
Low Discrepancy Sequences

and Quasi-Monte Carlo Integration

Erin Scott
SUNY Fredonia

Fredonia, NY

scot6856@ginko.ait.fredonia.edu

Dennis Simmons
University of California, Davis

Davis, CA

dgsimmons@ucdavis.edu

Ian Winokur
College of Mount Saint Vincent

Riverdale, NY

iwinokur@cmsv.edu

Faculty Advisors

Prof. Robert Burton and Prof. Thomas Schmidt

REU Program

Oregon State University

August 15, 1997

Chapter 1

Quasi-Monte Carlo
Integration: A Good Gamble

1.1 Numerical Approximation of Integrals

Every polynomial can be integrated exactly on any interval [a, b] where a
and b are real. Unfortunately, there is more to life than polynomials. In fact,
most functions cannot be integrated exactly. This is the reason numerical
approximation methods are necessary.

Riemann Sums, the Trapezoidal Rule, and Simpson’s Rule are several ap-
proximation methods. These methods usually give adequate approximations
and they are very practical in lower dimensions.

However, each increase in dimension results in an exponential growth of
the number of points that must be evaluated to attain any given degree of
accuracy (such points will be referred to as ‘nodes’) [5] . (Note: The term
“function call” is used to indicate each time a node is evaluated on some
function.) This occurrence has been dubbed the “curse of dimensionality”
[5]. Since function calls are very costly in terms of computer time, this
“curse” can be quite troublesome.

1.2 Monte Carlo Integration

In the late 1940s, Monte Carlo Integration was developed as a method to
foil the “curse of dimensionality.” (References on the history of Monte Carlo

1

Integration can be found in [5].) The main benefit of Monte Carlo Inte-
gration is due to the fact that each node being used in the approximation
method requires only one function call, regardless of dimension. Monte Carlo
Integration represents a significant step toward improving the efficiency of
approximating the integral of a function in higher dimensions.

We will now discuss two different Monte Carlo Methods. The first hinges
on the fact that

∫ b
a f(x) dx gives us the area under f and between a and b.

We will first give a simplified analogy of this Monte Carlo technique before
we relate it to functions. This analogy was discussed in [4].

Let us suppose we want to calculate the area of a pond which is enclosed
inside a polygon of known area, poly (see fig 1-1).

pond

Area = poly

Figure 1-1

Let us then“randomly” toss n pebbles into the polygon (see figure 1-2).
(Note: The word ‘randomly’ is in quotation marks because I am using a very
loose definition of the word because generating truly random numbers on a
computer is nearly impossible. I will omit the quotation marks from now on
but this caveat remains in effect for the duration of the paper.)

Figure 1-2

2

Let s be the number of pebbles that land in the pond (the letter ‘s’ is
chosen to represent the word “splash”). Intuitively, it is clear that the area
of the pond is approximately equal to the area of the polygon (namely, poly)
multiplied by the fraction of pebbles that land in the pond (namely, s/n).
Therefore,

Area of the pond ≈ poly · (s/m).

Let us now extend this concept to functions. Assume we want to integrate
some function, f , on the interval [a, b]. Also, let h be some upper bound of
f on [a, b].

f(x)

a b

h

 Figure 1-3

We again randomly toss pebbles, this time making sure that the pebbles
land in the rectangle formed by joining the points (a, 0), (b, 0), (b, h), (a, h)
(see figure 1-3). Let n be the number of pebbles tossed and let s denote
the number of “splashes.” We increment the number of splashes each time
a pebble lands under the curve. This translates into the following line of
pseudocode: if f(xi) ≥ yi, then s = s + 1 where (xi, yi) are the coordinates
of the ith pebble tossed where 1 ≤ i ≤ n. The area under f can now be ap-
proximated in the same manner that the area of the pond was approximated.
Thus,

∫ b

a
f(x) dx ≈ h(b − a)(s/n) .

3

Of course, tossing in three pebbles (or any other ridiculously small number
of pebbles) is not likely to give a good approximation. A significant number
of pebbles usually needs to be used to attain an acceptable level of accuracy.
This will be discussed more concretely in the section on error bounds.

In order to actually see how accurate this method is, we wrote a program
(called mc1.c) that can be found in the ‘programs’ section of this paper.

Another Monte Carlo Integration method uses the following definition:

Definition 1.1 The average value of a function, f , on the interval [a, b] is

defined to be:

1

b − a

∫ b

a
f(x) dx.

Our strategy here is to come up with an intuitive definition for the average
value of f , and then equate this intuitive notion with the actual definition.
What we are going to do is randomly select n nodes that all lie in [a, b]. We
will call each node xi where 1 ≤ i ≤ n. To find an approximation of the
average value of f , we will evaluate each xi, sum up these f(xi), and then
divide by n. Therefore, the average value of f on [a, b] is approximated by:

f(x1) + f(x2) + ... + f(xn)

n
=

1

n

n
∑

i=1

f(xi).

Equating this with the actual definition yields:

1

b − a

∫ b

a
f(x) dx ≈ 1

n

n
∑

i=1

f(xi).

We now multiply both sides by (b − a) to obtain a second Monte Carlo
Approximation Method:

∫ b

a
f(x) dx ≈ b − a

n

n
∑

i=1

f(xi) .

This method is utilized in the program mc2.c and can also be found in
the ‘programs’ section. The following charts give the results of mc1.c and

4

function a b n area mc1 error mc2 error
f(x) = x 0 1 20 0.50 0.450 10.0 0.485 2.92

50 0.560 12.0 0.459 8.21
100 0.560 12.0 0.484 3.25

1000 0.499 0.20 0.491 1.81
10000 0.500 0.18 0.506 1.11

f(x) = x3+2x-3 2 5 20 164.25 178.200 8.49 159.338 2.99
50 213.840 30.19 148.878 9.36

100 186.120 13.32 153.728 6.41
1000 167.112 1.74 161.587 1.62

10000 164.498 0.15 166.444 1.34

f(x) = cos x 0 π
2

20 1.00 0.785 21.46 1.023 2.35
50 1.037 3.67 1.071 7.13

100 1.147 14.67 1.048 4.85
1000 1.000 0.06 1.012 1.22

10000 1.002 0.15 0.990 1.02

Table 1.1: Approximations using Monte Carlo Methods 1 and 2

mc2.c using various functions which can be integrated exactly. While these
functions are rather simple, they are useful here because they show just how
accurate Monte Carlo Methods can be.

Table 1.1 shows that Monte Carlo Methods can be quite accurate with
large enough n.

However, Monte Carlo Integration has two distinct downfalls, as Nieder-
reiter points out in [5]. First of all, because the nodes selected are chosen
randomly, there is no guaranteed error bound. In many cases, Monte Carlo
Methods produce accuracy that is more than sufficient, but the fact of the
matter is that its error bound is only probabilistic.

Another problem with these methods is the fact that the accuracy of

5

the approximation is highly dependent upon how truly random the random
nodes are. Usually, computers are used to generate these random nodes and
it has been found that creating truly random numbers with a computer is an
extraordinarily difficult task. Because it is nearly impossible for computers
to generate random numbers and because of the lack of a guaranteed error
bound, Monte Carlo methods became less and less attractive in favor of other
approximation techniques that did not have these two downfalls. This brings
us to a discussion of quasi-Monte Carlo Integration.

1.3 Quasi-Monte Carlo Integration

Quasi-Monte Carlo Integration originated in the 1950s as an attempt to over-
come the disadvantages of Monte Carlo Integration. Quasi-Monte Carlo Inte-
gration was so named because, with the exception of how nodes are selected,
it is exactly the same as the second Monte Carlo Method discussed above.
The nodes used in quasi-Monte Carlo Integration are selected because they
are expected to outperform randomly selected nodes.

Some definitions are now in order to make the criteria for selection of
nodes for quasi-Monte Carlo Integration more precise. The following defini-
tions are excerpted from [7].

Definition 1.2 Let {x1, x2, . . .} be a sequence of points contained in the in-

terval [0, 1). Then this sequence is uniformly distributed if for any interval

[a, b) where 0 ≤ a < b < 1

lim
N→∞

#{xi ∈ [a, b) | 1 ≤ i ≤ N}
N

= (b − a).

Essentially, this says that a sequence is uniformly distributed if every
interval in [0, 1) gets its “fair share” of points from the sequence as the
number of points in the sequence gets large.

Definition 1.3 Let {x1, x2, . . . xN} be a sequence in [0, 1). Then the discrepancy

of the sequence is defined as

DN = sup
0≤α≤β≤1

|#{xiǫ[α, β)s.t.1 ≤ i ≤ N}
N

− (β − α)|.

6

The above definition was also excerpted from [4].
To put it another way, discrepancy measures the largest difference be-

tween the number of points in any given interval and the length of that
interval. Discrepancy will rise when elements in {x1, x2, . . .} are “very close
together” or when they are “spread out too much.” The lower the discrep-
ancy, the more “evenly spaced” the elements in the sequence.

It turns out that nodes from uniformly distributed sequences with low
discrepancy are the best ones to choose when using quasi-Monte Carlo Inte-
gration. When nodes of this type are used, quasi-Monte Carlo Integration
overcomes some of the downfalls of Monte Carlo Integration.

The following advantages of quasi-Monte Carlo Integration are discussed
in [5]. Since the nodes chosen are now deterministic (as opposed to probabilis-
tic), a deterministic error bound exists. Also, there is no need to generate
random numbers, the difficulty of which was discussed earlier. Thirdly, a
much higher degree of accuracy can be reached with the same number of
function calls as Monte Carlo Integration. These three advantages are a
tremendous improvement over Monte Carlo Methods.

An application of quasi-Monte Carlo Integration using the same premise
as mc2.c can be found in the ’programs’ section under the heading qmc1.c.
In testing out this program, I found that quasi-Monte Carlo Integration gave
the exact results for linear functions when a particular type of uniformly
distributed low discrepancy sequence was used. This observation led to the
following theorem:

Theorem 1.1 Lan’s Theorem: If f is a non-negative linear function then

quasi-Monte Carlo Integration yields the exact answer to
∫ b
a f(x) dx when the

nodes used are of the form {a, a + c, a + 2c, a + 3c, ..., b − 2c, b − c, b} where

c divides b − a.

Proof: Let f(x) = mx + d where m ∈ ℜ and d ∈ ℜ. Either f(a) = 0 or
f(a) ≥ 0. If f(a) = 0 then the region under f is a triangle (see Figure 1-4)
with

Area =
1

2
f(b)(b − a) =

b − a

2
(mb + d).

7

If f(a) ≥ 0 then the region under f is a trapezoid (Figure 1-5) with

Area =
1

2
(b−a)(f(a)+f(b)) =

b − a

2
(ma+d+mb+d) =

b − a

2
(m(a+b)+2d).

a b

f(b)

Figure 1-4

f(a) f(b)

a b

Figure 1-5

If f(a) = 0 then ma + d = 0. This information gives us the fact that
the two area formulas are essentially the same as the only difference between
them is the term ma + d.

It therefore suffices to show that quasi-Monte Carlo Integration yields the
formula for the area of the trapezoid. So we want to show that

b − a

n

n
∑

i=1

f(xi) =
b − a

2
(m(a + b) + 2d).

Recall that our nodes are of the form: {a, a + c, a + 2c, a + 3c, ..., b −
2c, b − c, b} where x1 = a and xn = b. Therefore, b = a + c(n − 1) and
xi = a + c(i − 1) where 1 ≤ i ≤ n.

