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Abstract

In this paper we examine the conjugacy classes of once and twice

transverse self intersecting loops on the twice punctured torus. We

obtain a complete list of all classes in a systematic method which

utilizes Euler characteristics. We then use Whitehead's algorithm and

topological arguments to assure distinctness.
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1 Introduction

Much work has been done recently with classifying loops on tori [1], [5], [6],
[7]. These papers have looked at loops with between 1 and 3 self intersections
on the one and two holed tori with one puncture. They have also examined
loops on the n holed torus with one puncture. However, none of them have
explored loops on the twice punctured torus. That is what we will examine
in this paper.

The once punctured torus is shown in Figure 1.
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Figure 1: Once punctured torus

It can be formed by Figure 2 where a and b are called generators.
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Figure 2: Once punctured torus cut along a and b and 
attened to form a
rectangle
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We wrap the rectangle around into a cylinder so that the b's are together
as shown in Figure 3.
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Figure 3: Once punctured torus cut along a to form a cylinder

Then we wrap the cylinder around so that the a's meet as in Figure 1.
Any closed curve, called a loop, on this torus can be represented by a "word"
which is a combination of the letters a, �a, b, and �b.

The twice punctured torus is similar, but requires a third generator to
distinguish between loops surrounding one puncture from loops surrounding
both punctures. Thus we take Figure 4 and create our twice punctured torus
shown in Figure 5.
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Figure 4: Twice punctured torus cut along a and b and 
attened to form a
rectangle
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Figure 5: Twice punctured torus

We can also cut along a and lay the torus out like a disc to obtain Figure
6. This often aids in visualization.
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Figure 6: Twice punctured torus cut along b and 
attened to form a disk

(Note: Due to the symmetry seen in Figure 4 it is unnecessary to distin-
guish between the two punctures.)

Past papers such as [1], [4], [5], [6], [7] have classi�ed loops on once
punctured 1 - n holed tori. These classi�cations have certain applications to
number theory. In this paper we wish to classify once and twice non-trivial
self intersecting loops on the twice punctured torus. The applications of these
classi�cations are not readily apparent at this time. Never-the-less, they are
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classi�cations worth examining for possible future applications as well as for
mathematical completeness.

2 Simple Loops

Before exploring the classi�cation of loops with one and two non-trivial self
intersections on the twice punctured torus, we will �rst look at the classi�-
cation of simple (non-self intersecting) loops on this torus.

The cunjugacy class of a simple loop l on the twice punctured torus with
set generators a, b, and c as in Figures 4, 5, and 6 is either:

(a) l bounds a disk and is equivalent to the identity
(b) l bounds a once punctured disk and is equivalent to the word abc

(c) l bounds a twice punctured disk and is equivalent to the word ab�a�b
(d) l is a non separating curve and is equivalent to a
(Note: �a is the inverse of a, and similarly for �b and �c. Further, equivalent

here and throughout the paper means that there is a homeomorphism or
permutation which takes one loop to the other.)

This classi�cation of simple loops is helpful because of the following
lemma:

Lemma 1: Every loop with k self intersections is the composition of k+1
simple loops.[4]

3 The classi�cation of loops with a single

non-trivial self intersection on the twice

punctured torus

After applying Lemma 1 our goal becomes to classify both the compositions
of 2 simple loops and 3 simple loops on the twice punctured torus. However,
if we were to start composing 2 and 3 simple loops on the torus, we would
surely miss one or more possibilities. Thus we must use a systematic method
to insure that we obtain all such possible loops. The method we shall use
involves Euler characteristics. As the classi�cation of once self intersecting
loops is less complicated than twice self intersecting loops, we will start with
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it and later apply many of the same basic principles to the more complicated
twice intersecting loop classi�cation.

As stated earlier, we cannot begin by simply listing all the combinations
of compositions of 2 simple loops on our torus for fear of missing some of the
possibilities. Instead, let us assume that we already have an entire list of all
possible single self intersecting loops on the torus. Now it only remains for
us to discover what is on that list.

