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1 Introduction

When the x-ray of an object is taken, an x-ray of known intensity is emitted from
an x-ray source and then the intensity is measured at a sensor. The decrease in
intensity is related to how much \stu�" is between the source and the sensor.
Mathematically, \how much stu�" is along a line is the line integral of a function
describing where \stu�" is along that line.

Tomography is the study of what one can tell about a function just by
knowing the line integrals of that function. Fan beam tomography is tomography
where integrals along the rays emanating from a point are known. Lam and
Solmon [3] have reconstructed convex polygons away from the source of the
x-ray. We seek to expand this technique to nonconvex polygons.

1.1 Some simplifying assumptions

Throughout the paper there are several assumptions that we will make to sim-
plify our problem. First we will always assume that the x-ray source is at the
origin. This allows us to de�ne an x-ray of a function f(r; �) by

X [f ](�) =

Z
1

r=0

f(r; �)d�;

where (r; �) are polar coordinates in the plane.
We also note that we may rotate coordinates however we like about the �xed

origin. A proof may be found in [3]. If we can determine the shape of a polygon
in a rotated set of coordinates, rotating coordinates back gives a solution in the
original coordinates. That is with � being an arbitrary angle of rotation, let

f�(r; �) = f(r; � + �),
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Figure 1: A sample polygon and its X-ray.
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and note that
X [f ](� + �) = X [f�](�):

1.2 De�nition of the x-ray of a polygon

We should also carefully de�ne what we mean by "the x-ray of a polygon." We
will assume that all polygons are compact subsets of the plane with nonempty
interior. Place a polygon P anywhere in the plane away form the origin. Then
consider the characteristic function of the polygon, so

P (r; �) = 1 (r; �) 2 P
0 (r; �) 62 P:

(1)

We will also assume that no polygon will have the origin in its interior. In
other words,

P (0; �) = 0 (2)

for all polygons considered.
Now we de�ne \the x-ray of P" to be

X [P ](�) =

Z
1

r=0

P (r; �)d� (3)

When it is clear what polygon we are talking about we will surpress the P
and write only X(�). More conceptually, the X [P ](�) can be thought of as the
length of the intersection of a ray emanating from the origin at angle � with the
polygon. See Figure 1 for an example of a polygon and its x-ray.

2 The Problem of Reconstruction

The problem of reconstructing polygons can be divided into two subproblems:
Finding at what angles the corners of a polygon lie and reconstructing the pieces
of a polygon once cones containing no corners have been found.

2.1 The problem of �nding corners

We de�ne corners and cones.

De�nition 1. A point x is called a corner of a polygon P if x 2 @P and the

tangent line to P is not well de�ned at x.

De�nition 2. A cone is the part of the plane between two rays emanating from

the origin.

Often we will use the term cone to refer to a piece of the plane between
consecutive corners of a polygon. Our �rst goal is to take an x-ray and seperate
the plane into cones at angles �1; �2 : : : , where corners of a the x-rayed polygon
lay along the rays at angles �i.
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2.2 The problem of reconstructing wedges

After a polygon has been divided into cones which have no corners in them, we
would like to demonstrate uniqueness, and also a reconstruction, from the x-ray
of the polygon. We now de�ne a wedge.

De�nition 3. A wedge is a closed, connected component of a polygon both

containing no corners and lying inside a cone. Two wedges in the same cone

may not intersect in more than one point.

De�nition 4. The de�ning edges of a wedge are the two edges that form the

boundry of a wedge but are not subsets of the rays de�ning the cone the wedge

is inside.

We also de�ne a special kind of wedge, a parallel wedge, and show that the
location of a parallel wedge cannot be determined from its x-ray.

De�nition 5. A parallel wedge is a wedge with parallel de�ning edges.

Theorem 2.1. Two parallel wedges in the same cone cannot be distinguished by

a single point x-ray if the slopes of the de�ning edges are equal and the distances

between the lines that the de�ning edges are subsets of is equal.

Proof. Consider the x-ray of two such parallel wedges. Each will have the same
x-ray. The graph will be a line segment inside the cone such that the line
segment will have the same slope, m as the de�ning edges of the wedges, and
the line it is a subset of will be the distance d from the origin. Since the two
wedges have the same x-ray, there is no way to distinguish them using x-ray
data.

The same problem can occur if there are multiple wedges in the same cone
and two of the wedges have parallel de�ning edges. Take one of the wedges
bounded by one of the parallel edges and slice a small parallel wedge o� the side
containing one of the parallel edges. This parallel wedge can be attatched to the
second parallel edge to create a second polygon with the same x-ray. Therefore,
there is no way to distinguish between the two polygons using the x-ray data.

De�nition 6. A non-parallel n-wedge cone is a cone containing n wedges with

no two of the de�ning edges of the wedges parallel.

In [3] uniqueness of a non-parallel wedge from x-rays in four di�erent direc-
tions is shown. We generalize the result to show that for a non-parallel n-wedge
cone, 4n x-rays will uniquely determine the wedges in the cone. The proof given
here is simpler than the proof of uniqueness in [3].