8

We will now use quasi-Monte Carlo Integration on f .

b − a

n

n
∑

i=1

f(xi)

=
b − a

n

n
∑

i=1

f(a + c(i − 1))

=
b − a

n

n
∑

i=1

(m(a + c(i − 1)) + d)

=
b − a

n

n
∑

i=1

(ma − cm + d) + icm)

=
b − a

n
(

n
∑

i=1

(ma − cm + d) + mc
n
∑

i=1

i)

=
b − a

n
(n(ma − cm + d) +

mcn(n + 1)

2

=
b − a

2
(2(ma − cm + d) + mc(n + 1))

=
b − a

2
(2ma − 2cm + 2d + mcn + mc)

=
b − a

2
(m(2a − c + cn) + 2d)

=
b − a

2
(m(a + a + c(n − 1)) + 2d)

=
b − a

2
(m(a + b) + 2d).

Since this formula obtained by using quasi-Monte Carlo Integration is the
same as the formula for the area of the trapezoid, the proof is complete.

Table 1.2 presents a side-by-side comparison of five different approxima-
tion methods. Three of them have been discussed in detail in this paper. The
other two are the Trapezoidal Rule and Simpson’s Rule, both of which were

9

f(x) = 4x + 2 on [0, 1]. Exact area = 4.00
n mc1 error mc2 error qmc1 error simpson error trap error

100 4.38 9.50 3.93 1.63 4.02 0.50 3.99 0.00 3.99 0.00
1000 4.01 0.35 3.96 1.59 4.00 0.05 3.99 0.00 3.99 0.00

10000 4.01 0.25 4.02 0.55 4.00 0.00 4.00 0.00 4.00 0.00

f(x) = 3x3 − x + 1 on [1, 3]. Exact area = 58.00
n mc1 error mc2 error qmc1 error simpson error trap error

100 67.94 17.14 53.25 8.20 59.25 2.15 57.99 0.00 58.00 0.00
1000 58.78 1.34 56.97 1.77 58.12 0.21 58.00 0.00 58.00 0.00

10000 57.65 0.60 58.91 1.57 58.00 0.01 58.02 0.03 58.02 0.03

f(x) = x5 + 3x2 + 12 on [2, 5]. Exact area = 2746.50
n mc1 error mc2 error qmc1 error simpson error trap error

100 2987.16 8.76 2403.26 12.50 2838.21 3.34 2746.50 0.00 2746.73 0.01
1000 2736.62 0.36 2698.10 1.76 2755.50 0.33 2746.45 0.00 2746.46 0.00

10000 2730.84 0.57 2800.85 1.98 2746.87 0.01 2744.91 0.06 2744.91 0.06

Table 1.2: Approximations using five different methods

put into the ‘programs’ section. The nodes used in the quasi-Monte Carlo
Integration are of the form a, a + c, a + 2c, ..., b − 2c, b − c, b where c divides
b − a.

From the results in Table 1.2, Simpson’s Rule appears to be the best
choice as it is generally the most accurate. (Note: we found that Simpson’s
Rule was usually more accurate than the Trapezoidal Rule by about the
fourth digit after the decimal point.) However, it is noted in [4] that the
accuracy of Simpson’s Rule outweighs its large number of function calls only
in one or two dimensions. In higher dimensions, [4] states that the “curse of
dimensionality” becomes significant enough to make Monte Carlo and quasi-
Monte Carlo Methods more attractive than Simpson’s Rule. Again, the main

10

reason this is true is the low number of costly function calls that Monte Carlo
and quasi-Monte Carlo Methods require.

1.4 Probability and Error Bounds

No discussion of approximation methods would be complete without a dis-
cussion of error bounds. We will first give a brief crash course in some
probability theory.

A sample space is a list of possible outcomes of some experiment. For
example, the sample space of two successive flips of a coin is {HH, HT, TH,
TT} where H and T stand for Heads and Tails, respectively. Ω is generally
used as the symbol for the sample space and ω is often used to represent an
element of the sample space.

A random variable, X, is a function that assigns a numerical value to
each ω ∈ Ω. An example of a random variable is X(ω) = the age (in years)
of ω where Ω is a list of people. If Ω is a list of the people in this year’s REU
program then the random variable, X, given above, would satisfy:

X(Michael) = 21.
X(Jill) = X(Margaret) = 19.
X(Jessica) = X(Erin) = X(Dennis) = X(Kevin) = X(Ian) = 20.

The expected value of X is defined as

E(X) =
∑

ω∈Ω

X(ω)P ({ω})

where P ({ω}) = the probability that ω occurs.
The mean of X is a special type of expected value. The mean is repre-

sented by µ and is defined to be µ = E(X). In the above example,

µ = E(X) =
∑

ωǫΩ

X(ω)P ({ω}) = X(Jessica)P ({Jessica})+X(Erin)P ({Erin})+

X(Dennis)P ({Dennis}) + X(Kevin)P ({Kevin}) + X(Ian)P ({Ian})+

X(Michael)P ({Michael})+X(Jill)P ({Jill})+X(Margaret)P ({Margaret})

11

= 20(
1

8
) + 20(

1

8
) + 20(

1

8
) + 20(

1

8
) + +20(

1

8
)

+21(
1

8
) + 19(

1

8
) + 19(

1

8
) = 19.875.

Note: In this example, P ({ω}) = 1
8

for all ω ∈ Ω because each person
was listed only once and there were eight people altogether.

In the above example, it is clear that µ gives the average age of the group
of people in question.

The variance, σ2, is defined as:

σ2 = E((X−E(X))2) = E(X2−2XE(X)+(E(X))2) = E(X2)−2E(X)E(X)+(E(X))2

= E(X2) − (E(X))2.

and the standard deviation, σ, is defined as σ =
√

σ2.
In the last example, the variance is calculated as follows:

σ2 = [(202)
1

8
+(202)

1

8
+(202)

1

8
+(202)

1

8
+(202)

1

8
+(212)

1

8
+(192)

1

8
+(192)

1

8
]−[19.875]2

= 395.375 − 395.015625 = 0.359375.

This number represents “the amount by which X tends to deviate from
the average ” [1].

The standard deviation is then: σ =
√

.359375 ≈ 0.6.
Figure 1-6 shows the distribution of X.

Age
19 20 21

5

3

2

1

people

of
4

Figure 1-6

12

X has density function, f , if the probability that X takes on a value
between a and b is given by

P (a ≤ X ≤ b) =
∫ b

a
f(x) dx.

N(0,1) is defined to be the standard normal distribution. It is a special
type of distribution and it has density function given by

f(x) =
1√
2π

exp[−x2

2
].

The graph of this function is the familiar bell-shaped curve (see figure
1-7).

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 1-7

We are now ready for the central limit theorem which essentially says that
“under appropriate conditions, certain random variables are approximately
normally distributed ” [8]. This theorem is excerpted directly from [8].

The Central Limit Theorem - Let X1, X2, ... be independent random vari-
ables having a common distribution with mean µ and finite, positive standard
deviation σ. Then

lim
n→∞

Prob(
X1 + X2 + ... + Xn − nµ

σ
√

n
≤ x) =

1√
2π

exp[−x2

2
], x ∈ ℜ.

Using this theorem, Neiderreiter states that if n is the number of nodes
used and s is the dimension we are integrating in, then Monte Carlo Inte-
gration has a probabilistic error bound of O(1√

n
) (note that this error bound

13

is completely independent of the dimension) and quasi-Monte Carlo Integra-
tion “yields a much better result, giving us the deterministic error bound”

O(
(log n)(s−1)

n
)

[5].
With large enough n, these methods generally yield suitable accuracy

without using up excessive computer time. For this reason, I feel that Monte
Carlo Methods and quasi-Monte Carlo methods are a good gamble.

1.5 Programs

This section contains one program which is basically just a concatenation of
five smaller programs which apply different numerical integration approxi-
mation methods. A possible next step is to extend these programs to higher
dimensions and add a ‘function call counter’ to see the main reason Monte
Carlo and quasi-Monte Carlo Methods can be advantageous to use.

MAIN PROGRAM

/*ccc

c

c Ian Winokur

c August 6, 1997 Last updated: August 6, 1997

c

c This program implements five different methods of approximating the

c value of a definite integral. The methods are: the Trapezoidal

c Rule, Simpson’s Rule, two Monte Carlo methods, and one quasi-Monte

c Carlo method.

c

c Variable Directory:

c

c a,b the endpoints of the interval being

c integrated over

c num_points the number of points being used in the

14

c approximation

c

ccc*/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

float a,b;

int num_points;

/* function prototypes */

float mc1(),ran1(),mc2(),qmc1(),simpson(),trap(),f(float x);

void main(void)

{

scanf("%f %f",&a,&b); /* read in a and b */

scanf("%d",&num_points); /* read in num_points */

/* call functions and output results */

printf("\n\n\n");

printf("Function being integrated: f(x) = 4x + 2.\n");

printf("Interval: [%f,%f]\n",a,b);

printf("Number of nodes used: %d\n\n\n",num_points);

printf(" Method used Approximation\n");

printf(" ----------- -------------\n\n");

printf("Monte Carlo 1: %f\n",mc1());

printf("Monte Carlo 2: %f\n",mc2());

printf("quasi-Monte Carlo: %f\n",qmc1());

printf("Simpson’s Rule: %f\n",simpson());

printf("Trapezoidal Rule: %f\n",trap());

15

exit(0);

};

16

MONTE CARLO 1 FUNCTION:

float mc1()

/*ccc

c

c Ian Winokur

c July 12, 1997 Last updated: August 6, 1997

c

c This program uses a Monte Carlo Method to approximate the integral of

c a function, f, on some interval [a,b]. The program picks random

c coordinates and decides whether they are under the curve or not. The

c value of the integral is approximated by the percentage of points under

c the curve multiplied by the area under some upper bound of the function

c over the interval.

c

c Variable directory:

c

c xi,yi coordinates of random tosses

c integral the value of the integral of f on [a,b]

c num_points the number of random tosses

c area area between a and b and under bound

c bound an upper bound of the function on [a,b]

c a,b the start and end points of the interval

c f the function being integrated

c splashes the number of "splashes"

c index an index

c

cc*/

{

/* variable declarations */

int index, splashes;

float xi, yi, integral, area, bound;

/* initialize variables */

17

splashes = 0;

scanf ("%f",&bound); /* read in upper bound */

/* generate random numbers and count splashes */

for(index=1; index <= num_points; ++index)

{

xi = ran1();

xi = (b - a) * xi + a; /* scale xi to [a,b] */

yi = bound * ran1();

if (f(xi)>=yi)

++splashes;

};

/* calculate and output area and integral */

area = bound * (b-a); /* area under bound */

integral = area * (float)splashes / (float)num_points;

return(integral);

};

RANDOM NUMBER GENERATOR FUNCTION

float ran1()

{

/* This function generates random numbers in (0,1) */

static long int c = 100001; /* c is the seed */

c = (c * 125) % 2796203;

return (float) c / 2796203;

}; /* end of definition of function ran1 */

18

MONTE CARLO 2 FUNCTION

float mc2()

/*ccc

c

c Ian Winokur

c July 19, 1997 Last updated: August 6, 1997

c

c This program uses a Monte Carlo Method to approximate the integral of

c a function, f, on some interval [a,b]. The program picks random

c x - coordinates, evaluates them, sums up their function values,

c averages their function values, and then multiplies this average by the

c length of the interval. This technique uses the definition of the

c average value of a function to approximate an integral.

c

c Variable directory:

c

c x x - coordinate of random tosses

c integral the value of the integral of f on [a,b]

c num_points the number of random tosses

c a,b the start and end points of the interval

c f the function being integrated

c index an index

c sum holds the sum of the evaluated xi’s

c

cc*/

{

/* variable declarations */

int index;

float x, integral, sum;