Obviously, on the torus in the neighborhood of the single intersection
point we have something of the form shown in Figure 7.

Figure 7: The torus in the neighborhood of the single intersection point

If we allow a and a0 to denote initial and �nal segments of a simple
loop (and similarly for b and b0), we obtain the three possible con�gurations
depicted in Figure 8.
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b
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       Graph  1 Graph 2    Graph  3

Figure 8: The three possible con�gurations for loop l with a single self inter-
section point
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Graphs 2 and 3 can be deformed in such a manner that the intersection
is actually trivial. Thus, if graphs 2 and 3 were placed on our torus, the
result may be a simple loop rather than a loop with exactly one transverse
self intersection. As we are souly interested in loops with a single transverse
intersection, we will only consider graph number 1 which we will call a base
point graph. Our base point graph can be completed in the manner depicted
in Figure 9.

Figure 9: The possible base point graph con�guration

Thus, our base point graph is somehow situated on the twice punctured
torus. However, we still do not have a list of all such possible situations. In
order to obtain such a list, we must cut the torus along our base point graph.
This will result in three curves or boundaries which are depicted in Figure
10.

curve 1

curve 2 curve 1-2

Figure 10: The curves which result after cutting along the base point graph

We now have curve 1, curve 2, and curve 1-2 (the curve encompassing
curve 1 and curve 2). Originally, the twice punctured torus had an Euler
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characteristic of 0. By cutting along the base point graph, we have added an
extra vertex. Thus, the Euler characteristic goes up by 1. Furthermore, the
torus has been separated into three regions with the three curves as boundary
components. However, we do not want to have any boundary components,
so it is necessary to "cap o�" the three regions by attaching a disk to each
boundary component. However, each disk that we attach adds 1 more to the
Euler characteristic. Thus, the Euler characteristic is now 0 + 1(for the 1
new vertices) + 3(for the 3 disks we attached). This creates a total Euler
characteristic of 4. So, where we once had a twice punctured torus, we now
have some number of surfaces with a total Euler characteristic of 4.

Since the Euler characteristic must total 4, we know that we must have
at least 2 spheres (the Euler characteristic of a sphere is 2). Thus we have
2 spheres and some number of tori. However, we only have three capped o�
regions, so we can only have a total of three surfaces. Thus, after cutting
along the base point graph and capping o� the regions, we have either two
spheres or two spheres and a torus.

On these surfaces are our three curves and two punctures from the original
torus. Each surface contains at least one curve (otherwise it would not have
been separated into a new surface when we cut along our base point graph).
Furthermore, curve 1 cannot be alone on a sphere. If it were, then it could
be deformed into a single point in which case our original base point graph
would not have had a transverse intersection. Similarly, curve 2 cannot be
alone on a sphere. Curve 1-2 does not share this problem as it contains the
transverse intersection.

Keeping this in mind, it is now a simple matter to list all of the ways in
which the three curves and two punctures can be placed on our two or three
surfaces. Table 1 is a complete list of possibilities where 1 denotes curve 1, 2
denotes curve 2, 1-2 denotes curve 1-2, and x denotes a puncture. The curve
or puncture is listed under the surface containing it, and each row depicts a
single possible arrangement. (Note that curve 1 and curve 2 are symmetric
and thus need not be di�erentiated.)
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Table 1

Sphere Sphere Torus

1 1, 1-2, X 2, X |
2 1-2, 1 2, X, X |
3 1-2, X 1, 2, X |
4 1-2, X, X 1, 2 |
5 1-2 1, 2, X, X |
6 1-2 1, X 2, X
7 1-2 1, X, X 2
8 1-2, X 1, X 2
9 1, X 2, X 1-2

