize the p-adic and continued
fraction sequences into a dynamical system. Hopefully, we could then find
some conditions on the 7, ’s that would guarantee low-discrepancy sequences.

3.1 Introduction to dynamical systems

3.1.1 What is a dynamical system?

We will be working with dynamical systems on S’ or [0,1). S’ is the interval
[0,1) wrapped around into a circle with the origin at the top. B is the class
of Borel sets. Borel sets are the natural class of sets for which length or
Lebesque measure may be defined. Lebesque measure, A, on the unit interval
is the usual definition of length.

Definition 3.1 Lebesque measure is defined as A(a,b) = b—a for 0 < a <
b <1 and has the following properties:

1. X(0) =0 and A(S") =1
2. If B1, By, ... € B are pairwise disjoint, then A(U32; B,) = £, A(B,)

87

There are several methods for describing dynamical systems. We will be
using one which involves Borel sets and Lebesque measure.

Definition 8.2 If T : S — S* is a dynamical system, then

1. T is 1-1 and onto on a set of Lebesque measure 1
2. VB € B, A(B) = A\(T7(B)), where T~*(B) = {y|Ty € B}

Example 3.1 Let « € §' be an irrational number and let T(z) = z +
a (mod 1). Then Aa,b) =b—a and A(T~*(a,b)) = A\a — a,b—0) = b—a.
When two measures agree on intervals, they are the same. Thus, this is a
dynamical system.

3.1.2 Cutting and Stacking
Defining the stack

a, t) bL
ap, *j bL-l

a3k 7\ b
a,$—) b,
a,$— v b,

Definition 3.3 A stack is a finite collection of disjoint intervals Li,L,...,I C
S', where L, = [ai, b,) .

Each stack is accompanied by a transformation 7. If z € I;, then
T(z) = a;j + (z — a;), where a; + (z — a;) < b;. Otherwise T(z) is not
defined. In other words, when looking “up” the stack, if there is an interval
above the interval containing z, then T'(z) is defined to be the point directly
above z in the interval above z. If T(z) is not defined at z, then we say z

88

is visible from above. Simply stated, if you look down the stack, you can see
the point z on its interval.

a, &b,
visible
. 70,
L-1 e

The width, wr, of the stack is max;=,1.(b; — a;). Basically, the width of
the stack is the width of the longest interval. If 7T'(z) is undefined, we will
define A(z) = wr. Then T'(z) will preserve measure when it is defined and
visible from above.

Similiarly we need to take care of when T'(z) fails to have an inverse.
T(z)_1 does not exist when there is no y such that T'(y) = z. We say that
these points are visible from below. A point, z, is visible from below if you
can look “up” the stack and see z. If the point, z, is visible from below, then
A(z) = wr. Then T'(z) will preserve measure when visible from below. Thus
T'(z) is a measure preserving transformation and the stack is a dynamical
stystem.

Cutting the stack

In order to use the stack to create sequences we need to cut the stack. Let
I; = [a;,b;) for 1 < ¢ < L be a stack of intervals. Given 7, > 0, we form the
new stack by “cutting at -, and stacking on top.”

89

?] ~—
I —

— 7 e

~——3 & :

— §

: —

*

"

;

For each I;, we define I] = [a;, min(b;, a;+7,)). If a;+7, < b; then we get

I = [ai+7n , bi, otherwise, I/’ = 0. Then we have a stack I}, I}, ..., I, 10, . ..,
where I} = 0 for some i. Then we remove all I/ such that I” = 0. The rein-

dex the stack to get, I], I3, ..., I}, the new stack.

Note that L' = L only if 7, < wg. Otherwise, L' > L. Also, the T(z)
associated with the stack {I/|l <i < L'} extends the T'(z) with {L;]1 < <
L}. The sequence generated from the cutting and stacking method is of the

form {a;}i=f, where a; is from I; = [a;, ;).