3 The Problem of Finding Corners

The �rst step in determining polygons is locating the corners of the polygon.
For the special case of convex polygons, write X(�) = R(�)� r(�); where R(�)
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parameterizes the sides of the polygon further from the origin and r(�) pa-
rameterizes the sides of the polygon nearer to the origin. In [3], it is shown
that corners of convex polygons will always appear as discontinuities in the �rst
derivative of directed X-ray data. The general idea is that R(�) is convex, r(�)
is concave, but since �r(�) is considered when calculating the x-ray, disconti-
nuities in R0 and r0 cannot cancel each other out. This means that when there
is a corner in R or r, X 0(�) is discontinuous.

3.1 The More Complicated Star-Shaped Case

The above derivation does not work for star-shaped polygons since R(�) may
not be convex and r(�) may not be concave. We would still like a local condition
for �nding corners. One's �rst instinct is to look at a corner, then take right
and left of derivatives at the corner until one �nds a discrepency between the
two. This method is unnecessarily complicated. An easier question to answer
is,\What are local conditions for determining the two lines de�ning a wedge?"
Once we know the answer to this question, we will be able to tell if all left hand
neighborhoods and right hand neighborhoods of a point belong to the same
wedge. If we �nd a point where the left and right neighborhoods of the point
belong to di�erent wedges, we have found a corner. Now we state the conditions
that locally determine the top and bottom edges of a non-parallel wedge from
local x-ray data.

Lemma 3.1. Three derivatives of x-ray data of a wedge W at a point uniquely

determine the edges that bound W near and away form the origin.

Proof. First we choose coordinates such that a ray coming from the origin
at angle �

2 intersects the wedge W. Let R(�) and r(�) parameterize the inner
and outer edge, respectively.

Let the top edge have slope B and y-intercept A and the bottom edge have
slope b and y-intercept a in rectangular coordinates, and parameterize R(�) and
r(�) as follows:

R(�) =
A

sin(�) +B cos(�)
(4)

r(�) =
a

sin(�) + b cos(�)
: (5)

By setting X = R � r, we can calculate the general form of the �rst three
derivatives of the directed x-ray.

X(�) =
A

sin(�) +B cos(�)
�

a

sin(�) + b cos(�)
(6)

X 0(�) = �
A(cos(�) �B sin(�))

(sin(�) +B cos(�))2
+
a(cos(�) � b sin(�))

(sin(�)� b cos(�))2
(7)
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X 00(�) =
2A(cos(�)�B sin(�))2

(sin(�) +B cos(�))3
+

A

sin(�) +B cos(�)

�
2a(cos(�)� b sin(�))2

(sin(�) + b cos(�))3
�

a

sin(�) + b cos(�)
(8)

X(3)(�) =
�6A(cos(�)�B sin(�))3

(sin(�) +B cos(�))4
�
A(cos(�)�B sin(�))

(sin(�) +B cos(�))2
+

6a(cos(�)� b sin(�))3

(sin(�) + b cos(�))4
+
a(cos(�)� b sin(�))

(sin(�) + b cos(�))2
(9)

Evaluating the derivatives at �
2 yields

X(�=2) = A� a (10)

X 0(�=2) = AB � ab (11)

X 00(�=2) = 2(AB2 � ab2) +A� a (12)

X(3)(�=2) = 6(AB3 � ab3) +AB � ab: (13)

By taking linear combinations of these to cancel out all but the highest order
term from each equation we obtain constants such that:

X(
�

2
) = C0 = A� a (14)

X 0(
�

2
) = C1 = AB � ab (15)

X 00(
�

2
)�X(

�

2
) = C2 = AB2 � ab2 (16)

1

6

h
X(3)(

�

2
)�X 0(

�

2
)
i
= C3 = AB3 � ab3: (17)

Now, multiply (15) by B2 and substitute for AB3 in (17). Similarly we can
multiply (16) by b and substitute for ab3 yielding,

C3 = C2B �Bab2 + C2b�AB2b: (18)

Substituting ab2 = ABb� C2b we calculate:

C3 = C2B � C1Bb+AB2b+ C2b�Ab2b = �C1Bb+ C2B + C2b:
(19)

By making similar substitutions of BC1 and bC1 into (16), and also using A =
C0 + a we get:

C2 = C1(B + b)� C0Bb: (20)

Multiply(19) by C0 and (20) by �C1 and add.

C0C3 � C1C2 = (C0C2 � C2
1 )(B + b) (21)
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(20) and (21) are linear in (B+b) and (Bb). The equations are independent
because if the determinant of the system, �C0(C0C2 �C

2
1 ) were 0 we would be

forced to conclude that either A = a or B = b, both of which are not allowed by
the assumption that the wedge is not degenerate and the wedge is not parallel.
Since we can solve for B + b and Bb, we have at most two choices for (B, b).
There is at least one solution, since the data came from a wedge. We show that
if there are two solutions, only one of them will be acceptable as wedge data.