The manner in which this table was formulated, assures us that we have
a complete list of all possible con�gurations. It now remains for us to attach
the curves so as to reform our uncut base point graph on the torus. By doing
so we will obtain a complete list of possible pictures of tori containing single
self intersecting loops. From these pictures we can discover the corresponding
words as well. By gluing back together each of our cut base point graphs in
Table 1 we obtain the corresponding words and pictures shown in Figure 11.
(Note: the tori have been displayed in the manner of Figure 6 with dashed
lines representing the loops.)
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Figure 11: The pieces from Table 1 glued back into tori along with the word
representations
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Now that we have a complete list of possible loops with one non-trivial
self intersection on the twice punctured torus, we must check for duplications.
We will start by using Whitehead's algorithm. We can use a program created
by Michael Lau to determine the minimal length of each word. If two words
have di�erent minimal length, then they are necessarily distinct. If they do
not, then a di�erent argument must be used to determine distinctness.[2], [3]

Lau's program gave the following results shown in Table 2. It displays the
original and minimal length words corresponding to single self intersecting
loops on the twice punctured torus.

Table 2

Original Word Minimal Word Length of Minimal Word

1 aab�c c 1
2 aab �ab aab �ab 5
3 ac�b c 1
4 abab bb 2
5 aa aa 2
6 ab �abc �ab c 1
7 ab �abab �ab ab �abab �ab 8
8 c �abc �ab c 1
9 c �abac�b c �abac�b 6

We see that words 1, 3, 6, and 8 share a minimal length of 1 and words
4 and 5 share a minimal length of 2. According to Whitehead's theorem,
the words of di�erent minimal length are necessarily distinct. So now the
only loops we need to check for distinctness are loops 1, 3, 6 and 8; and
loops 4 and 5. (Note that we do know that loop 1 is distinct from loop 4
and etc. because they are of di�erent minimal length.) We will test these for
distinctness by replacing one of the punctures, thereby transforming our torus
into a once punctured torus. If the resulting loops are distinct on the once
punctured torus, then they are necessarily distinct on the twice punctured
torus. (Note that due to possible transformations of the torus, it is necessary
to verify that the loops formed by replacing one of the punctures are distinct
regardless of which puncture is replaced.) After following this method for all
relevant loops, we �nd that loops 1, 3, 6, and 8 are all distinct, but loop 4 is
equivalent to loop 5.
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The results are that this topological argument works for all but loops 4
and 5. These loops still need to be distinguished from each other. Some
other type of argument must be found to show that this pair of loops is
or is not distinct. Thus, after discarding all of the known duplications and
assuming that the loops mentioned above are not distinct (by assuming that
they are equivalent we are looking at a worst-case scenario) we �nd the
conjugacy class, depicted in Figure 12, of single self intersecting loops on the
twice punctured torus with set generators a, b, and c. (Note: some of the
pictures represent more than one case. For example, the two X1's represent
one possible position for the punctures and the two X2's represent a di�erent
possible location for the punctures and therefore, a di�erent class.)
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Figure 12: The conjugacy classes for loops with one transverse self intersec-
tion on the twice punctured torus
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4 The classi�cation of loops with two non-

trivial self intersections on the twice punc-

tured torus

Although the two self intersection case is slightly more complicated than the
one; the method of classifying loops with two self intersections on the twice
punctured torus is similar to that used for loops with one self intersection.
As in the one self intersection case, we will start by assuming that we have
an entire list of all possible twice self intersecting loops on the torus. Now we
must discover what is on that list. In the neighborhood of the two intersection
points, we have something on our torus which takes the form shown in Figure
13.