3.2 Effects of the direction of the scales

In Section 3.1.1 we defined the dynamical system using =, > 0. If Y 18
negative for any n, then we have to decide how to cut the stack. We tried to
adjust the transformation so that it went downwards rather than upwards.
However, in order to do this, the intervals would need to be lined up on the
left rather than the right, otherwise the +,’s would not cut properly. Then
we decided to leave the issue of negative 7,’s out of the dynamical system.
We adjusted the formation of the continued fraction sequence to also be a
non-alternating sequence. Instead of having the v,’s alternate in sign, we set
all 7,’s > 0. The spacing of the points is not changed so the discrepancy of

90

"
ILa

the sequence is not affected by this redefinement.

Before deciding to consider only v,’s > 0, we did some testing of the
discrepany of sequences formed with alternating v,’s and strictly positive
v».’s . We were hoping that the discrepancies of the two sequences would be
identical for all NV, but unfortunately this was not so. We used the following
set of scales to test discrepancies of the two sequences.

7 =05, 72 =02, v3=0.09, 74 = 0.07, 75 = 0.03, v = 0.006

The discrepancies were calculated for both of the sequences at the end of
each -, stage. The table of the discrepancies is given below.

Yn foward | alternating
0.5 0.5 0.5

0.2 0.2333 | 0.2333
0.09 | 0.1300 | 0.1300
0.07 | 0.0908 | 0.0908
0.03 | 0.0470 | 0.0470
0.006 | 0.0116 | 0.0124

The table shows that the discrepancy of the sequences is not alike. Thus,
vn > 0 makes a difference in the discrepancy. The discrepancies of the two
sequences differed throughout the v, stages and were only exactly equal at
the end of the ~, stages.

At ¢ both sequences have tiny “slivers” of space. Basically, there ends
up being a small gap between two points. In the alternating sequence these
gaps are closer together than in the foward sequence, resulting in a higher
discrepancy.

91

Foward

o . N . L N " L
0.1585 0.16 0.165 0.17 0.175 0.18 0.185 0.19 0.195 0.2
Points

Alternating

0.4

0.2

&27 0.275 0.28 o.285 0.29 0.295 0.3 0.305

Points

The results from this example suggest that if you modify the ~,’s so that
little slivers between points don’t occur, you can keep the dicrepancies closer

together.

3.3 Generalizing the scales

Keeping the spirit of subsection 1.3.2, we can generalize the continued frac-
tion sequence. In other words, we can generalize the algorithm in subsec-
tion 1.3.2 to one that takes a sequence of {v,} as input and outputs a se-

quence {z, }22 .

Generalized Algorithm
Let {y.}32, be given, such that each 0 < |v,| < 1 and {|y4|} | 0. Define
the following functions:

92

S(i,{zn}i,) = returns the index of z
where z is such that
z — z; = ming{zy — x|z — z; > 0}

P(i,{zn}i_,) = returns the index of z
where z is such that
) wi—z=mink{xi—xklxi—mk >0}
Let N be the index of the last point in the current list of points. Set
N=0,20=0n=1.

Algorithm
STEP 1

Case v >0
Set list of points to be:

{zntico={zr =k*m}

Where m = |-]. Set N =m
Case 11 <0
Set list of points to be:

{Zn}ieo = {0,1 — k11]k € {1..m}}

Where m = L;};J Set N=m,n =2
STEP 2

Let P(i) = P(i,{zn.},) where N is understood to be the index of
the last point in the current list of points. Similarly, define S(i). Let
¥ = Yn, NVotg = N 4+ 1. Do the following loops

While (Nold#N)
Nog = N
For (i=0to N)
If(zsi—zi>vandy>0andi# N)
N=N+1
IN =T+

93

Continue
f(z—zpiy>vandy<0ai#0)

N=N+1
IN =T;+ 7
Continue

STEP 3
Set n =n + 1, repeat STEP 2

3.4 Possible conditions to assure low dis-
crepancy

Our strong belief that sequences generated by the Generalized Algorithm
(GA) would be similiar to those generated by the algorithm of subsection 1.3.2,
led us to believe that most of conditions that guaranteed low discrepancy in
continued fraction sequences will be sufficient to guarantee low discrepancy
in GA sequences.