/* initialize variables */

sum = 0.0;

19

/* generate random numbers and sum up function evaluated there */

for(index=1; index <= num_points; ++index)

{

x = ran1();

/* scale x to [a,b] */

x = (b - a) * x + a;

sum = sum + f(x);

};

/* calculate and output integral */

integral = (float) (b - a) * sum / (float) num_points;

return(integral);

};

20

QUASI-MONTE CARLO FUNCTION

float qmc1()

/*cc

c

c Ian Winokur

c Date started: July 23, 1997 Last updated: August 6, 1997

c

c This program is an application of a Monte Carlo Method of

c Integration using points from a low-discrepancy, uniformly distributed

c sequence instead of random points. This program evaluates each point,

c averages the function values, and then multiplies this average by the

c length of the interval to obtain an approximation of the integral. This

c technique uses the definition of the average value of a function.

c

c Variable directory:

c

c x the name given to each of the points being used

c n counts the number of points being used

c a,b the left and right endpoints of the interval

c sum contains the sum of the f(x)’s

c integral the approximation of the integral of f

c

cc*/

{

/* variable declarations */

int n;

float sum = 0.0, x, integral;

/* read first number in the sequence */

scanf("%f",&x);

for (n = 0; x != -99.0; ++n)

{

/* scale x values to be in [a,b] */

x = a + (b - a) * x;

21

sum = sum + f(x);

scanf ("%f",&x); /* get next number in the sequence */

}

/* calculate and return integral */

integral = (float) (b - a) * sum/ (float) n;

return (integral);

};

22

SIMPSON’S RULE FUNCTION

float simpson()

/*ccc

c

c Ian Winokur

c Date Started: August 5, 1997 Last Updated: August 6, 1997

c

c

c This program approximates the integral of a function, f, on some interval

c [a,b] using Simpson’s Rule.

c

c Variable Directory:

c

c index the index used in the main loop

c simp_sum the sum used in Simpson’s Rule

c f the function being integrated

c a,b the endpoints of the interval that

c f is being integrated on

c num_points the number of points being used in

c the approximation

c x the coordinate being evaluated

c width measures the width of each sub-interval

c simp_integral holds the approximation using the trapezoidal

c rule

c

ccc*/

{

/* variable declarations */

int index;

float simp_sum, x, width, simp_integral;

/* initialize variables */

x = a;

simp_sum = f(x);

23

width = (b - a)/(float) num_points;

/* calculate sum */

for (index = 1; index < num_points; ++index)

{

x = x + width; /* move to next sub-interval */

simp_sum = ((index % 2) == 0)? simp_sum + (2.0*f(x)):simp_sum+(4.0*f(x));

};

simp_sum = simp_sum + f(b);

simp_integral = ((width)/(3.0))*simp_sum;

return (simp_integral);

};

24

TRAPEZOIDAL RULE FUNCTION

float trap()

/*ccc

c

c Ian Winokur

c Date Started: August 5, 1997 Last Updated: August 6, 1997

c

c

c This program approximates the integral of a function, f, on some interval

c [a,b] using the Trapezoidal Rule.

c

c Variable Directory:

c

c index the index used in the main loop

c trap_sum the sum used in the trapezoidal rule

c f the function being integrated

c a,b the endpoints of the interval that

c f is being integrated on

c num_points the number of points being used in

c the approximation

c x the coordinate being evaluated

c width measures the width of each sub-interval

c trap_integral holds the approximation using the trapezoidal

c rule

c

ccc*/

{

/* variable declarations */

int index;

float trap_sum, x, width, trap_integral;

/* initialize variables */

x = a;

25

trap_sum = f(x);

width = (b - a)/(float) num_points;

/* calculate sum */

for (index = 1; index < num_points; ++index)

{

x = x + width; /* move to next sub-interval */

trap_sum = trap_sum + (2.0 * f(x));

};

/* add last value to the sum */

trap_sum = trap_sum + f(b);

/* calculate and return final approximation */

trap_integral = ((width)/(2.0)) * trap_sum;

return(trap_integral);

};

FUNCTION FUNCTION

float f(float x)

{

x = 4*x + 2; /* put function here */

return (x);

}; /* end of definition of function f */

26

Chapter 2

Introduction to Low
Discrepancy Sequences

The purpose of this report is to study the properties of uniformly distributed
low discrepancy sequences. Before this is possible, we need to give some
definitions and basic theorems.

2.1 Definitions and Examples

The sequence in Figure 2.1, from [7], is an example of a uniformly dis-

tributed, or low discrepancy sequence in one dimension. The points are evenly
spaced throughout the interval, with none of the intervals between points sig-
nificantly larger or smaller than the others. In order to study the properties
of such sequences, we first need to define precisely which sequences have this
property.

Definition 2.1 Let {x1, x2, . . .} be a sequence of points in [0, 1) and A ⊆
[0, 1). For a fixed N , the function #(A) is defined as the cardinality of the

set {xi ∈ A : 1 ≤ i ≤ N}.

Informally, the function # counts the number of the first N sequence
points which are in A. This definition is needed to define the following
important concept, found in [3].

27

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x1 x2 x3x3x4 x5 x6x7 x8 x9

Figure 2.1: x1 through x9 of the p-adic sequence, with p = 3

Definition 2.2 Let {x1, x2, . . .} be a sequence of points contained in the half-

open unit interval [0, 1). Then the sequence is uniformly distributed if for any

[a, b) ⊆ [0, 1),

lim
N→∞

#[a, b)

N
= (b − a).

A uniformly distributed sequence is also called a low discrepancy sequence.
The expression on the left hand side of the equal sign is the fraction of the
N sequence points that lie within the interval, whereas the expression on the
right hand side is the fraction of the length of [0, 1) that lies in the interval.
If a sequence is low-discrepancy, these quantities become close as N becomes
large.

This leads to a question of how to measure quantitatively the “uniform-
ness” or “non-uniform-ness” of a sequence. This quantity, called discrepancy,
is important in determining the accuracy of quasi-Monte Carlo integration
methods. The following definition is in [3].

Definition 2.3 Let ω = {x1, x2, . . . , xN} be a sequence of points in [0, 1).

28

The discrepancy of the sequence, denoted DN(ω), is equal to

DN (ω) = sup
0≤α<β≤1

∣

∣

∣

∣

∣

#[α, β)

N
− (β − α)

∣

∣

∣

∣

∣

.

Clearly, a sequence ω is uniformly distributed if limN→∞ DN(ω) = 0.
Other useful definitions related to this one are given in [3], such as star

discrepancy and isotropic discrepancy.
A similar definition holds in higher dimensions. The function # is defined

in Rs the same way as in R, except that the sequence is in [0, 1)s = [0, 1) ×
[0, 1) × · · · × [0, 1).

Definition 2.4 Let {x1.x2. . . .} be a sequence of points in [0, 1)s. Then the

sequence is uniformly distributed if for any J = [a1, b1)×· · ·×[as, bs) ⊆ [0, 1)s,

lim
N→∞

#(J)

N
= λ(J),

where λ(·) denotes s-dimensional Lebesgue measure.

Definition 2.5 Let ω = {x1,x2, . . . ,xN} be a sequence of points in [0, 1)s.

The discrepancy of the sequence, denoted DN(ω), is equal to

DN(ω) = sup
J∈J

∣

∣

∣

∣

∣

#(J)

N
− λ(J)

∣

∣

∣

∣

∣

,

where J = {[a1, b1) × · · · × [as, bs) : 0 ≤ ai < bi ≤ 1 for 1 ≤ i ≤ s} and λ(·)
denotes s-dimensional Lebesgue measure.

2.2 Basic Theorems on Discrepancy

The following property follows from the definition of discrepancy. Kuipers
and Niederreiter [3] prove it.

Theorem 2.1 For any sequence ω, 1
N

≤ DN(ω) ≤ 1.

Niederreiter [5] also gives a theorem which gives an expression for the
discrepancy as a maximum of a finite set, rather than a supremum over an
infinite set.

29

Theorem 2.2 For a sequence ω = {x1, x2, . . . , xN} in [0, 1),

DN(ω) =
1

N
+ max

1≤i≤N

(

xi −
i

N

)

− min
1≤i≤N

(

xi −
1

N

)

.

Another theorem, sometimes called the Triangle Inequality for Discrep-
ancies, relates the discrepancy of a sequence to the discrepancies of each
element of a partition of the sequence. Our proof closely follows the proof in
[3] for the corresponding theorem in R.

Theorem 2.3 For 1 ≤ i ≤ k, let ωi be a sequence of Ni elements in [0, 1)s

with discrepancy DNi
(ωi). Let ω be a sequence containing exactly the elements

of ω1, ω2, . . . , ωk in some order. Let N = N1 + N2 + . . . + Nk be the number

of elements in ω. Then

DN(ω) ≤
k
∑

i=1

Ni

N
DNi

(ωi).

Proof:

Let J = [a1, b1) × · · · × [as, bs) be a subinterval of [0, 1)s. Let #i represent
the function # for the subsequence ωi. Then #(J) =

∑k
i=1 #i(J), by the

definition of ω. Now note that
∣

∣

∣

∣

∣

#(J)

N
− λ(J)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k
∑

i=1

#i(J)

N
− λ(J)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k
∑

i=1

(

Ni

N
· #i(J)

Ni

)

−
k
∑

i=1

Ni

N
λ(J)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k
∑

i=1

Ni

N

(

#i(J)

Ni

− λ(J)

)∣

∣

∣

∣

∣

≤
k
∑

i=1

Ni

N
DNi

(ωi),

by the definition of discrepancy and the Triangle Inequality. Putting all these
inequalities together gives

∣

∣

∣

∣

∣

#(J)

N
− λ(J)

∣

∣

∣

∣

∣

≤
k
∑

i=1

Ni

N
DNi

(ω).

30

This holds for any J , so the supremum over all possible J of the left side of
the inequality is still less than or equal to the right side. This supremum is
exactly the definition of DN(ω), giving the desired conclusion.

2.3 The p-adic Sequence

One common low-discrepancy sequence is the p-adic sequence, shown in Fig-
ure 2.1. Its terms are formed by reflecting the base-p representations of con-
secutive integers around the “decimal point.” In other words, the coefficient
ci of pi is “reflected” to become the coefficient of p−i−1.

Mathematically, let n − 1 =
∑M

i=0 cip
i be the base-p representation of

n − 1. (In order to make x1 = 0, n − 1 is used instead of n.) Now, “reflect”
these digits to give xn =

∑M
i=0 cip

−i−1, the nth term of the p-adic sequence.
Table 2.1 shows this process. An asymptotic bound for DN for this sequence
is proved in Chapter 3.

n n − 1 n − 1 in base 3 xn in base 3 xn

1 0 0 0.0 0
2 1 1 0.1 1/3
3 2 2 0.2 2/3
4 3 10 0.01 1/9
5 4 11 0.11 4/9
6 5 12 0.21 7/9
7 6 20 0.02 2/9
8 7 21 0.12 5/9
9 8 22 0.22 8/9

Table 2.1: Values of the 3-adic sequence through n = 9

The following chapters give more examples of low-discrepancy sequences.
Pace and Salazar-Lazaro [7] give a further exposition of the topic.

31

Chapter 3

Some One-Dimensional
Sequences And Their
Discrepancies

A number of sequences have been studied extensively. Asymptotic bounds
have been proven for their discrepancies DN as N goes to infinity. This
chapter describes the properties of two such sequences.

3.1 The p-adic sequence

The p-adic sequence described in chapter 2 is one such sequence whose prop-
erties are well known. The following theorem gives an asymptotic discrepancy
bound of O(log N

N
) for the p-adic sequence; the proof closely follows a theorem

in [3] proving a bound for the case p = 2.