Proof. Assume that (A = A0; a = a0; B = B0; b = b0) solves the system. We
note that (A = �a0; a = �A0; B = b0; b = B0) also solves the system presented
in equations 14-17. These are the only two solutions, and only one of these, the
correct one, will yield A > 0. Therefore, there is a unique wedge satisfying the
x-ray data.

Corollary 3.1. Let P be a polygon with at most one wedge in every cornerless

cone. Let  be the polar angle of a ray emanating from the origin intersecting

at least one corner of P . Then one of X [P ], X [P ]0, X [P ]00, and X [P ](3) will be
discontinuous at  .

An example of this can be found in Figure 2.

3.2 Generalization to a Generic Non-Convex Polygon

The above theorem allows us to locate corners on star-shaped polygons, but is
not helpful in �nding corners of more generic non-convex polygons. We prove
the following theorem about �nding corners of a generic nonconvex polygon.

Theorem 3.1. If a cone contains at most n wedges in it, and all cornerless

cones are non-parallel n-wedge cones then all corners of a polygon will appear

as discontinuities in the x-ray or one of its �rst 4n� 1 derivatives.

Theorem 3.1 is the case where n = 1. We will follow the same general
strategy used to prove Theorem 3.1. First we will show that 4n� 1 derivatives
uniquely determine n-wedges in a cone. Then, since a corner is at the boundary
of two wedges, it must have di�erent right and left hand limits in the x-ray or
in one of the �rst 4n� 1 derivatives. Therefore, there will be a discontinuity in
the x-ray or one of its �rst 4n� 1 derivatives at a corner.

Now we show that 4n � 1 derivatives determine a wedge. To do this we
prove a lemma about derivatives of a line which will carry over into derivatives
of x-rays.

Lemma 3.2. The mth polar derivative of a line not passing through the origin

is of the form

R(m)(�) =a(m;m)A(cos(�)�B sin(�))m(sin(�) +B(cos(�))�(m+1) +

m�1X
i=1

a(m;i)R
(i)(�)
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Figure 2: This polygon's (left) corners do not show up earlier than the third
derivative of the x-ray data. The consecutive di�erence of numerical estimates
of the third derivative are shown on the right. Notice the spike at �

2 .
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where

R(�) = A(sin(�) +B cos(�))�1

and the a(m;i) are constants.

Proof. The proof uses induction. For base cases we have the parameteriza-
tion of the line itself and its �rst derivatives. Inductively we di�erentiate

R(m)(�) =a(m;m)A(cos(�) �B sin(�))m(sin(�) +B cos(�))�(m+1) +

m�1X
i=1

a(m;i)R
(i)(�)

to get

R(m+1)(�) = �(m+ 1)a(m;m)A(cos(�)�B sin(�))m+1(sin(�) +B(cos(�))�(m+2) �

ma(m;m)A(cos(�)�B sin(�))m�1(sin(�) +B(cos(�))�m +

m�1X
i=1

a(m;i)R
(i+1)(�)

= a(m+1;m+1)A(cos(�)�B sin(�))m+1(sin(�) +B(cos(�))�(m+2) +
mX
i=1

a(m+1;i)R
(i)(�):

The last step is taken by substituting for A(cos(�)�mB sin(�))m�1(sin(�)+
B)�m(cos(�))�(m) using the formula for the (m�1)th derivative, then combining
like terms and calling the new constants a(m+1;i).

This lemma tells us that by taking linear combinations of the derivatives and
evaluating at �

2 we can �nd constants K0;K1; : : :K4n�1 such that Ki = ABi.
We may write the x-ray of n wedges in a cone as a sum of the 2n de�ning

edges of the wedge, using the convention that a negative value for some Ai
means edge i is the bottom edge of some wedge. Given an n-wedge cone, we
can derive constants Ci such that

C0 = A0 + A1 + : : : + A2n

C1 = A0B0 + A1B1 + : : : + A2nB2n

C2 = A0B
2
0 + A1B

2
1 + : : : + A2nB

2
2n

...
...

...
...

C4n�1 = A0B
4n�1
0 + A1B

4n�1
1 + : : : + A2nB

4n�1
2n ;

where (Ai; Bi) together determine some edge bounding a wedge in the cone.
To prove uniqueness of the n-wedges, assume that two n-wedge cones, W

and W 0, agree at the x-ray and the �rst 4n� 1 derivatives. We characterize W
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as above, and for W 0 write

C0 = A00 + A01 + : : : + A02n
C1 = A00B

0

0 + A01B
0

1 + : : : + A02nB
0

2n

C2 = A00(B
0

0)
2 + A01(B

0

1)
2 + : : : + A02n(B

0

2n)
2

...
...

...
...