Using a result by Niederreiter [4],

Theorem 3.1 If the irrational z is such that there exists a positive integer
K with a; < K (a; are the continued fraction coeficients) for all i > 1, ten

Dn(S(z)) < G(K)N'log(N +1)
for all N > 1, where G(K) is a constant dependent on K alone

If we set the {1} to be generated by some continued fraction of some
number, then theorem 3.1 becomes

Theorem 3.2 If{~,} are from a continued fraction and are such that 52| <
K, for some K > 1 then

Dy({za}) = O(%)

Where {z,} is the sequence generated by GA algorithm

94

Thus keeping intuition in one hand and luck in the other, we conjectured

Conjecture 3.1 If {y,} is such that]77:1| < K , then the GA algorithm
produces a low discrepancy sequence.

However we were unlucky, because if {v,} = H-%-T? the GA algorithm
produces a sequence whose discrepancy seems to be above .01, most of the
time.

G(n)=1/(n+1)
0-1 1 ! T T T T

0.105 j J

0.1

0.095+ b o :

Discrepancy

0.00f] ' 1

0.085 b

0.08 1 L 1 1 1L
0 500 1000 1500 2000 2500 3000

- N
And even if we let the v, ’s alternate, the discrepancy seems to stay above

.04 most of the time.

95

G(N)=((—1)N+1))/(N+1)

0.06 |1 I

0.058

0.056

0.054

0.052

0.05+ 1]

Discrepancy

0.048} i R A | 4 4 A
0.046)
0.044f

0.0421

.04 1 1 L 1 1 L] 1 1 1
° 0 100 200 300 400 500 600 700 800 900 1000

N

3.5 Sequences similar to a continued frac-
tion
We tried to set more stronger conditions on the {v,} so that it will behave

more like a continued fraction. Namely, we put the following condition to

the v,’s
_1 n+1
Tnt+2 = (_TW)_—{'}'TL

- l_ %1“ *’)’n+1}

Where M is a fixed integer, and 7o = 1,7, = z. For instance, if we let

z = —1*‘5—2 and let M = 2, we can see how much the discrepancy’s behavior
differs from the contlnued fraction case M =1

96

G(1)=golden mean, M=1 —> :, M=2 -> —
0.1 T T T T T T T T T

0.091

0.081

0.071

Discrepancy
o o
8 8
T T

o
2

0.03r

0.02-

0.01+

) 1) ! " 1 L L) 1
o] 50 100 150 200 250 300 350 400 450 500
N

Here is the comparison for M = 3

G(1)=goiden mean, M=1 —> :, M=3 —> —
0.1 —— ; T . ; ; , . .

009} .

0.08F i -

o

o

=]
T

Discrepancy
o
o
(5]
T

:

0.03-

0.02

0.01

0 Il 1 i L 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
N

Here is the comparison for M =7

97

G(1)=golden mean, M=1 -> : M=7 -> —

0.1

0.09F {5

oosf |3

0.07f i

Discrepancy
e ©°
& 8
T
L

o

=

b
T

0.03F

0.021

0.01

0 L] 1 1 "l 1 1 1 1
o} 50 100 150 200 250 300 350 400 450 500
N

In general, we saw that discrepancies M = n # 1 will eventually come
- back and touch the discrepancy graph for M = 1 and try to follow it. How-
ever, there is still a chance that for some v; = z, this may not happen.

3.6 Error conditions

Given a sequence of ,,’s, we tried to impose another condition which will as-
sure us a low discrepancy sequence. Whether it does is still an open question.
Before we show the condition, we define some functions.

Let Xn be the sequence of the first /V points generated by GA. Given Xy,
we can form a partition of [0,1) (add 1 to Xx before creating the partition),
define f(n, V) to be the number of intervals of length v, in the partition
generated by Xy, let S(n) to be the value N for which f(n, N) reaches a

maximum.
Let €(7,0) = 71, (i, k) = M(e(i, k — 1), v;), where M(z,y) = z — 2]y,

also let 70 = 1. Let G(n) = f(n, S(n))

Conjecture 3.2 if lim, .., G(n)y, = 1 then GA generates a Low discrep-

ancy sequence

Unfortunatly, we were not able to show that conjecture 3.2 was true or
false. However, in the process of trying we found the following fact.