Theorem 3.1 Let ω be the p-adic sequence with base p, formed as described

above. The sequence satisfies

NDN (ω) ≤ (p − 1)

(

log(N + 1)

log p
+ 1

)

.

Proof:

Let
∑M

i=1 bip
i with 0 ≤ bi ≤ p− 1 and bM 6= 0 be the base-p representation of

N . We now write N as a sum of s pure powers of p, where pi appears as a term

32

bi times in the sum; N = ph1 + ph2 + · · ·+ phs, with h1 ≥ h2 ≥ · · · ≥ hs ≥ 0.
Note that s =

∑M
i=0 bi.

Partition the set of integers {1, 2, . . . , N} into s subsets in the following
way: For 1 ≤ j ≤ s, let

Mj = {x ∈ Z : (ph1 + ph2 + · · ·+ phj−1 + 1) ≤ x ≤ (ph1 + ph2 + · · ·+ phj)},

where here and throughout this proof, an empty sum equals 0. This means
that the smallest element of M1 is 1. Note that each Mj contains phj elements.

An integer n in Mj can be written as

n = 1 + ph1 + · · · + phj−1 +
hj−1
∑

i=0

aip
i, ai ∈ {0, 1, . . . , p − 1}

Note that the values of n determined by all the possible values of the set of
ai are precisely the integers in Mj .

By definition of xn, using the integer n given above,

xn = p−h1−1 + · · ·+ p−hj−1−1 +
hj−1
∑

i=0

aip
−i−1.

Define yj = p−h1−1 + · · · + p−hj−1−1. Then xn = yj +
∑hj−1

i=0 aip
−i−1, where

yj depends on p and j but not n. Since yj is the base-p representation of a
number for which the largest power is p−hj−1−1, it follows that 0 ≤ yj ≤ p−hj .

If n runs through all the integers in Mj , then the sum
∑hj−1

i=0 aip
−i−1, where

the ai are determined by n, runs through the fractions 0, p−hj , 2p−hj , . . . , (phj−
1)p−hj . These phj distinct values are all in the interval [0, 1). Therefore, the
sequence {yj, yj + p−hj , . . . , yj + (phj − 1)p−hj} is evenly spaced in [0, 1) with
difference p−hj .

Now partition the sequence ω into sub-sequences ωj = {zjn} = {xn : n ∈
Mj}. The number of elements of Mj is phj , so each subsequence ωj contains
phj elements. By Theorem 2.2,

D
p

hj (ωj) =
1

phj
+ max

1≤i≤p
hj

(

zji −
i

phj

)

− min
1≤i≤p

hj

(

zji −
i

phj

)

.

For each i, 1 ≤ i ≤ phj , zji equals yj + (i − 1)p−hj . Thus zji − i/phj =
yj + (i − 1)p−hj − ip−hj = yj − p−hj for each i. This value is constant over

33

i, so its maximum and minimum are equal. Hence D
p

hj (ωj) = 1/phj and

phjD
p

hj (ωj) = 1.
By Theorem 2.3,

NDN (ω) ≤
s
∑

j=1

phjDphj
(ωj) = s.

We now bound s in terms of N . Recall that N = ph1 + ph2 + · · ·+ phs, a
sum of s pure powers of p. N is thus greater than or equal to the smallest
integer which can be expressed as the sum of s pure powers of p, with no
single power appearing more than p − 1 times. This number is

(p − 1)p0 + · · · + (p − 1)p⌊ s
p−1⌋−1 + tp⌊ s

p−1⌋

with 0 ≤ t < p − 1. This number in turn is greater than

(p − 1)p0 + · · · + (p − 1)p⌊ s
p−1⌋−1.

The sum of (p− 1)p0 + · · ·+ (p− 1)pk = pk+1 − 1 for any positive integer
k. Thus,

N ≥ (p − 1)p0 + · · ·+ (p − 1)p⌊ s
p−1⌋−1

= p⌊ s
p−1⌋ − 1.

Therefore,

N + 1 ≥ p⌊ s
p−1⌋,

and
log(N + 1)

log p
≥
⌊

s

p − 1

⌋

≥ s

p − 1
− 1,

by definition of the floor function. It then follows that

s

p − 1
≤ log(N + 1)

log p
+ 1,

or

s ≤ (p − 1)

(

log(N + 1)

log p
+ 1

)

.

34

3.2 The rotation sequence

Another sequence with a known discrepancy bound is the rotation sequence.
Let {x} be the fractional part of x, x − ⌊x⌋. For some irrational number α,
the rotation sequence is given by xn = {(n − 1)α}. Sometimes the sequence
is indexed differently, with xn = {nα}. (If α is a rational fraction p

q
, the

rational parts will begin to repeat after q terms of the sequence, whereas an
irrational α will give an infinite sequence, since according to [3] the terms
of the sequence are dense in [0, 1).) Figure 3.1 shows this process for α
approximately equal to 0.47, with the interval [0, 1) represented as both a
circle and a line segment. Using the circular model, it is easier to visualize
the operation of the fractional part function.

Pace and Salazar-Lazaro [7] give an algorithm to give the points in the
rotation sequence of α without referring to fractional parts of multiples of α.
Our algorithm is based on theirs. Let γ1 = α. Let x1 = 0. In the first stage,
the following points are each added at a distance of γ1 to the right of the
preceding point. When there is no room left to add another point in [0, 1),
call the leftover distance γ2.

The second stage begins now. For each point of the sequence marked, in
the order of their indices, mark a new point at a distance γ2 to the left of
the existing point, if no closer point exists in that direction. Continue this
process for the points marked in stage 2 as well, until there is no room to
mark new points without moving past an existing point. In each interval of
length γ1, a number of intervals of length γ2 have been marked off; call the
leftover distance γ3.

This pattern continues, marking points in the positive direction from
existing points in odd stages, and in the negative direction in even stages,
with γi+1 defined as the leftover distance after partitioning each sub-interval
in the ith stage. The term stage i as used in this paper refers to the part of
the algorithm when points are marked off at a distance of γi. This process
gives a recurrence relation for γi:

γi+1 = (−1)i+1

(

|γi−1| − |γi|
⌊∣

∣

∣

∣

∣

γi−1

γi

∣

∣

∣

∣

∣

⌋)

,

where the sequence is alternating because the direction in which new points
are added alternates. Notice that the sequence {|γi|} is strictly decreasing.

35

x1
x2

x3
x4

x5

x1 x3

x2

x5

x4

Figure 3.1: Rotation sequence for α ≈ 0.47

36

To state this precisely, let r(i) and b(i) represent the index of the point
closest to xi on the right and the distance xr(i) − xi, respectively. Similarly,
let l(i) and c(i) represent the index of the point closest to xi on the left and
the distance xi − xl(i), respectively. For a point near the ends of [0, 1), there
may be no point satisfying these conditions; in this case let r(i) or l(i) equal
−1, as a signal value. In order to avoid special cases related to this, the
values b(−1) and c(−1), which may be written during the running of the
algorithm but are never read, are dummy values with no relevance.

N equals the number of points marked in the sequence. Each point is
marked at a certain distance γ in a certain direction from an existing point,
if there are no closer points in that direction. q denotes the existing point
for which the distance to the nearest point in the given direction is currently
being compared to γ.

• Let x1 = 0, b(1) = 1, c(1) = 0, l(1) = −1, r(1) = −1, N = 1, q = 1,
stage = 1, done = FALSE.

• LOOP:

– Let γ = γstage.

– If γ > 0, LOOP:

∗ If b(q) > γ

· Mark a new point: xN+1 = xq + γ

· b(N + 1) = b(q) − γ, c(N + 1) = γ

· b(q) = γ, c(r(q)) = b(N + 1)

· r(N + 1) = r(q), l(N + 1) = q

· r(q) = N + 1, l(r(N + 1)) = N + 1

· q = q + 1, N = N + 1

Else

· If q 6= N , q = q + 1

· Else, let done = TRUE

– UNTIL done = TRUE

– Else if γ < 0, LOOP:

∗ If c(q) > |γ|

37

· Mark a new point: xN+1 = xq + γ. Notice that γ is
negative here;

· b(N + 1) = |γ|, c(N + 1) c(q) + γ

· c(q) = |γ|, b(l(q)) = c(N + 1)

· l(N + 1) = l(q), r(N + 1) = q

· l(q) = N + 1, r(l(N + 1)) = N + 1

· q = q + 1, N = N + 1

Else

· If q 6= N , q = q + 1

· Else, let done = TRUE

– UNTIL done = TRUE

– Let stage = stage + 1, q = 1, done = FALSE, Ni = N

• End outer loop

Figure 3.2 shows the first three stages, along with the distances between
points and the indices of the points, for the rotation sequence with α =

√
5−1
2

.

3.2.1 Continued Fractions

The rotation sequence is closely related to the theory of continued fractions.
Continued fractions give an alternative to the standard decimal or base-p
representation of real numbers. Any number can be expressed in the form

a0 +
1

a1 + 1
a2+ 1

a3+···

,

where each ai is an integer and ai ≥ 1 for i ≥ 1. Such an expression is called a
simple continued fraction. The ai are called partial quotients. The continued
fraction expression is often denoted [a0, a1, a2, . . .]. A finite continued fraction

is an expression of the form

a0 +
1

a1 + 1
···+ 1

ak

,

38

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

gamma1 gamma2

x1 x2

gamma3 gamma2 gamma2

x1 x2x3

gamma3 gamma3 gamma4 gamma3 gamma4

x1 x2x3 x4x5

Figure 3.2: Stages 1, 2, 3 of rotation sequence for α = (
√

5 − 1)/2

39

where the set of partial quotients is finite. It is denoted [a0, a1, . . . , ak]. The
value of an infinite continued fraction is a converging limit of finite continued
fractions.

Khinchin [2] shows the following result:

Lemma 3.1 The number represented by α = [a0, a1, a2, . . .] is rational if and

only if the expansion is finite.

If α = [a0, a1, a2, . . .] is an infinite continued fraction, the number rk =
[a0, a1, . . . , ak] is called the kth convergent of α, where limk→∞ rk = α. Since
the convergents are finite continued fractions, each is a rational number and
can be expressed as rk = pk

qk
for some integers pk, qk. Khinchin [2] recalls that

the numerators and denominators of the convergents satisfy a recurrence
relation.

Lemma 3.2 For all integers k ≥ 1,

pk = akpk−1 + pk−2

and

qk = akqk−1 + qk−2

with the initial conditions p−1 = 1, p0 = a0, q−1 = 0, q0 = 1.

Clearly, the −1st convergent does not exist; the given values for p−1 and
q−1 are bookkeeping devices only.

The continued fraction transformation T is given by T (x) = { 1
x
}, where

{z} denotes the fractional part of z, z − ⌊z⌋. Let α ∈ [0, 1); clearly from
the form of a continued fraction expression, a0 = 0. If α = [0, a1, a2, . . .] in
continued fraction form, then

T (α) =
{

1

α

}

=

{

a1 +
1

a2 + 1
a3+···

}

= a1 +
1

a2 + 1
a3+···

−
⌊

a1 +
1

a2 + 1
a3+···

⌋

= a1 +
1

a2 + 1
a3+···

− a1

40

=
1

a2 + 1
a3+···

= [0, a2, a3, . . .].