C4n�1 = A00(B
0

0)
4n�1 + A01(B

0

1)
4n�1 + : : : + A02n(B

0

2n)
4n�1:

Since we are assumingX [W ](�2 ) = X [W 0](�2 ) we can set up the matrix equation:

B ~A = ~0; (22)

where

B =

2
6664

1 1 � � � 1 1 1 � � � 1
B1 B2 � � � B2n B01 B02 � � � B02n
...

...
...

...
...

...
B4n�1
1 B4n�1

2 � � � B4n�1
2n (B01)

4n�1 (B02)
4n�1 � � � (B02n)

4n�1

3
7775

and
~A =

�
A1 A2 � � � A2n �A01 �A`2 � � � �A02n

�T
:

B is both singular, since ~A 6= ~0, and a Vandermonde matrix. This means
that either Bi = Bj (i 6= j) or B0i = B0j (i 6= j) or Bi = B0j (for any i and j).
However, we are assuming that no two edges are parallel, so Bi = Bj and
B0i = B0j are both impossible.1 Therefore, for some (i; j) Bi = B0j . The indicies
of the A's and B's have no purpose other than di�erentiating the A's and B's.
Without loss of generality we can re-index so that we reach the conclusion
B2n = B02n:

Setting B2n = B02n we can write down a new system of equations. The
subscripts of the matrices will be in parenthesis to distinguish them from entries
in the matrix.

B(1) = ~A1 (23)

B(1) =

2
6664

1 1 � � � 1 1 1 � � � 1
B1 B2 � � � B2n B01 B02 � � � B02n�1
...

...
...

...
...

...
B4n�2
1 B4n�2

2 � � � B4n�2
2n (B01)

4n�2 (B02)
4n�2 � � � (B02n�1)

4n�2

3
7775

1After following the argument made below, it will become clear that if B0

i = B0

j we will

eventualy have to conclude that Bk = Bl for some k; l, reaching a contradiction.
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~A1 =

2
6666666666664

A1

A2

...
A2n �A02n

�A01
�A`2
...

�A02n�1

3
7777777777775

We ignore the (4n� 1)th equation for the purpose of maintaining a square

matrix. Now we iterate this argument. B(1) is a Vandermonde matrix. ~A1 is

non-zero, but B(1)
~A1 = ~0. Therefore B(1) is also singular. This means that for

some (i; j), Bi = B0j , i 6= 2n, since this would imply that either some Bi = B2n

or B0i = B02n. Without loss of generality we assume that B2n�1 = B02n�1.
We continue to iterate this argument until we conclude that B1 = B01, B2 =

B02, : : : B2n = B02n. When all necessary substitutions are made the system in
matrix form is2

6664

1 1 � � � 1
B1 B2 � � � B2n

...
...

...
B2n�1
1 B2n�1

2 � � � B2n�1
2n

3
7775

2
6664

A1 �A01
A2 �A02

...
A2n �A02n

3
7775 = ~0:

The matrix is Vandermonde and must be non-singular since we assumed

Bi 6= Bj (i 6= j). We conclude
�
A1 �A01 A2 �A02 � � � A2n �A02n

�T
= ~0.

That is, A1 = A01, A2 = A02 : : : A2n = A02n. Since all the slopes and corre-
sponding intercepts of the de�ning edges are equal, we conclude that W =W 0.

Since an n-wedges cone is uniquely determined by the x-ray and 4n � 1
derviatives, it follows that every corner in a polygon with at most n-wedges
in a cone will appear as a discontinuity in the x-ray or one of the �rst 4n � 1
derivatives.

4 Uniqueness of Non-parallel Wedges

In this section of the paper we show that x-rays in 4n directions uniquely de-
termine a non-parallel n-wedge. Using this result we suggest an algebraic re-
construction for a non-parallel 2-wedge from x-ray data from eight directions.
There is already a known algebraic reconstruction for a single non-parallel wedge
from four directions. Here we will use a similar technique for reconstructing a
non-parallel 2-wedge.

4.1 Uniqueness of an n-wedge from 4n directions

In [3], it is shown that x-rays in 4 directions uniquely determine a non-parallel 1-
wedge. In this section of the paper, it will be shown that a non-parallel n-wedge
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is uniquely determined by x-rays in 4n directions. As mentioned before, it is
important to assume that the n-wedge has no two de�ning edges parallel. To
prove uniqueness, we use theorem 5.3.13 of [2] which �rst appeared in [1]. The
proof works by showing that these conditions are met in each cone drawn such
that no corners of the polygon lie in the interior of any cone. Thus when two
n-wedges have equal x-rays everywhere in a cone, it is possible to use theorem
5.3.13 to impose conditions on the de�ning edges of the wedges even though
it is stated for polygons. First, notation is developed for the statement of the
theorem.

Let W andW 0 be two n-wedges, each with 2n de�ning edges. Let C(�; �) =
f(r; �) : � � � � �g be a cone with 0 < � � � � �: Let � be an angle such that
0 � � < �: Label the set of de�ning edges of W and W 0 by ei; 1 � i � 2n; and
denote fei; i 2 N(�)g those ei parallel to the direction �: Suppose ei intersects
the ray f� = �g at (ri; �): De�ne ai = +1(or � 1) if a moving point on the
ray f� = 
; � < 
 < �g leaves W (or enters W , respectively) as its distance
from the origin increases across ei; and visa versa for de�ning edges of W 0: The
theorem may now be properly stated. A proof is in [2].