Figure 13: The torus in the neighborhood of the two intersection points

In 1996 Gould, Steiner, and Steinho� listed all of the possible ways to
attach the six segments shown in Figure 13. They discarded all duplica-
tions due to symmetry and all cases not resulting in exactly two transverse
intersections, and they found that only three possibilities remained. These
possibilities are shown in Figure 14.[7]
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Graph  2 Graph  3Graph  1

Figure 14: The three possible con�gurations for the loop l with two self
intersection points

Thus our classi�cation list consists of twice punctured tori each of which
have either graph 1, graph 2, or graph 3 wrapped around it in some manner.
Again, we must cut the torus along the graph in order to obtain a complete
list of all the possible ways in which this can be done. Let us �rst cut apart
the tori containing graph 1. When we cut along graph 1 the four curves
depicted in Figure 15 will result.

curve 1-2-3-4

curve 2curve 1

curve 3-4

Figure 15: The four curves which result when we cut along Graph 1

We now have curve 1, curve 2, curve 3-4, and curve 1-2-3-4 (the curve
encompassing curve 1, curve 2, and curve 3-4). Although we now have four
curves as opposed to three, the following argument is very similar to the one
used in the one self intersection case. Originally, the twice punctured torus
had an Euler characteristic of 0. By cutting along graph 1, we have added two
more vertices. Thus, the Euler characteristic goes up by 2. Furthermore, the
torus has been separated into four regions with the four curves as boundary
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components. However, we do not want to have any boundary components,
so it is necessary to "cap o�" the four regions by attaching a disk to each
boundary component. However, each disk that we attach adds 1 more to the
Euler characteristic. Thus, the Euler characteristic is now 0 + 2(for the 2
new vertices) + 4(for the 4 disks we attached). This creates a total Euler
characteristic of 6. So, where we once had a twice punctured torus, we now
have some number of surfaces with a total Euler characteristic of 6.

Since the Euler characteristic must total 6, we know that we must have
at least 3 spheres (the Euler characteristic of a sphere is 2). Thus we have
3 spheres and some number of tori. However, we only have four capped o�
regions; so we can only have a total of four surfaces. Thus, after cutting
along graph 1 and capping o� the regions, we have either three spheres or
three spheres and a torus. On these three or four surfaces lie curve 1, curve
2, curve 3-4, curve 1-2-3-4, and the two punctures from the original twice
punctured torus. As in the one self intersection case, each surface contains
at least one curve and curve 1 cannot be alone on a sphere. Curve 1 and curve
2 are fundamentally the same as they are symmetric, thus curve 2 cannot be
alone on a sphere and curves 1 and 2 need not be di�erentiated. For similar
reasons to those discussed in the one intersection case, curve 3-4 cannot be
alone on a sphere either but curve 1-2-3-4 does not share this restriction.

With these restrictions in mind, it is now a simple matter to list all of the
possible ways in which the four curves and 2 punctures can be placed on our
three or four surfaces. Table 3 is a complete list of these possibilities and it
follows the same conventions used in Table 1.
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Table 3

Sphere Sphere Sphere Torus Corresponding picture

from �gures 18 and 19

1 1, X 2, X 3-4, 1-2-3-4 | 14
2 1, X, X 2, 3-4 1-2-3-4 | 5
3 1, X 3-4, X 1-2-3-4, X | 27
4 1, 2 3-4, X 1-2-3-4, X | 2
5 1, X 2, 3-4 1-2-3-4, X | 6
6 1, 2, X 3-4, X 1-2-3-4 | 3
7 1, X 3-4, X 1-2-3-4 2 28
8 1, X 2, X 1-2-3-4 3-4 8
9 1, 2 3-4, X, X 1-2-3-4 | 4
10 1, X 2, 3-4, X 1-2-3-4 | 7

Now we must go through a similar process for graph 2. When we cut
along graph 2 the four curves depicted in Figure 16 will result.

curve 3-4
curve 2

curve 1
curve 1-2-3-4

Figure 16: The four curves which result when we cut along Graph 2

The curves, regions, and surfaces thus formed are the same as those
formed by cutting along graph 1. The only di�erence is that in this case,
curve 3-4 encompasses one of the intersection points, and thus it can be alone
on a sphere since it cannot be deformed to a single point. With this in mind,
it is again a simple matter to list all of the ways in which the four curves and
2 punctures can be placed on our three or four surfaces. Table 4 lists these
possibilities in the same manner as Table 3.
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Table 4