Thus the transformation T shifts the partial quotients of α to the left.
Now consider the rotation sequence for the number α; assume without

loss of generality that α ∈ [0, 1). From the rotation algorithm, we know that

|γi+1| = |γi−1| −
⌊∣

∣

∣

γi−1

γi

∣

∣

∣

⌋

|γi|. (Absolute values are used in this discussion

because the direction is not important.) Recall that γ1 = α = [0, a1, a2, . . .].
Consider the number of intervals of width γ1 that fit into an interval of

width γ0,
⌊∣

∣

∣

γ0

γ1

∣

∣

∣

⌋

. Note that

⌊∣

∣

∣

∣

∣

γ0

γ1

∣

∣

∣

∣

∣

⌋

=

⌊

1

[0, a1, a2, . . .]

⌋

=

⌊

a1 +
1

a2 + 1
a3+···

⌋

= a1.

Thus a1 is the number of intervals of width γ1 fit into an interval or width
γ0. The leftover piece after a1 intervals of length γ1 are removed has length
|γ2| = |γ0| −

⌊∣

∣

∣

γ0

γ1

∣

∣

∣

⌋

|γ1| = |γ0| − a1|γ1|. But

|γ0| − a1|γ1| = 1 − a1

a1 + 1
a2+···

=
1

a1 + 1
a2+···

((

a1 +
1

a2 + 1
a3+···

)

− a1

)

= α

(

1

a2 + 1
a3+···

)

= α[0, a2, a3, . . .]

= αT (α).

A simple induction argument will show that the same relationship holds
for higher indices.

Theorem 3.2 Let α ∈ [0, 1) have the continued fraction representation

[0, a1, a2, . . .]. Let T (α) be the continued fraction transformation T (α) =
{

1
α

}

,

with T i denoting i iterations of the transformation. Let γi be defined for the

rotation sequence with γ0 = 1 and γ1 = α. Then |γi| = α ·T (α) · · ·T i−1(α) =

[0, ai, ai+1, . . .] and ai =
⌊∣

∣

∣

γi−1

γi

∣

∣

∣

⌋

.

41

Proof:

The above paragraph gives the base case, γ1 = α and a1 =
⌊∣

∣

∣

γ0

γ1

∣

∣

∣

⌋

. Also

γ0 = 1 = T 0(α). Now suppose that γi−1 = α · T (α) · · ·T i−2(α), γi = α ·
T (α) · · ·T i−1(α), and ai =

⌊∣

∣

∣

γi−1

γi

∣

∣

∣

⌋

. From the recursive definition for γi+1,

|γi+1| = |γi−1| −
⌊∣

∣

∣

∣

∣

γi−1

γi

∣

∣

∣

∣

∣

⌋

|γi|

= |γi−1| − ai|γi|
= α · T (α) · · ·T i−2(α) − ai(α · T (α) · · ·T i−1(α))

= α · T (α) · · ·T i−1(α)

(

1

T i−1(α)
− ai

)

= α · T (α) · · ·T i−1(α)

(

1

[0, ai, ai+1, . . .]
− ai

)

= α · T (α) · · ·T i−1(α)



ai +
1

ai+1 + 1
ai+2+···

− ai





= α · T (α) · · ·T i−1(α) ([0, ai+1, ai+2, . . .])

= α · T (α) · · ·T i−1(α) · T i(α).

Additionally,
⌊∣

∣

∣

∣

∣

γi

γi+1

∣

∣

∣

∣

∣

⌋

=

⌊

α · T (α) · · ·T i−1(α)

α · T (α) · · ·T i(α)

⌋

.

By canceling terms in the numerator and denominator, this equals

⌊

1

T i(α)

⌋

=







ai+1 +
1

ai+2 + 1
ai+3+···







 = ai+1.

Certain other properties relating continued fractions to the rotation algo-
rithm can be proven from the algorithm. First, however, we state a definition
and prove an important lemma.

Definition 3.1 The ith rotation sequence partition of [0, 1) is the partition

of [0, 1) with partition points {xn : n ∈ Z, 1 ≤ n ≤ Ni} ∪ {1}.

42

Lemma 3.3 In the ith rotation sequence partition of [0, 1), each partition

interval has length equal to either |γi| or |γi+1|.

Proof:

The proof will be by induction on the number of the stage. In stage 1, points
are marked off beginning with x1 = 0 and moving a distance of γ1 to the
right. By Theorem 3.2, a1 intervals of length γ1 are marked off, and the
remaining interval by definition has length |γ2|. This establishes the base
case.

Now assume that each interval of the ith rotation sequence partition of
[0, 1) has length equal to either |γi| or |γi+1|. During stage i + 1, the place-
ment of points depends on the value of b(q) or c(q), depending on whether
i + 1 is odd or even. By the induction hypothesis, this value is either |γi|
or |γi+1| (or, in the case of c(1), zero). The value b(q) or c(q) is compared
to |γi+1| in stage i + 1. If it is less than |γi+1|, no point is marked. If the
value is greater, which is the case for an interval of width |γi|, then a point is
marked. Each of these intervals of width |γi| is partitioned into intervals of
width |γi+1| and a leftover piece at the end of the stage. Since each of these
intervals has the same length at the start of the stage, each leftover piece
will have the same length, and by definition this length is |γi+2|. Therefore,
the new partition formed by the points marked after stage i + 1 has inter-
vals of length equal to either |γi+1| or |γi+2|, establishing the induction case.

One result following from this lemma determines the number of intervals
in the ith rotation sequence partition, from which follows an expression for
Ni, the number of points given after stage i of the algorithm. The result is
well-known, but the proof is ours.

Theorem 3.3 The set of partition intervals of the ith rotation sequence par-

tition of [0, 1) contains qi intervals of length |γi| and qi−1 intervals of length

|γi+1|.

Proof:

Let di be the number of partition intervals in the ith rotation sequence par-
tition of [0, 1). It will be shown that di satisfies the same recurrence relation
and initial conditions as qi.

43

At the beginning of the algorithm, x1 = 1 is the only point. Thus the 0th
rotation sequence partition is the trivial partition, and its length is 1 = |γ0|.
So d0 = 1. By Theorem 3.2, q0 = 1 as well.

The first rotation sequence partition of [0, 1) produces a1 intervals of
width |γ1|, by Theorem 3.2. So d1 = a1. The recurrence relation in The-
orem 3.2 gives q1 = a1q0 + q−1 = a1. These initial conditions for di are
consistent with the corresponding values of qi.

Now consider an arbitrary stage i, i ≥ 2. Just before stage i begins,
stage i−1 is completed, and the (i−1)st rotation sequence partition of [0, 1)
gives di−1 intervals of length |γi−1|. During stage i, each of these intervals is
further partitioned into ai intervals of length |γi|, plus a leftover piece, giving
a total of aidi−1 intervals.

However, other intervals of length |γi| exist. The (i − 2)nd rotation se-
quence partition gives intervals of length |γi−2| and |γi−1| (Lemma 3.3). Dur-
ing stage i − 1, each interval of length |γi−2| are further partitioned into
intervals of length |γi−1| and one leftover piece of length |γi|. These intervals
of length |γi| remain intact during stage i. The number of these intervals is
the same as the number of intervals of width |γi−2| at the end of stage i− 2,
which equals di−2 by definition.

The total number of intervals of length |γi| after stage i equals

di = aidi−1 + di−2,

which is precisely the recurrence relation for qi. Since d0 = q0 and d1 = q1,
it follows that di = qi for i ≥ 0, proving the first claim of the theorem.

To prove the second claim, note that we have just shown that the (i−1)st
rotation sequence partition of [0, 1) gives qi−1 intervals of length |γi−1| and
some number of intervals of length |γi|. During stage i, each interval of length
|γi−1| is further partitioned into intervals of length |γi| and one leftover piece
of length |γi+1|, while the intervals of length |γi| are not further partitioned.
Therefore the number of intervals of length |γi+1| is the same as the number
of intervals of length |γi−1| in the (i − 1)st partition, which is qi−1. This
establishes the second claim.

Corollary 3.1 Ni = qi + qi−1.

Proof:

The number of partition points in the ith rotation sequence partition is clearly

44

Ni + 1, since the set of partition points is exactly the Ni points given by the
algorithm and one extra point. The number of partition intervals is one less
than the number of partition points, so there are Ni partition intervals. But,
combining Lemma 3.3 and Theorem 3.3, the number of intervals is qi + qi−1.
Thus Ni = qi + qi−1.

Theorem 3.4 For any i, with γi and Ni given by the rotation algorithm,

|γi+1| < 1
Ni

< |γi|.

Proof:

Proof is by contradiction. Suppose that |γi+1| ≥ 1
Ni

. The ith rotation se-
quence partition gives qi intervals of length |γi| and qi−1 intervals of length
|γi+1| (Theorem 3.3). Since the sum of the lengths of the partition inter-
vals equals 1, the length of the entire interval [0, 1), it follows that 1 =
qi−1|γi+1|+ qi|γi|. Since |γi| > |γi+1|, 1 > (qi−1 + qi)|γi+1| = Ni|γi+1|. But the
hypothesis implies that Ni|γi+1| ≥ 1, a contradiction. Thus |γi+1| < 1

Ni
.

Similarly, suppose that |γi| ≤ 1
N

. Then 1 = qi−1|γi+1| + qi|γi|, just as
above. Since |γi+1| = |γi|, 1 < (qi−1 + qi)|γi| = Ni|γi|. But the hypothesis
implies that Ni|γi| ≤ 1. This is a contradiction, so |γi| > 1

N
. The conclusion

follows from these two results.

The points xNi
, the values of the last points added in each stage, seem

to approach some limit as N goes to infinity. In particular, the following
property holds. Define N−1 = 1, N0 = 0, γ0 = 1 for bookkeeping devices.

Theorem 3.5 For all Ni, i ≥ 1,

xNi−1
< xNi

< xNi−2
, for i odd,

xNi−1
> xNi

> xNi−2
, for i even.

Proof:

The base case is trivial. Since xN1
is a point in [0, 1), and clearly from the

algorithm xN1
6= 0, it follows that 0 = xN0

< xN1
< xN

−1
= 1.

Now assume that the claim holds at the end of stage i−1 for some positive
integer i. If i is odd, i − 1 is even and xNi−3

< xNi−1
< xNi−2

. From the
recursion relation defining γi, γi > 0.

45

As stage i begins (or equivalently, stage i−1 ends), each of the intervals of
the (i−1)st rotation sequence partition has length |γi−1| or |γi| (Theorem 3.3).
Thus for all q where such a value exists, b(q), c(q) ∈ {|γi−1|, |γi|}.

When the point xNi−1
is added, b(Ni−1) is set to |γi−1|. The value of b(q)

for any q changes only when a new point is marked; since xNi−1
is the last

point added in stage i − 1, b(Ni−1) = |γi−1| still at the start of stage i.
In stage i, q begins at 1. When b(q) = γi, no point is added according to

the algorithm. When b(q) = γi−1, a point xr is marked with b(r) = b(q) − γi

= |γi−1| − γi. For notation purposes, let Ni−1 = s0. When q = Ni−1, let
s1 = N after N has been incremented. We know that a point is added to the
right of xNi−1

because b(Ni−1) = |γi−1|. Therefore, the point added to the
right of xNi−1

is xs1
.

By Theorem 3.2, a total of ai points are marked to the right of each
xq with b(q) = |γi−1|. Repeat the above process: For j = 2, 3, . . . , ai, let
sj−2 < q ≤ sj−1 (where the sjs are defined recursively through this process).
Note that jγi ≤ aiγi < |γi−1|, so |γi−1| − jγi > 0. Adding γi to both sides
of this inequality gives |γi−1| − (j − 1)γi > γi. But the left side of this
inequality equals b(q) for q in this range; therefore a new point xr is added
with b(r) = |γi−1| − jγi. When q = sj−1, let sj = N after N has been
incremented. Thus the point added to the right of xsj−1

is xsj
.