Theorem 4.1. With this notation, two n-wedges, W and W 0 have the same

x-rays in every direction in the cone C(�; �) = f(r; �) : � � � � �g , 8 �
such that 0 � � < �; the family fei; i 2 N(�)g of edges satis�es

P
fairi : n 2

N(�)g = 0:

Before using this theorem to show uniqueness of a non-parallel n-wedge
from 4n x-rays, we show that if x-rays of two non-parallel n-wedges agree in 4n
directions, then the x-rays agree in every direction in the cone.

Lemma 4.1. If two nonparallel n-wedges have x-rays equal in 4n directions,

then the x-rays agree in the entire cone enclosing the n-wedges.

Proof. Let W and W 0 be two n-wedges with equal x-rays in 4n directions. W
and W 0 are composed of 1-wedges (W1;W2; : : : ;Wn) and (W 01;W 02; : : : ;W 0n)
where the 1-wedges move away from the origin as their index increases. For
a general 1-wedge Wk of W , let (rk ; �) and (Rk; �) denote the points of in-
tersection of the wedge's lower de�ning edge and upper de�ning edge with the
ray f� = �g, respectively. Then by requiring the n-wedge to be in the half
plane f(x; y)jx > 0g, we have 0 < r1 � R1 � r2 � R2 � : : : � rn � Rn:
For W 0, the corresponding 1-wedge W 0

k has points of intersection (rk + dk; �)
and (Rk +Dk; �), with, necessarily, dk > �rk and Dk > �Rk. Thus we have
0 < r1 + d1 � R1 + D1 � r2 + d2 � R2 + D2 � : : : � rn + dn � Rn + Dn

and
Pn

i=1 (Di � di) = 0: Denote the points of Wk and W 0

k intersecting the ray
f� = �g in the analagous way by (gk; �); (Gk; �); (gk+ ck; �); and (Gk+Ck; �):
Here, we get

Pn
i=1 (Ci � ci) = 0: Finally, note that if two consecutive edges in-

tersect in one point on the ray f� = �g; then these edges must intersect the ray
f� = �g in separate points. This requirement is to prevent consecutive de�ning
edges to be the same and, consequently, having fewer than n-wedges.
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For a general direction �; the x-ray of a 1-wedge Wk from W is given by

GkRk

Gk sin(�� �) +Rk sin(� � �)
�

gkrk
gk sin(�� �) + rk sin(� � �)

:

Likewise, the x-ray of a 1-wedge W 0

k from W 0 is given by

(Gk + Ck)(Rk +Dk)

(Gk + Ck) sin(�� �) + (Rk +Dk) sin(� � �)

�
(gk + ck)(rk + dk)

(gk + ck) sin(�� �) + (rk + dk) sin(� � �)
:

These equations are found by parameterizing the equation of the de�ning edges
of the 1-wedges and �nding the points of intersection with the ray f� = �g. Let,
for convenience, L� = sin(� � �) and M� = sin(� � �): In this notation, an
x-ray of W in the direction �; the sum of its 1-wedge x-rays, is given by

nX
i=1

GiRi

GiL� +RiM�

�
giri

giL� + riM�

=
nX
i=1

Gigi(Ri � ri)L� +Riri(Gi � gi)M�

GigiL2
� + (Giri +Rigi)L�M� +RiriM2

�

:

With the equation for the x-ray of W 0 in the direction � found analagously, the
x-rays of W and W 0 are equal in the directon � when

nX
i=1

[
t1iL� + t2iM�

t3iL
2
� + t4iL�M� + t5iM

2
�

�
t6iL� + t7iM�

t8iL
2
� + t9iL�M� + t10iM

2
�

] = 0;

where
t1i = (Gi + Ci)(gi + di)(Ri +Di � ri � di);

t2i = (Ri +Di)(ri + di)(Gi + Ci � gi � ci);

t3i = (Gi + Ci)(gi + ci);

t4i = (Gi + Ci)(ri + di) + (Ri +Di)(gi + ci);

t5i = (Ri +Di)(ri + di);

t6i = Gigi(Ri � ri);

t7i = Riri(Gi � gi);

t8i = Gigi;

t9i = Giri +Rigi; and
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t10i = Riri:

After simplifying,
Pn

i=1
Ai

Bi
= 0; where

Ai = [Gigi(Gi + Ci)(gi + ci)(Di � di)]L
3
� + [k1]L

2
�M�

+[k2]M�L
2
� + [Riri(Ri +Di)(ri + di)(Ci � ci)]M

3
�;

and
Bi = [Gigi(Gi + Ci)(gi + ci)]L

4
� + [k3]L

3
�M� + [k4]L

2
�M

2
�

+[k5]L�M
3
� + [Riri(Ri +Di)(ri + di)]M

4;

where the ki are coe�cients depending on the points of intersection of Wi and
W 0

i with the de�ning rays of the enclosing cone.
Now expand the sum, take a common denominator, clear it, and notice

the result is homogenous of order 3+4(n-1)=4n-1. This equation has the form
kL4n�1