98

Theorem 3.3 G(n) = Y, [ﬂ%ﬂJG(z — 1) where, G(0) = 1 by conven-

tion.

Proof:
By induction

Casen=1
This case reduces to claiming

6 = -]

Which says that the most number of intervals of length v, generated by par-
‘titions generated by sequences using GA is [_ -]. This is being true, since
such a maximum is reached by X, 1 EY

Casen=%k+1

Define G(I,n) be the number of intervals of length [generated in the partition
generated by z,. Note that in general, G((k) is reached by Xg(x), for all £.
Let the partition generated by Xgi) be P(k). P(k) contains intervals of
different lengths. Those lengths are of the form {e(s,k+1—)]s = 1..k + 1}
thusthere are £ + 1 intervals of different lengths in P(k). In P(k) the biggest
interval is of length e(k 4+ 1,0) = 4%, in P(k + 1) al the intervals of P(k) got
partitioned so as to make ;41 the biggest interval, in the process of going
from P(k) to P(k 4 1), each of the k + 1 different intervals of P(k) will have
to get partitioned with the vxi1’s,after this is done, we get P(k + 1), and
in this new partition there will be k£ + 2 intervals,namely intervals of length
{e(z,k +2 —)]t = 1.k + 2}. Thus we can caculate the total number of
intervals of length 7.1 generated in P(k+1):

Glk+1) = %Le(z k+1-—)

However, G(e(i,k + 1 — z),S(k)) = G(z—1), for i = k£ + 1 is obvi-
ous (use inductive hypothesis) , for the other possible ¢ values, use the fact
G(e(i, M),55(M)) = G(e(i, M —1),SS(M — 1)), where SS(M) is the value
of N that maximizes G(e(z, M), N). Thus , the formula follows for k + 1

——=|G(e(s, k+ 1 —1),S(k))

O

99

G(n) is a measure of frequency of the biggest spacing between points
in Xgsy). The last theorem, tells us that the behavior of G(n), to be at
least exponential, at most super exponential. We hoped that may be this
exponential behavior might allow |S(n) — G(n)| < K, for some K, and all
n > N,

If [S(n) — G(n)| < K, for some K and all n > N,, we can assure that
most of the points in Xs(,) will be taken up by the set of points W generating
the intervals of length ~,, such a set W has low discrepancy (it somewhat
looks like a set of evenly spaced poins), the remaining points, there can only
be at most K of them, a finite number, which could increase the discrepancy
slightly, but by making n big enough, such an increase could be still pull down
(we hope), and eventually be made as small as we could. This reasoning lead
us to believe conjecture 3.2.

100 -

Chapter 4

Quasi-Monte Carlo Integration

Monte Carlo integration is a method of calculating integrals using random
points. In quasi-Monte Carlo integration, instead of trying to use random
points, deterministic points are used. It turns out uniformly distributed
points work best for quasi-Monte Carlo integration [3]. Let I°* = [0,1)°.
Then the quasi-Monte Carlo approximation is as follows:

1
[, F6)de ~ S £(x0).

In R™, the approximation of most integrals involves n cross products.
The quasi-Monte Carlo approximation, however, requires no cross products
and ends up being a much simplier calculation. This is an advantage of
quasi-Monte Carlo approximations. The preciseness of the approximation is
determined by the discrepancy of the sequence, as shown by the theorem

below.

Theorem 4.1 If f is a function of bounded variation V(f) on [0,1) and
{z1,23,..., 2N} is a sequence on [0,1) with discrepancy D}, then

’/, f(t)dt — ji,—zflllf(xn) < V(f)Dy

The proof can be found in Niederreiter [3]. This shows that the uniform
distribution of the sequence determines the accuracy of the approximation.
Thus, finding low discrepancy sequences has applications in quasi-Monte
Carlo integration.