For sai−1 < q ≤ sai
, b(q) = |γi−1| − aiγi. Since ai =

⌊∣

∣

∣

γi−1

γi

∣

∣

∣

⌋

, |γi−1| =
aiγi < γi by the definition of the floor function. Thus no new points are
added. When q = sai

= N , the stage ends. Thus Ni = sai
.

Since xNi
= xsai

> xsai−1
> · · · > xs0

= xNi−1
, clearly xNi

> xNi−1
.

To prove the other inequality, recall that b(Ni−1) = |γi−1|. Every point
xr to the right of xNi−1

satisfies xr − xNi−1
= |γi−1|, by definition of b. Thus,

using the hypothesis that xNi−2
> xNi−1

, we get xNi−2
− xNi−1

≥ |γi−1|.
The distance between xsi

and xsi+1
, i = 0, 1, . . . , ai − 1, is clearly γi by

construction. Thus, using a telescoping sum, xsai
−xs0

= xNi
−xNi−1

= aiγi.
Since aiγi < |γi−1|.

xNi
− xNi−1

≤ |γi−1|.
We know from multiplying the induction hypothesis by −1 that

xNi−1
− xNi−2

< −|γi−1|.
Adding these two inequalities gives

xNi
− xNi−2

< 0.

46

The desired conclusion follows from this and the conclusion above that
xNi

> xNi−1
.

The proof for the case with i even is similar, except the signs are reversed
in the induction hypothesis, the absolute value signs are used for γi instead
of γi−1 since γi < 0 and γi−1 > 0, and c(q) is evaluated in stage i instead of
b(q).

Another theorem gives a result on the lengths of the ith rotation sequence
partition intervals containing the endpoints of [0, 1].

Theorem 3.6 Let [0, xa] and [xr, 1] be the intervals of the ith rotation se-

quence partition containing 0 and 1, i ≥ 1. If i is odd, then xa − 0 = γi and

1 − xr = |γi+1|. If i is even, then xa − 0 = γi+1 and 1 − xr = |γi|.

Proof:

The statement will be proven by mathematical induction. It is easily verified
that the result holds for i = 1.

Now assume that i is odd and, with [0, xa] and [xr, 1] intervals of the
(i − 1)st rotation sequence partition, xa − 0 = γi and 1 − xr = |γi−1|, since
i−1 is even. Note that b(1) = γi, so that no point is marked in the partition
interval to the right of x1 = 0. Thus in the ith rotation sequence partition,
the interval containing 0 is still [0, xa], and xa − 0 = γi.

For q = r, b(r) = |γi−1| > γi, so a point xr1
is marked to the right of

xr. By Theorem 3.2, at the end of stage i, ai points xr1
, xr2

, . . . , xrai
, will

be marked to the right of xr. The interval [xrai
, 1] is therefore a partition

interval of the ith rotation sequence partition, and by definition its length is
|γi+1|. This establishes the induction step for i odd; the proof for i even is
similar.

3.2.2 Further Conjectures on the Discrepancy of the
Rotation Sequence

While evaluating the discrepancy for a number of different rotation sequences,
I initially believed the following statement to be true. In order to account for
the possibility of counting points in an interval [a, 1], which is not contained in
[0, 1), we define #[a, 1] = #[a, 1)+1, as if a point in the sequence existed at 1.

47

This is consistent with the circle model of the rotation sequence (Figure 3.1),
where the point at 1 is identified with the point at 0, a point of the sequence.

Conjecture 3.1 The discrepancy DNi
for the points marked at the end of

stage i for a rotation sequence is given by

DNi
=

∣

∣

∣

∣

∣

#[a, b]

N
− (b − a)

∣

∣

∣

∣

∣

,

where [a, b] is the smallest closed interval containing all the ith rotation se-

quence partition intervals of width |γi+1|.

Unfortunately, I discovered a counterexample for which this does not
hold. Let α =

√
5−1
2

, and construct the rotation sequence of fractional parts
of multiples of this value. It is easily verified that N4 = 8; the first eight
values of the sequence (rounded to six decimal places) are given in Table 3.1
and Figure 3.3.

x1 = 0.000000
x2 = 0.618034
x3 = 0.236068
x4 = 0.854102
x5 = 0.472136
x6 = 0.090170
x7 = 0.708204
x8 = 0.326238

Table 3.1: First eight values of rotation sequence for α = (
√

5 − 1)/2

The smallest closed interval containing all the intervals of length γ5 is
[x1, x7]. By the conjecture, the discrepancy should equal

∣

∣

∣

∣

∣

#[x1, x7]

8
− (x7 − x1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

7

8
− (0.708204)

∣

∣

∣

∣

= 0.166796.

48

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x1 x2x3 x4x5x6 x7x7x8

Figure 3.3: Plot of first eight values of rotation sequence for α = (
√

5− 1)/2

However,
∣

∣

∣

∣

∣

#[x1, x8 + ǫ)

8
− (x8 + ǫ − x1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

4

8
− (0.326238)− ǫ

∣

∣

∣

∣

= 0.173762 − ǫ

for arbitrarily small ǫ. Since discrepancy is a supremum over a set containing
the value 0.173762− ǫ, the discrepancy cannot equal 0.166796 as the conjec-
ture implies.

After experimenting with more rotation sequences with different irrational
numbers, I found that the following result seemed to be true, although I
could not prove it. Again, #[a, 1] is defined as #[a, 1) + 1, as if a point of
the sequence existed at 1.

49

Conjecture 3.2 Let ω be a rotation sequence. Then the discrepancy DNi
at

the end of stage i is given by

#[xNi
, 1]

Ni

− (1 − xNi
), for i odd,

#[0, xNi
]

Ni

− (xNi
− 0), for i even.

Pace and Salazar-Lazaro [7] attempted to study sequences generated by
the rotation sequence algorithm but with the γi sequence defined differently.
By changing the rotation algorithm slightly, they give a generalized algo-
rithm which does not depend on the rotation properties of the γi, only that
the sequence {γi} is decreasing in absolute value. Their report gives data
on discrepancy for a number of sequences formed with γi unrelated to the
rotation sequence. Most of these examples did not appear to give a low-
discrepancy sequence. They found an alternate recurrence relation for γi,
similar to the one used in the rotation sequence, for which the sequences
appeared to be low-discrepancy but the results were inconclusive.

3.2.3 Discrepancy Bound for the Rotation Sequence

Kuipers and Niederreiter [3] prove a result that the discrepancy of such a
sequence is O(log N

N
) in the case that the partial quotients of the continued

fraction sequence are bounded.

Theorem 3.7 Let α be an irrational number with bounded partial quotients;

i.e., for α = [a0, a1, a2, . . .], there exists an integer K with ai ≤ K for i ≥ 1.
Let ω be the sequence formed from the fractional parts of the integer multiples

of α; i.e., ω = {ωi} where ωi = {iα}. Then the discrepancy Dn(ω) satisfies

NDN(ω) ≤ 3 +

(

1

log ξ
+

K

log(K + 1)

)

log N,

where ξ = 1+
√

5
2

.

50

Chapter 4

Two Dimensional Low
Discrepancy Sequences

4.1 Defining Discrepancy in Two Dimensions

Before we define discrepancy in R2 we need to introduce some notation.

(α(1), β(1)) × (α(2), β(2)) = {(x, y) : α(1) < x < β(1) α(2) < y < β(2)}

is an open rectangle in R2.

[α(1), β(1)] × [α(2), β(2)] = {(x, y) : α(1) ≤ x ≤ β(1) α(2) ≤ y ≤ β(2)}

is a closed rectangle in R2. Similiarly, we can define a half open rectangle in
R2. For J = [α(1), β(1)) × [α(2), β(2)), we have

#(J) is the cardinality of {xi ∈ J : 1 ≤ i ≤ N}

area(J) = (β(1) − α(1))(β(2) − α(2))

We can now define discrepancy for R2.

Definition 4.1 Let {x1, x2, x3, ..., xN} be a sequence in R2. Let J = [α(1), β(1))×
[α(2), β(2)) ∈ [0, 1)2

. Then DN is defined as follows.

DN = sup
J

∣

∣

∣

∣

∣

#(J)

N
− area(J)

∣

∣

∣

∣

∣

A definition of D∗
N for R2 can be found in [3].

51

4.2 Creating the Two Dimensional Cut and

Stack Sequence (2DCS Sequence)

The first two dimensional sequence that we looked at is generated by a pro-
cess of cutting and stacking pieces of [0, 1)2. We have called this the Two
Dimensional Cut and Stack Sequence but we shall hereafter refer to this
sequence as the 2DCS Sequence.

For a given integer p greater than 1 we “cut” [0, 1)2 into p2 even parts.
We then “stack” these parts on top of each other such that the piece that
contains the origin is always at the bottom of the stack. We always stack
in the same order. We can continue to cut and stack in this manner. The
sequence points are found by mapping the point (0, 0) to the points directly
above it in the stack. For instance, x1 would be the point directly above (0, 0)
and x2 would be the point directly above x1. Continuing in this manner we
generate all of the points in the sequence.

The following is a figure of the 2DCS Sequence for p = 2 after three cuts.
0

0
.
2

0
.
4

0
.
6

0
.
81

0
.
2

0
.
4

0
.
6

0
.
8

1

Figure 4.1: 2DCS Sequence for p = 2.

52

4.3 Algorithm to Create the 2DCS Sequence

When writing the algorithm for this sequence we thought of the xm point
as a vector move of some xn point where n < m. The algorithm is written
in two parts. The first part generates the vectors and the second part uses
those vectors to generate the points of the sequence.

The following is the algorithm to create the sequence. For the time being
ignore all sections surrounded by ** or @@.

2DCS Algorithm

Let p be an integer greater than 1. The pointer, R, points to the vector, Vi,
that is being used. The counter, T , counts which round we are on. Initially,
set R = 1, T = 1, and V0 = (0, 0). Then follow the following algorithm to
create the vectors.

Loop
VR = [VR−1 + (1

p
, p−1

p
)]mod(1, 1)

R = R + 1
until Rmodp = 0
Loop

VR = V0 + (0, T
p
)

R = R + 1
loop
VR = [VR−1 + (1

p
, p−1

p
)]mod(1, 1)

R = R + 1
until Rmodp = 0
T = T + 1

until R = p2

Let p be an integer greater than 1. The pointer, q, points to the xi that
is being used and endlist, N , points to the last xi added to the sequence.
The pointer, y, points to which Vy you’re using and s is a counter. **θ is the
angle of rotation.** Initially, set x0 = (0, 0), q = 0, N = 0, y = 1, and s = 0.
**Choose 0 < θ < π

2
.** Then follow the following algorithm for n = 1, 2, 3, ...

to create the sequence.
Loop

M = Vy

loop
xN+1 = xq + (1

pn−1)M

53

@@xN+1 = [[xq

[

cos θ − sin θ
sin θ cos θ

]

+(1
pn−1)M]

[

cos θ sin θ
− sin θ cos θ

]

]mod(1, 1)@@

N = N + 1
q = q + 1

until q − 1 = s
set q = 0
y = y + 1

until y = p2

set s = N
set y = 1

4.4 Calculating DN of the 2DCS Sequence

Using only the information that we have so far we would need to use an
infinite number of half open rectangles in order to calculate the discrepancy
of this sequence. Since this is impossible to do we have proved a theorem
that lets us use only a finite number of open and closed rectangles. In or-
der to prove this we first prove several lemmas which require the following
definitions and notation.