� + (f2)L
4n�2
� M� + � � � + (f4n�1)L�M

4n�2
� + qM4n�1

� = 0; where the fi
are coe�cients depending on points of intersection of wedges with the enclosing
cone, and

k =

nX
i=1

(Di � di)

nY
i=1

(Gigi)(Gi + Ci)(gi + ci) = 0

and

q =

nX
i=1

(Ci � ci)

nY
i=1

(Riri)(Ri +Di)(ri + di) = 0

since
nX
i=1

(Ci � ci) =

nX
i=1

(Di � di) = 0:

Thus, two n-wedge x-rays agree in the direction � when (f2)L
4n�2
� M�+ � � �+

(f4n�1)L�M
4n�2
� = 0: First note that sin(�� �) = 0 =) � = �, or �� � = �;

neither of which is possible with 0 < � < � < � < �. Thus, L� 6= 0: Similarly,
M� 6= 0: Divide by L�M� to get (f2)L

4n�3
� + � � � + (f4n�1)M

4n�3
� = 0: Again

divide by L4n�3
� to get f2 + f3(

M�

L�
) + f4(

M�

L�
)2 + � � �+ f4n�1(

M�

L�
)4n�3 = 0:

For simplicity, let Y� =
M�

L�
: Then we have the polynomial

f2 + f3(Y�) + � � �+ f4n�1(Y�)
4n�3 = 0:

Here there can be no more than 4n�3 distinct values of Y� that are roots unless
the polynomial is identically zero. Suppose Y�1 = Y�2 : Then

sin(� � �1)

sin(�1 � �)
=

sin(� � �2)

sin(�2 � �)
:

Expanding and cross multiplying gives

[sin(�) cos(�1)� cos(�) sin(�1)][sin(�2) cos(�)� cos(�2) sin(�)]
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= [sin(�) cos(�2)� cos(�) sin(�2)][sin(�1) cos(�)� cos(�1) sin(�)]:

After simplifying, one obtains tan(�) sin(�1 � �2) = tan(�) sin(�1 � �2): Since
sin(�1 � �2) 6= 0 in the acceptable range of angles, tan(�) = tan(�) which is
impossible for 0 < � < � < �: Then there are 4n�2 distinct values of Y� which
satisfy the equation. Hence the polynomial must be identically zero. Thus
x-rays of W and W 0 agree in every direction in the cone C(�; �):

From the above lemma we know that when two non-parallel n-wedges have
equal x-rays in 4n directions, they have equal x-rays in the cone enclosing them.
Now theorem 4.1 is used to demonstrate uniqueness.

Theorem 4.2. 4n x-rays uniquely determine a non-parallel n-wedge.

Proof. Consider an identical setup as in the above lemma. From the above
lemma, x-rays of the two n-wedges must agree in every direction in the cone
C(�; �): First note that each de�ning edge of W must be parallel to a unique
de�ning edge of W 0. Suppose a de�ning edge ` of W were not parallel to any
de�ning edge of W 0. Then since, by hypothesis, ` is not parallel to any of the
de�ning edges ofW , it is not parallel to any other de�ning edge. By theorem 4.1,
the point of intersection of ` with the ray f� = �g is (0; �): This contradicts
the original assumption that the n-wedge lies entirely in the upper half plane.
Now suppose that ` is parallel to two edges, `1 and `2 of W 0. No other of
the remaining 2n-1 de�ning edges of W may be parallel to `1 or `2 since that
would imply the de�ning edge is parallel to `. Thus one of the remaining 2n-1
de�ning edges of W is not parallel to any of the remaining 2n-2 de�ning edges
of W 0: Hence there exists a de�ning edge of W parallel to no other de�ning
edges, contradicting what has been said above. It is assumed hereafter that
each de�ning edge of W is parallel to a unique de�ning edge of W 0. The proof
proceeds by induction on the number of wedges.

Case, n=1:
By the above argument, it is true that either
(1) the bottom de�ning edge of W is parallel to the top de�ning edge of W 0

and the top de�ning edge of W is parallel to the bottom de�ning edge of W 0;
or (2) the bottom de�ning edge of W is parallel to the bottom de�ning edge of
W 0 and the top de�ning edge of W is parallel to the top de�ning edge of W 0:

If (1) occurs, R1+r1+d1 = 0 by theorem 4.1 and the fact that the top de�ning
edge of W and bottom de�ning edge of W 0 are parallel. This is impossible
since both R1 > 0 and r1 + d1 > 0: When (2) occurs, note that r1 = r1 + d1
and R1 = R1 + D1, by theorem 4.1. Then d1 = 0 = D1: Thus, the points
of intersection of the de�ning edges of W and W 0 with the ray f� = �g are
the same. Now the same argument may be used to show that the points of
intersection are the same on the line f� = �g, or simply note that it is forced
by the lines being parallel. In either case, W and W 0 are the same wedge. This
completes the proof for n=1.