101

Appendix A

[/ = >Main Program of the project<{--—------=-=—coeeee__ |
// other programs were built but this one is the most general one f
// all the other programs were put into REU96CPP.BOB.tar.gz located at
// /amaterasu/sd2e/reu96/salazc/

// vhich is a gziped tar file containing all the programs of the

// project
i ;
// Program confracl.l.cc

// usage: confracl.l <filename>

// <filename> is the name of a file that contains

// as first number the size of Gamma vector

// second number Maximun number of points on the sequence to be
// ' generated, the rest of the numbers are numbers of the Gamma
// vector '

// function: Calculates discrepancies of sequences generated using the
// Generalized Algorithm given the Gamma_n’s, the biggest

// sequence generated is of size Maximun number of points

// given in the input file

// The program generates a double linked list in a foward fashion
// the main element of the list is a struct num, which contains two
// self referencial pointers and a double

// The linked list are generated by the class Array, and all
// the functions transforming the double linked list are elements
// of the class Array. ‘

#include <iostream.h>
#include <fstream.h>
#include "confraci.1.h"
#include "discrep.h"
#include "sort.h"

void main(int argc,char* argv[])
{
ifstream in(argv[i]);
int MAX_PTS,SIZE,SIZE_SEQUENCE,i;

102

double* GAMMA;
double* SEQUENCE;
double* Discrep;
double* temp;

GAMMA=load (in,SIZE,MAX_PTS);
array a;

SEQUENCE=a.confrac (GAMMA,SIZE,MAX_PTS);
SIZE_SEQUENCE=a.len();

Discrep=new double[MAX_PTS];

for(i=0;i<MAX_PTS;i++)
{
temp=a.toarray(2,0,i+1);
gsort(temp,0,1i);
Discrepli]=discrepancy(temp,i+1);

ks

ofstream seq("confracseq.txt");
ofstream disc("confracdiscrep.txt");

for(i=0;i<SIZE_SEQUENCE;i++)
seq<<SEQUENCE[i]<<"\n";

for(i=0;i<MAX_PTS;i++)
disc<<Discrep[i]<<"\n";

¥

[Askokakok stk kot ok skskokok sk ksk ok sksk sk sk sk ok sk sk sk sk sk sk ok ek sk sk sk sk sk ok skok sk ok ok ok sk ok Kok Kok ok ok ok sk ok sk sk sk sk ok ok
sekeskookskskokckolkokiokkk confracl .l .h dskskskskskskoksokok sk skokskokok ok skokkok ok ko ok sk ok stk ok sk ok
sokokskkokkkokkkkkkkk header File skokskskskskskskskskskskskokkok sk sk ok ok ok ok ok sk ok s okokoko skokok ok
st sk ok e oo s ke ok koo sk sk ook sk ke oo o e sk ok o e ok sk sk sk ok ok ke sk s sk sk ok sk o ok sk sk ok ok oK ok sk ok o sk sk ok sk s ok sk sk ok

#include <fstream.h>

103

// Base structure of the list
struct num{
double val;
num* next;
num* o_next;
num(){val=0.0;next=(num *)NULL;o_next=(num *)NULL;}
“num(){delete &val;delete next;delete o_next;}

};

// Structure that manipulates the list
struct array{

int length;

int freq;

num* base;

num* ptr;

num* lastptr;

array();

// “array(Q);
double* toarray(int a,int start,int end);

int len(){return (length-1);}

int how_many (num* current,double GAMMA);

num* add(num* current,double GAMMA) ;

double* confrac(double* GAMMA,int GAMMA_SIZE,int MAX_PTS,int format);

};

array::array()

{
length=2;
freq=0;
base=new num;
base->val=0.0;
base->o_next=new num;
base->o_next->val=1.0;
ptr=base; // not sure yet
lastptr=base;

104

}

/*

array: :~array()

{
delete base;
delete ptr;
delete lastptr;
delete &freq;
delete &length;

X

*/

// prints out elements of the list to an array,
// example: if the list has N elements
// toarray(1,3,N-5)