Definitions and Notation

A = {[α, β) × [γ, δ) : [α, β), [γ, δ) ⊆[0,1)};
{x1, x2, ..., xN} = ω is a sequence of points in [0, 1)2;
N is a positive number;
x0 = (0, 0), xN+1 = (1, 1);
For a fixed N , #(A) is the cardinality of {i ∈ N : 1 ≤ i ≤ N, xi ∈ A},

intuitively the number of points of ω in A
The discrepancy DN(ω) = supA∈A

∣

∣

∣

#(A)
N

− area(A)
∣

∣

∣;

a(i) represents the ith coordinate of a; i.e., for a in R2, a = (a(1), a(2));

B1 = {[x(1)
i , x

(1)
j] × [x

(2)
k , x

(2)
l] : i, j, k, l ∈ {1, 2, ..., N}, x(1)

i ≤ x
(1)
j , x

(2)
k ≤

x
(2)
l }
B2 = {(x(1)

i , x
(1)
j) × (x

(2)
k , x

(2)
l) : i, j, k, l ∈ {1, 2, ..., N}, x(1)

i < x
(1)
j , x

(2)
k <

x
(2)
l }

Lemma 4.1 If X ∈ B1,
∣

∣

∣

#(X)
N

− area(X)
∣

∣

∣ ≤ DN (ω).

54

Proof: Let X = [x
(1)
i , x

(1)
j] × [x

(2)
k , x

(2)
l]. Thus,

∣

∣

∣

#(X)
N

− area(X)
∣

∣

∣

=
∣

∣

∣

#(X)
N

− (x
(1)
j − x

(1)
i)(x

(2)
l − x

(2)
k)

∣

∣

∣. Now for ǫ > 0, define Xǫ = [x
(1)
i , x

(1)
j +

ǫ)× [x
(2)
k , x

(2)
l + ǫ). For small enough ǫ, Xǫ ⊆ [0, 1)2 and #(Xǫ) = #(X). Fix

an ǫ that satisfies these. Since Xǫ ⊆ [0, 1)2, ǫ < 1.

Now,
∣

∣

∣

#(X)
N

− area(X)
∣

∣

∣

=
∣

∣

∣

#(Xǫ)
N

− (x
(1)
j + ǫ − x

(1)
i)(x

(2)
l + ǫ − x

(2)
k) + (−x

(1)
i + x

(1)
j − x

(2)
k + x

(2)
l)ǫ + ǫ2

∣

∣

∣

≤
∣

∣

∣

#(Xǫ)
N

− area(Xǫ)
∣

∣

∣+
∣

∣

∣(x
(1)
i − x

(1)
j + x

(2)
k − x

(2)
l)ǫ

∣

∣

∣+ ǫ2

(Triangle Inequality)

≤
∣

∣

∣

#(Xǫ)
N

− area(Xǫ)
∣

∣

∣+ 5ǫ (since 0 < x
(1)
i , x

(1)
j , x

(2)
k , x

(2)
l , ǫ, ǫ2 < 1)

≤ DN (ω) + 5ǫ (definitions of discrepancy and supremum, since Xǫ ∈ A).

Since
∣

∣

∣

#(X)
N

− area(X)
∣

∣

∣ ≤ DN (ω) + 5ǫ for an arbitrary small ǫ, it must

follow that for X ∈ B1,
∣

∣

∣

#(X)
N

− area(X)
∣

∣

∣ ≤ DN(ω).

Lemma 4.2 If X ∈ B2,
∣

∣

∣

#(X)
N

− area(X)
∣

∣

∣ ≤ DN (ω).

Proof: Let X = (x
(1)
i , x

(1)
j) × (x

(2)
k , x

(2)
l). Thus,

∣

∣

∣

#(X)
N

− area(X)
∣

∣

∣

=
∣

∣

∣

#(X)
N

− (x
(1)
j − x

(1)
i)(x

(2)
l − x

(2)
k)

∣

∣

∣. Now for ǫ > 0, define Yǫ = [x
(1)
i +

ǫ, x
(1)
j) × [x

(2)
k + ǫ, x

(2)
l). For small enough ǫ, Yǫ ⊆ X ⊆ [0, 1)2 and #(Yǫ) =

#(X). Fix an ǫ that satisfies these. Since Yǫ ⊆ [0, 1)2, ǫ < 1.

Now,
∣

∣

∣

#(X)
N

− area(X)
∣

∣

∣

=
∣

∣

∣

#(Yǫ)
N

− (x
(1)
j − ǫ − x

(1)
i)(x

(2)
l − ǫ − x

(2)
k) − (−x

(1)
i + x

(1)
j − x

(2)
k + x

(2)
l)ǫ + ǫ2

∣

∣

∣

≤
∣

∣

∣

#(Yǫ)
N

− area(Yǫ)
∣

∣

∣+
∣

∣

∣−(−x
(1)
i + x

(1)
j − x

(2)
k + x

(2)
l)ǫ

∣

∣

∣+ ǫ2

(Triangle Inequality)

=
∣

∣

∣

#(Yǫ)
N

− area(Yǫ)
∣

∣

∣+(−x
(1)
i +x

(1)
j −x

(2)
k +x

(2)
l)ǫ+ǫ2 (since 0 ≤ x

(1)
i , x

(1)
j , x

(2)
k , x

(2)
l , ǫ, ǫ2 <

1)

≤
∣

∣

∣

#(Yǫ)
N

− area(Yǫ)
∣

∣

∣+ 5ǫ (as in Lemma 4.1)

Since
∣

∣

∣

#(X)
N

− area(X)
∣

∣

∣ ≤ DN (ω) + 5ǫ for an arbitrary small ǫ, it must

follow that for X ∈ B2,
∣

∣

∣

#(X)
N

− area(X)
∣

∣

∣ ≤ DN(ω).

Lemma 4.3 Given N and ω let M = DN (ω). Then for all ǫ such that 0 ≤
ǫ ≤ M , there exists S ∈ (B1 ∪B2), such that M − ǫ <

∣

∣

∣

#(S)
N

− area(S)
∣

∣

∣ ≤ M .

55

Proof:
Fix 0 < ǫ < M . From the definitions of discrepancy and supremum there

exists T = [a(1), b(1))× [a(2), b(2)) ⊆ A such that M − ǫ <
∣

∣

∣

#(T)
N

− area(T)
∣

∣

∣ ≤
M .

Since M > 1
N

> 0 [3] we have #(T)
N

− area(T) 6= 0. There are two cases.

Case 1. #(T)
N

− area(T) > 0. Since area is always non-negative there
must be at least one point of the sequence inside T . Let i, j ∈ {1, 2, ..., N}
be such that [x

(1)
i , xj(1)] ⊂ [a(1), b(1)) and for all other k, l ∈ {1, 2, ..., N}

with [x
(1)
k , x

(1)
l] ⊂ [a(1), b(1)), x

(1)
j − x

(1)
i ≥ x

(1)
l − x

(1)
k . Similiarly, let p, q ∈

{1, 2, ..., N} be such that [x(2)
p , x(2)

q] ⊂ [a(2), b(2)) and for all other k, l ∈
{1, 2, ..., N} with [x

(2)
k , x

(2)
l] ⊂ [a(2), b(2)), x(2)

q − x(2)
p ≥ x

(2)
l − x

(2)
k . Intuitively,

S = [x
(1)
i , x

(1)
j]× [x(2)

p , x(2)
q] is a rectangle which, when the sides are extended,

they contain at least one sequence point with S ⊂ T . (i = j, p = q are
possible; in this case S would be a rectangle with area 0).

Now we have #(S) = #(T) and area(S) < area(T).

Thus, M − ǫ < #(T)
N

− area(T) < #(S)
N

− area(S) ≤ M from Lemma 4.1.

Since #(S)
N

− area(S) > 0 we have M − ǫ <
∣

∣

∣

#(S)
N

− area(S)
∣

∣

∣ ≤ M .

Case 2. area(T) − #(T)
N

> 0. If a(1) 6= 0 then let i, j ∈ {0, 1, ..., N + 1}
be such that (x

(1)
i , x

(1)
j) ⊃ [a(1), b(1)), and for all other k, l ∈ {0, 1, ..., N + 1}

with (x
(1)
k , x

(1)
l) ⊃ [a(1), b(1)), x

(1)
j − x

(1)
i ≤ x

(1)
l − x

(1)
k . If a(1) = 0 then let

i = 0 and j be defined such that x
(1)
j > b(1), x

(1)
j − b(1) < x

(1)
k − b(1) for

k ∈ {0, 1, ..., N + 1}. Similiarly, if a(2) 6= 0 let p, q ∈ {0, 1, ..., N + 1} be
such that (x(2)

p , x(2)
q) ⊃ [a(2), b(2)) and, for all other k, l ∈ {0, 1, ..., N +1} with

(x
(2)
k , x

(2)
l) ⊃ [a(2), b(2)), x(2)

q −x(2)
p ≤ x

(2)
l −x

(2)
k . If a(2) = 0 then let p = 0 and q

be defined such that x(2)
q > b(2), x(2)

q −b(2) < x
(2)
k −b(2) for k ∈ {0, 1, ..., N +1}.

Let S = (x
(1)
i , x

(1)
j) × (x(2)

p , x(2)
q).

Now we have #(S) ≤ #(T) and area(s) ≥ area(T).

Thus, M − ǫ < area(T) − #(T)
N

≤ area(S) − #(S)
N

≤ M from Lemma 4.2.

Since area(S) − #(S)
N

> 0 we have M − ǫ <
∣

∣

∣

#(S)
N

− area(S)
∣

∣

∣ ≤ M .

Combining these two cases we have ∃S ∈ (B1 ∪ B2) such that M − ǫ <
∣

∣

∣

#(S)
N

− area(S)
∣

∣

∣ ≤ M.

Theorem 4.1 For any sequence, ω, and any N ,

DN(ω) = maxS∈(B1∪B2)

{∣

∣

∣

#(S)
N

− area(S)
∣

∣

∣

}

56

Proof: We know
{∣

∣

∣

#(S)
N

− area(S)
∣

∣

∣ : S ∈ (B1 ∪ B2)
}

is finite so it has a max-
imum element P .

Let SP ∈ (B1 ∪ B2) be such that
∣

∣

∣

#(SP)
N

− area(SP)
∣

∣

∣ = P . From Lemma

4.1 and 4.2, we have P ≤ DN(ω).
Assume that P < DN (ω). Then DN(ω) − P = ǫ > 0. From Lemma 4.3

there exists S ∈ (B1 ∪ B2) such that P = DN(ω) − ǫ <
∣

∣

∣

#(S)
N

− area(S)
∣

∣

∣ ≤
DN(ω). This is a contradiction because P is the maximum element of a set

containing
∣

∣

∣

#(S)
N

− area(S)
∣

∣

∣ it cannot be less than that element. Therefore

P = DN(ω). So we have that DN(ω) = maxS∈(B1∪B2)

{∣

∣

∣

#(S)
N

− area(S)
∣

∣

∣

}

.

We wrote a MatlabTM script that takes as input a sequence of N points
in R2, imnplemented as an N × 2 matrix, and returns DN for that sequence.
The program can be found at /amaterasu/sd2d/reu97/simmons/disc2.m.

4.5 Theorem for discrepancy of the 2DCS

Sequence

Using the above results we can now prove the following theorem for discrep-
ancy of our sequence.

Theorem 4.2 Fix a positive integer p greater than 1. Let ω be the 2DCS Se-

quence on [0, 1)2 for p. Let N = p2n, then the discrepancy, DN(ω) is 2
√

N−1
N

.

Furthermore, DN(ω) =
∣

∣

∣

#(S)
N

− area(S)
∣

∣

∣ for S either (0, 1)2 or
[

0,
√

N−1√
N

]2
.