Now suppose that for n = P � 1, 4(P � 1) x-rays uniquely determine a
non-parallel P � 1 wedge. Let W and W 0 be non-parallel P -wedges equal in
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4(P ) directions. By the above lemma, W and W 0 have the same x-rays in every
direction. Still, each de�ning edge of W is parallel to a unique de�ning edge of
W 0. Suppose that the bottom de�ning edge of W1 is not parallel to the bottom
de�ning edge of W 0

1 and that the top de�ning edge of W1 is not parallel to the
top de�ning edge of W 0

1: It will be shown that in either case, a contradiction is
reached.

The bottom edges of W1 and of W 0

1 not being parallel implies the bottom
edge of W1 is parallel to some de�ning edge from a 1-wedge W 0

k; k � 2 or that
it is parallel to the top de�ning edge of W 0

1. In other words,
(1) �r1 �Rk �Dk = 0, some k > 1, or

(2) �r1 + rk + dk = 0, some k > 1 hold.
(1) is impossible since r1 > 0 and Rk +Dk > 0:
From the top lines and an analagous argument, either
(3) R1 + rg + dg = 0, some g � 1, or

(4) R1 �Rg �Dg = 0, some g > 1.
Likewise, (3) is impossible.
Thus, when the bottom lines ofW1 andW

0

1 are not parallel and the top lines
of W1 and W 0

1 are not parallel, r1 = rk + dk, some k > 0, and R1 = Rg +Dg ,
some g > 0:

Identically, for the edges of W 0

1; r1+ d1 = rq , for some q > 0 and R1+D1 =
Rf , for some f > 0: Then r1 < R1 � rq =) rk + dk = r1 < rq = r1 + n1;
contradicting r1 + n1 � rk + nk: Although this part of the proof relies on the
inequality r1 < R1; if in fact r1 = R1; then g1 < G1 and the argument may be
reformulated accordingly.

Now we conclude that the bottom edge of W1 is parallel to the bottom edge
of W 0

1 and the top edge of W1 is parallel to the top edge of W 0

1: From the case
n=1, we have that W1 and W

0

1 are the same wedge. This implies that the P �1
other wedges of W and W 0 have the same x-ray in every direction in the cone.
By the inductive hypothesis, these P�1 wedges are uniquely determined. Thus,
a non-parallel P -wedge is uniquely determined by 4P x-rays. The general result
follows.

5 Non-parallel 2-wedge Reconstruction

Using the fact that a non-parallel n-wedge is uniquely determined by its integrals
along 4n rays, a technique for the algebraic reconstruction of a non-parallel 2-
wedge from x-ray data along eight rays is suggested.

Let W = (W1;W2) be a non-parallel 2-wedge in the upper-half plane where
W1 and W2 are the non-parallel 1-wedges with W1 closer to the origin, and
W1 and W2 sharing no more than one point in common. Using standard polar
coordinates let �1; �2; : : : ; �8, angles measured from the positive x-axis, denote
the eight directions from which data is taken. Moreover, require that �1 and
�8 de�ne the cone C = f(r; �)j�1 � � � �8g enclosing W = (W1;W2). For
each ray f� = �jg, denote the points of intersection of the ray with W1 by
(rj ; �j) and (Rj ; �j); with (rj ; �j) closer to the origin. Similarly, denote the
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points of intersection of the ray with W2 by (qj ; �j) and (Qj ; �j). Let �1 and
�2; with respective slopes m1 and m2; be the de�ning edges of W1: For W2; let
the de�ning edges be called �3 and �4 with respective slopes m3 and m4. Since
W = (W1;W2) is a non-parallel 2-wedge, m1 6= m2 6= m3 6= m4. We also require
that none of the de�ning edges is vertical to prevent some mi being in�nite.
Nevertheless, results found here will hold for vertical edges by continuity.

5.1 Generating equations

By writing the points of intersection, (rj ; �j) in rectangular coordinates as
(rj cos(�j); rj sin(�j)) and substituting them into the equation for the slope
of a line, we see

m1 =
rj sin(�j)� r1 sin(�1)

rj cos(�j)� r1 cos(�1)
:

Similarly, the equations

m2 =
Rj sin(�j)�R1 sin(�1)

Rj cos(�j)�R1 cos(�1)
(24)

m3 =
qj sin(�j)� q1 sin(�1)

qj cos(�j)� q1 cos(�1)
(25)

m4 =
Qj sin(�j)�Q1 sin(�1)

Qj cos(�j)�Q1 cos(�1)
(26)

2 � j � 8

hold.
After some elementary algebra,

rj =
sin(�1)�m1 cos(�1)

sin(�j)�m1 cos(�j)
r1 (27)