Sphere Sphere Sphere Torus Corresponding picture

from �gures 18 and 19

1 1, 2, X, X 3-4 1-2-3-4 | 21
2 1, 2, X 3-4, X 1-2-3-4 | 25
3 1, 2 3-4, X, X 1-2-3-4 | 23
4 1, X 2, 3-4, X 1-2-3-4 | 13
5 1, X, X 2, 3-4 1-2-3-4 | 11
6 1, 2, X 3-4 1-2-3-4, X | 24
7 1, 2 3-4, X 1-2-3-4, X | 26
8 1, X 2, 3-4 1-2-3-4, X | 12
9 1, X, X 3-4 1-2-3-4, 2 | 10
10 1, X 3-4, X 1-2-3-4, 2 | 9
11 1, 2 3-4 1-2-3-4, X, X | 22
12 1, X 3-4 1-2-3-4, 2, X | 29
13 1, X, X 3-4 1-2-3-4 2 15
14 1, X 3-4, X 1-2-3-4 2 18
15 1, X 2, X 1-2-3-4 3-4 30
16 1, X 3-4 1-2-3-4 2, X 17
17 1, X 3-4 1-2-3-4, X 2 16
18 1, X 2, X 3-4 1-2-3-4 1
19 1, X 2, X 1-2-3-4, 3-4 | 31

Again, the process for graph 3 is similar, however; cutting along graph
three results in only 2 curves rather than four. These are shown in Figure
17.
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curve 1

curve 2

Figure 17: The two curves which result when we cut along Graph 3

Again, this adds two more vertices and thus adds 2 to the Euler Char-
acteristic. It also separates the torus into 2 regions which, when capped
o�, add another 2 to the Euler characteristic. Thus we have a total Euler
characteristic of 4. This means that we must now have at least 2 spheres.
However, as we only have 2 capped o� regions, we can only have a maximum
of 2 surfaces. Thus we know that cutting along graph 3 and capping o� the
regions results in 2 spheres upon which are the 2 curves and 2 punctures.
Again, curve 1 cannot be alone on a sphere as it would then be possible to
deform it into a single point and thus lose one of the intersection points. We
can now make another table, Table 5, similar to Tables 3 and 4 which shows
the possible ways of placing the 2 curves and 2 punctures on the 2 spheres.

Table 5

Sphere Sphere Torus Corresponding picture

from �gures 18 and 19

1 1, X, X 2 | 20
2 1, X 2, X | 19

The manner in which Tables 3, 4, and 5 were created assures us that we
have a complete list of all possible con�gurations of twice self intersecting
curves on the twice punctured torus. However, in order to get the list in
the desired form, it is necessary to once again attach the curves to reform
our uncut graphs on the torus. We thus obtain a complete list of possible
pictures of tori containing twice self intersecting loops. From these pictures
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we can obtain the corresponding words. These pictures and words are shown
in Figures 18 and 19. (Note: the tori have been displayed in the manner of
Figure 6 with dashed lines representing the loops.)

Now that we have a complete list of possible loops with two transverse self
intersections on the twice punctured torus, we must check for duplications.
We will do this in exactly the same manner in which we did the one self
intersection case. First we use Lau's program to �nd the minimal words
which correspond to each loop. Lau's program o�ers the minimum words
found in Table 6.

20



b

c

a

X

X

b

c

a

X

X

b

c

a

X

X

b

c

a

X

X

b

c

a

X

X

b

c

a

X

X

b

c

a

X

X

b

c

a

X

X

b

c

a

X

X

b

c

a

X

X

b

c

a

X

X

b

c

a

X

X

b

c

a

X

X

b

c

a

X

X

b

c

a

X

X

b

c

a

X

X

aabaababcbcaabacacabcabacb

abababab ababcab abacacab ababcababc

abababca aabababab aababa aabacabc

aaabc acababc abababababab abcabcabc

1 2 3 4

85 6 7

9 10

13 14 15 16

11 12

Figure 18: The pieces from Table 1 glued back into tori along with the word
representations
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Figure 19: The pieces from Table 1 glued back into tori along with the word
representations (continued)
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Table 6