Proof:
We first show that for any open rectangle, S ∈ B2, the estimate of DN

will be the largest when S = (0, 1)2.

Let f(m, n) =
∣

∣

∣

#(S)
N

− area(S)
∣

∣

∣ where S is a m√
N
× n√

N
rectangle such that

S ∈ B2; m, n ∈ Z and 1 ≤ m, n ≤
√

N . Now, for any such S, f(m, n) =
∣

∣

∣

(m−1)(n−1)
N

− nm
N

∣

∣

∣ = m+n−1
N

.f(m, n) is a maximum when m, n =
√

N . So the

maximum value of f(m, n) is 2
√

N−1
N

. For m, n =
√

N, S is a 1 × 1 rectangle
so S must be (0, 1)2.

57

Now show that for any closed rectangle, S ∈ B1, the estimate of DN will

be the largest when S =
[

0,
√

N−1√
N

]2
. This will require looking at several

cases. Let g(m, n) = (#(S)
N

− area(S)) where S is a m√
N
× n√

N
rectangle such

that S ∈ B1; m, n ∈ Z and 1 ≤ m, n ≤
√

N . Let l2 = N .
Case 1: Suppose we have an m√

N
× n√

N
rectangle S such that S ∈ B1,

S has a vertex at (0,0); m, n ∈ Z and 0 ≤ m, n ≤ l − 1. Then g(m, n) =
(m+1)(n+1)

N
− mn

N
= m+n+1

N
. Notice in this case g(m, n) ≥ 0 so we do not need

to take the absolute value to get an estimate of discrepancy. Here g(m, n)
is maximized when m, n = l − 1 =

√
N − 1. The maximum value, is then

2
√

N−1
N

. Notice for m, n =
√

N − 1, S is [0,
√

N−1
N

]2.
Case 2: Suppose (0,0) were not a vertex of our m√

N
× n√

N
rectangle S with

S ∈ B1; m, n ∈ Z and 0 ≤ m, n ≤ l − 1. We can compare the estimate of
discrepancy that we get with S with the rectangle “shifted” so that a vertex
is at (0,0). This brings about two situations.

Situation 1: Suppose S is such that none of its sides lays along the line
from (0,1) to (1,1) or (1,0) to (1,1). Then the estimate for discrepancy will
be the same as the “shifted” estimate since the two areas are equal as are
the number of points in both rectangles.

Situation 2: Suppose S is such that at least one of its sides lays along the
line from (0,1) to (1,1) or (1,0) to (1,1). Then there is at least one vertex
of S that is not a point of the sequence. So the “shifted” rectangle has a
greater number of points and therefore has a higher discrepancy estimate.
Notice that the “shifted” rectangle corresponds to a rectangle from Case 1.

Note that Case 1 yields the highest discrepancy estimate so far.
Case 3: Let m and n be equal to l. So S is a 1 × 1 closed rectangle or,

in other words, S is [0, 1]2. For such an S, g(m, n) = N
N
− 1 = 0. Since our

discrepancy estimate is zero we have that the highest descrepancy estimate
is still found in Case 1.

Case 4: Let m or n be equal to l. Without loss of generality assume that
we have an mxl rectangle S such that S ∈ B1, m ∈ Z and 0 ≤ m ≤ l − 1.

In this case g(m, n) =
√

N(m+1)
N

− m
√

N
N

=
√

N
N

. For N ≥ 1 (since N = p2n

this will always hold) the maximum estimate of discrepancy from Case 1 is
greater than or equal to this estimate.

In conclusion, we have that for any closed rectangle S ∈ B1, the estimate

of discrepancy is maximized when S =
[

0,
√

N−1√
N

]2
.

58

From Theorem 4.1 we have that at the end of the nth level with N =
p2n, DN(ω) = 2

√
N−1
N

.

Now that we have a measure for the discrepancy of our sequence we can
use it for Quasi-Monte Carlo Integration.

4.6 Evaluating the quality of the discrep-

ancy for the 2DCS Sequence

We know that this sequence is a low-discrepancy sequence by Definition 2.4

since limN→∞
2
√

N−1
N

= 0. Despite the fact that this is a low-discrepancy
sequence the next step was to ask ourselves how “good” our measure of
discrepancy was. Although it is true that we can make the discrepancy as
low as we want by simply increasing the number of points in the sequence,
this is not very practical. As the number of points that we have to use for
Quasi-Monte Carlo Integration increases so does the computation time. This
naturally leads to many questions.

Is our discrepancy good enough?
Is there some other sequence such that for all N its discrepancy is lower?

4.7 Transformations of the 2DCS Sequence

At this point we decided to look at doing transformations on the 2DCS
Sequence that might yield sequences of lower discrepancy.

The transformation that we tried was to rotate the 2DCS Sequence by θ
where 0 < θ < π

2
.

The algorithm for the Rotated Sequence is the same as the algorithm
for the 2DCS Sequence with some minor revisions. Insert all information
surrounded by **. For the line surrounded by @@ delete the previous line
and insert this one.

At the end of this chapter are some examples of rotated sequences.
Notice that these rotated sequences still have the points forming squares

but these squares are at an angle of θ to the x-axis so that when we try to
find discrepancy by using closed and open rectangles in (B1∪B2) we see that

59

it looks like these rectangles cannot have sequence points on more than two
vertices which makes it more difficult to find discrepancy of this sequence.
Our hope is that the discrepancy is better for this sequence.

Unfortunately, we did not have enough time to calculate the discrepancy
of this sequence.

4.8 Unanswered Questions

We still have many questions about our sequences including these.
What is the discrepancy of the rotated sequence?
Is it a better discrepancy than that of the 2DCS Sequence?
Would other transformations on the 2DCS Sequence yield lower or higher

discrepanies?

0

0
.
2

0
.
4

0
.
6

0
.
81

0
.
2

0
.
4

0
.
6

0
.
8

1

Figure 4.2: 2DCS, p=2, 2 cuts.

60

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

F
igu

re
4.3:

2D
C

S
,
p
=

2,
2

cu
ts,

rotated
30

D
egrees.

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

F
igu

re
4.4:

2D
C

S
,
p
=

2,
2

cu
ts,

rotated
60

D
egrees.

61

Chapter 5

Using Low-Discrepancy
Sequences in Quasi-Monte
Carlo Integration

The purpose of this chapter is to show applications of Quasi-Monte Carlo
Integration using low-discrepancy sequences described in Chapters 3 and 4.

The first sequence that we used in the application of Quasi-Monte Carlo
Integration was the rotation sequence for

√
5−1
2

, the fractional part of the
golden mean. Using a program from [7], we found that the discrepancy for
this sequence with N = 300 points is 0.0127269. We integrated three different
functions in one dimension and used the sequence points as the nodes. The
results are listed in Table 5.1. Note that [a, b] is the interval over which we
are integrating.

function a b QMCI exact error

f(x) = e
−x2

2√
2π

-1 1 0.682309 0.6826 0.04

f(x) = cos x −π
2

π
2

1.996209 2.0 0.19
f(x) = x6 + 4x3 + 5x + 2 0 2 48.210545 338

7
0.16

Table 5.1: Quasi-Monte Carlo integration of some functions using the rota-
tion sequence for (

√
5 − 1)/2 and 300 points

62

function a b c d QMCI exact error
f(x, y) = xy 0 1 0 1 0.191396 .25 23.44

f(x, y) = cos x + sin y π
6

π
3

−π
2

π
2

0.981513 (
√

3−1)π
2

14.64
f(x, y) = x2 + y2 + 4 0 1 0 2 10.734367 34

3
7.93

Table 5.2: Quasi-Monte Carlo integration of some functions using the 2DCS
sequence for p = 2 and three cuts

The second sequence that we used in the application of Quasi-Monte
Carlo Integration was the Two Dimensional Cut and Stack Sequence for
p = 2 after three cuts. The discrepancy of this sequence is 0.234375. Again
we integrated three different functions, only in two dimensions instead of one.
The results are listed in Table 5.2. Note that [a, b] is the interval over which
x is integrated and [c, d] is the interval over which y is integrated.

The discrepancy for the sequence of 2DCS nodes is much larger than
the discrepancy for the rotation sequence. Also, only 64 nodes of the 2DCS
sequence were used, whereas 300 nodes were used for the rotation sequence.
As expected, the percent errors for integration using the 2DCS sequence are
larger than those using the rotation sequence.

Below is a program which implements Quasi-Monte Carlo Integration for
two dimensional functions. The program that does this for one dimension
can be found in Chapter 1.

63

/*cc

c

c Ian Winokur

c Date started: July 23, 1997 Last updated: July 30, 1997

c

c This program is an application of a Monte Carlo Method of

c Integration using points from a low-discrepancy, uniformly distributed

c two dimensional sequence instead of using random points. This program

c evaluates each point, averages the function values, and then multiplies

c this average by the area length of the region being integrated to

c obtain an approximation of the integral. This technique uses the

c definition of the average value of a function.

c

c Variable directory:

c

c x the name of each of the x-coordinates being used

c y the name of each of the y-coordinates being used

c n counts the number of points being used

c a,b the endpoints of the interval along the x-axis

c c,d the endpoints of the interval along the y-axis

c sum contains the sum of the f(xi,yi)

c integral the approximation of the integral of f

c

cc*/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

float f(float x,float y); /* f is the function being integrated */

void main(void)

{

/* variable declarations */

int n;

float a, b, c, d, sum = 0.0, x, y, integral;

64

scanf("%f %f",&a,&b); /* read in a and b */

scanf("%f %f",&c,&d); /* read in c and d */

/* read first point in the sequence */

scanf("%f %f",&x,&y);

for (n = 0; x != -99.0; ++n)

{

/* scale values */

x = a + (b - a) * x;

y = c + (d - c) * y;

sum = sum + f(x,y);

scanf ("%f %f",&x,&y); /* get next point in the sequence */

}

/* calculate integral */

integral = (b - a) * (d - c) * sum/ (float) n;

/* output results */

printf("Function being evaluated: z = x^2 + y^2 + 4\n");

printf("Number of nodes used: %d\n",n);

printf("Interval along the x-axis: [%f,%f]\n",a,b);

printf("Interval along the y-axis: [%f,%f]\n",c,d);

printf("\n\nApproximation: %f\n\n",integral);

exit (0);

};

float f(float x,float y)

/* this function is the one being integrated */

{

return(x*x+y*y+4); /* put function here */

}; /* end of function f */

65

Bibliography

[1] Grimmett, G.R., and D.R. Stirzaker. Probability and Random Processes,

2nd ed. Oxford Science Publications, 1992.

[2] Khinchin, A. Ya. Continued Fractions. 3rd ed. Chicago: The University
of Chicago Press, 1964.

[3] Kuipers, Lauwerens, and Harald Niederreiter. Uniform Distribution of

Sequences. New York: John Wiley & Sons, 1974.

[4] Mount Holyoke College. Laboratories in Mathematical Experimentation,

A Bridge to Higher Mathematics. Springer, 1997.

[5] Niederreiter, Harald. Random Number Generation and Quasi-Monte

Carlo methods. Philadelphia: Society for Industrial and Applied Math-
ematics, 1992.

[6] Niven, Ivan, Herbert S. Zuckerman, and Hugh L. Montgomery. An In-

troduction to the Theory of Numbers. 5th ed. New York: John Wiley &
Sons, 1991.

[7] Pace, Laura A., and Carlos Salazar-Lazaro. Uniformly distributed se-
quences and their discrepancies. REU paper, Oregon State University,
1996.

[8] Stone, C.J. A Course in Probability and Statistics. Duxbury Press, 1996.

66