// will print out elments 3..N-5 to array in format 1

// the first input is the format,

// format=1 prints out in magnitudinal order

// format=2 prints out in sequential order (order in which the

// point was-added)

double* array::toarray(int a,int start=0,int end=-1)
{
if (end==-1)
end=len();

double* out;
num* temp;
int i;
temp=base;
out=new double[end-start];
if (a==2)
{

for(i=0;i<start;i++)
temp=temp->next;

105

for(i=start;i<end;i++)
{
out [i-start]=temp->val;
temp=temp->next;
}
}
else if (a==1)
{
for(i=0;i<start;i++)
temp=temp->o_next;

for(i=start;i<end;i++)
{
out [i-start]=temp->val;
temp=temp->o_next;
}
}

return out;

}
double abs(double x)

{ |
return ((x >= 0.0)? x: -x); L

}

// This function decides whether to add point to list or not
int array::how_many(num* current,double GAMMA)
{
if (current==(num*)NULL)
return (-1);
if ((((current->o_next->val)-(current->val)) - abs(GAMMA))<= 0. OOOOOOOO'
// WATCH OUT THIS STATEMENT IS MADE SO THAT THE ROUND OFF ERROR WONT KILL .
return (-3);
else
return (1);

106

// This functions adds one point to the list properly
num* array::add(num* current,double GAMMA)

{

num* temp;

temp=current;

double x;

if (GAMMA >= 0.0)
x=temp->val;

else
x=temp->o_next->val;

x+=GAMMA ;

// cout<<"\n adding "<<x<<"\n";
ptr=current->o_next;
current=current->next;
temp->o_next=new num;
temp->o_next->val=x;

temp->o_next->o_next=ptr;

lastptr->next=temp->o_next;
lastptr=temp->o_next;

freq=1;
length++;

/* if ((current->val) == 1.0)

107

current=(num *)NULL;

int i;
double* outi;
outl=toarray(2);

cout<<"\n";
for(i=0;i<len() ;i++)
cout<<out1[i]<<'"\n";
*/
return current;

}

// Adds points to the list in recursive fashion g
double* array::confrac(doublex GAMMA,int GAMMA_SIZE,int MAX_PTS,int format=2)§
{

num* current=base;

num* lastl=lastptr;

int h,i,j;
// double* outi;

for(i=0; ((i<GAMMA_SIZE)&&(len() < MAX_PTS));i++) |
{ L
do :
{
freq=0;
current=base;

do
{
h=how_many(current,GAMMA[i]);
/* cout<<"\n h values was: "<<h;
cout<<" current= "<<current->val<<"\n";
*/
if((h==-1) | | (h==-2))

108

current=(num*)NULL;
else if (h==-3)
current=current->next;
else
current=add(current,GAMMA[i]);
}while((current)&&(len()<MAX_PTS));

// if (i!'=0)// this could be erased if doubt of efficiency
// freq=0;
/*

outl=toarray(1);
cout<<"\n here is the sequence after finishing a cycle";
cout<<" Gamma was: "<<GAMMA[i]<<"\n";
for(j=0;j<len();j++)
cout<<outi[jl<<"\n";
*/
Jwhile(freq!=0);

}

return toarray(format);

¥

// Loads the Gamma vector
double* load(ifstream& in,int& SIZE,int& MAX_PTS)
{

in>> SIZE;

in>>MAX_PTS;

double* out=new double[SIZE];

for(int i=0;i<SIZE;i++)

in>>out[i];
return out;

109

Bibliography

[1] L. Kuipers and H. Niederreiter. Uniform distribution of sequences. Wiley,
New York, 1974.

[2] W. J. Morokoff and R. E. Caflisch. Quasi-monte carlo integration. Journal
of Computational Physics, 122:218-230, 1995.

[3] H. Niederreiter. Quasi-monte carlo methods and pseudo-random num-
bers. Bulletin of the American Mathematical Society, 84(6):957— 1041,
1978.

[4] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo
Methods. Society for Industrial and Applied Mathematics, 1992.

[5] H. S. Wall. Continued Fractions. D. Van Nostrand Company, Inc.,"1948.

110