Original Word Minimal Word Length of Minimal Word

1 c �abc �abac�b cc�acba�b 7
2 ab�cb�ca a �cca 4
3 ab �aca �c 1
4 aab �aab aab �aab 6
5 aba�bab �ab aba�bab �ab 8
6 aba�bc �ab c 1
7 aba�cac �ab a�cac 4
8 ab �abc �abab�c ab �abc �abab�c 10
9 ab �abab�ca �c 1
10 aab �abab �ab aab �abab �ab 9
11 aab �aba aab �aba 6
12 aaba�cab�c aba�cb�c 6
13 aaab�c a 1
14 ac �abab�c ac �abab�c 7
15 ab �abab �abab �ab ab �abab �abab �ab 12
16 ab�cab�cab�c �ccc 3
17 ab �abab�cab�c b �aba �cc 6
18 ab �abab �abab�c �c 1
19 ba�bab�cb c 1
20 ba�bab�a ba�bab 5
21 aaa aaa 3
22 abaa�b abaa�b 5
23 aaba�b aaba�b 5
24 ac�bc�b a 1
25 aac�b c 1
26 aca�b c 1
27 ac �abac�b ac �abac�b 7
28 ab �abab�cba�c ab �abab�cba�c 10
29 ab�cab�ca a 1
30 c �abc �abac�b cc�acba�b 7
31 c�bc �ab �a 1

Next we use the topological method of replacing punctures to determine
if loops with the same minimal length are distinct. The results are that this
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topological argument works for all but the following loops. Loops 24 and 25,
loops 1 and 30, loops 23 and 22, loops 6 and 13, loops 8 and 28, loops 14 and
27, and loops 11 and 12 still need to be distinguished from each other. Some
other type of argument must be found to show that these 7 pairs of loops are
or are not distinct. Thus, after discarding all of the known duplications and
assuming that the loops mentioned above are not distinct (by assuming that
each pair is equivalent we are looking at a worst-case scenario) we �nd the
conjugacy class depicted in Figure 20, of twice self intersecting loops on the
twice punctured torus with set generators a, b, and c. (Note: some of the
pictures represent more than one case. For example, the two X1's represent
one possible position for the punctures and the two X2's represent a di�erent
possible location for the punctures and therefore, a di�erent class.)

24



XX

X  : abababcbac

X

X 1

2
X 2

X 1

X

X X

X

X

X

X

X

1 1

2

2

3

3

4

4

X  : bababcb

X  : bababa

X  : aaa
X  : aacb

X  : aabab
X  : acab

1

2

1

2

3

4

X  : aabacabc

X

X
X

X

X

X X

X 1

2

1

32

3

X

X
X

X X

1
1

3

2

2

X 3

X

X

X
X

X X

X X3 3

2 2

1

1 X
X X X

X

X

X
X

X
X X

X

1
1

2

2

3

3

44

X  : abaca
X  : abcbca
X  : aabaab

X  : abababab
X  : ababcab
X  : abacacab

X  : ababcababc
2

3

11

2

3

X  : cabcabacb

X  : abababababab

X  : abcabcabc
X  : abababcabc
X  : abababababc

X  : acababcX  : abcabca

X  : abababca

X  : aabababab

1

2

3

1

2

3

4

Figure 20: The conjugacy class for loops with two self intersections on the
twice punctured torus

5 Conclusion

Thus we have basically succeeded in classifying loops with one and two trans-
verse self intersections on the twice punctured torus. However, we still must
go back and determine whether or not the loops left in question are or are not
distinct. It also remains to be determined what, if any, are the applications
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of this classi�cation. We could continue the project by classifying loops with
three self intersections on the twice punctured torus as well as classifying
loops on twice punctured tori of higher genus. It would be interesting to
note the relationship, if any, of these classi�cations with those of the once
punctured torus.
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