Rj =
sin(�1)�m2 cos(�1)

sin(�j)�m2 cos(�j)
R1 (28)

qj =
sin(�1)�m3 cos(�1)

sin(�j)�m3 cos(�j)
q1 (29)

Qj =
sin(�1)�m4 cos(�1)

sin(�j)�m4 cos(�j)
Q1 (30)

2 � j � 8.
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Now de�ne

bj =
sin(�1)�m1 cos(�1)

sin(�j)�m1 cos(�j)
(31)

aj =
sin(�1)�m2 cos(�1)

sin(�j)�m2 cos(�j)
(32)

dj =
sin(�1)�m3 cos(�1)

sin(�j)�m3 cos(�j)
(33)

cj =
sin(�1)�m4 cos(�1)

sin(�j)�m4 cos(�j)
(34)

2 � j � 8.

By construction, the linear system of equations

R1 � r1 +Q1 � q1 = �1 (35)

ajR1 � bjr1 + cjQ1 � djq1 = �j (36)

2 � j � 8

with coe�cients nonlinear in m1; m2; m3; and m4 has a solution 0 < r1 � q1:
By theorem 4.2 , the solution is unique.

Moreover, the matrix

2
664
1 �1 1 �1
ag �bg cg �dg
aj �bj cj �dj
ak �bk ck �dk

3
775

has rank four when 2 � g < j < k.

Proof. Suppose not. Then 9 
1; 
2; 
3; 
4 2 R; not all zero, such that


1(1;�1; 1;�1)+
2(aj ;�bj ; cj ;�dj)+
3(ak;�bk; ck;�dk) = 
4(ag ;�bg; cg;�dg):

Suppose that 
4 6= 0. By dividing through by 
4;

�1(1;�1; 1;�1)+�2(aj ;�bj ; cj ;�dj)+�3(ak;�bk; ck;�dk) = (ag ;�bg; cg;�dg);

with the �d not all zero.
Then

�2 sin(�1)� �2m2 cos(�1)

sin(�j)�m2 cos(�j)
+
�3 sin(�1)� �3m2 cos(�1)

sin(�k)�m2 cos(�k)

=
sin(�1)�m2 cos(�1)

sin(�g)�m2 cos(�g)
�
�1 sin(�g)� �1m2 cos(�g)

sin(�g)�m2 cos(�g)
; (37)

follows from equality in the �rst coordinate.
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After simpli�cation, we can rewrite this equation as

Am3
2 +Bm2

2 + Cm2 +D = 0; (38)

where
A = ��1 cos(�g) cos(�k) cos(�j)

��2 cos(�1) cos(�j) cos(�g)

��3 cos(�1) cos(�j) cos(�g)

+ cos(�1) cos(�k) cos(�j);

B = �1(sin(�j + �k) cos(�g) + cos(�k) cos(�j) sin(�g))

+�2(sin(�1 + �k) cos(�g) + cos(�1) cos(�k) sin(�g))

+�3(sin(�1 + �j) cos(�g) + cos(�1) cos(�j) sin(�g))

�(sin(�k + �j) cos(�1) + cos(�k) cos(�j) sin(�1));

C = ��1(sin(�j + �k) sin(�g) + cos(�g) sin(�j) sin(�k))

��2(sin(�1 + �k) sin(�g) + sin(�1) sin(�k) cos(�g))

��3(sin(�1 + �j) sin(�g) + cos(�g) sin(�1) sin(�j))

+(sin(�k + �j) sin(�1) + cos(�1) sin(�j) sin(�k)); and

D = �1 sin(�g) sin(�j) sin(�k)

+�2 sin(�1) sin(�k) sin(�g)

+�3 sin(�1) sin(�j) sin(�g)

� sin(�1) sin(�j) sin(�k):

Similarly, from the second, third, and fourth coordinates, we get the system

Am3
1 +Bm2

1 + Cm1 +D = 0 (39)

Am3
4 +Bm2

4 + Cm4 +D = 0 (40)

Am3
3 +Bm2

3 + Cm3 +D = 0: (41)

These four cubics, 38-41 have the same coe�cients, forcing at least two of
the md to be equal unless A = B = C = D = 0. By assumption, the 2-
wedge is non-parallel, so it must be that A = B = C = D = 0. From setting
A = B = C = D = 0; and using the rotational invariance to let �1 = �

2 ; the
following equations in the �i are satis�ed:

�1 cos(�g) cos(�k) cos(�j) = 0
�1(t1) + �2(cos(�k) cos(�g)) + �3(cos(�j) cos(�g)) = cos(�k) cos(�j)
�1(t2) + �2 sin(�k + �g) + �3 sin(�j + �g) = sin(�k + �j), and
�1(t3) + �2 sin(�k) sin(�j) + �3 sin(�j) sin(�g) = sin(�j) sin(�k); where the

ti are coe�cients determined by cosines of the x-ray directions (angles).
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These equations hold for (�1; �2; �3) 6= (0; 0; 0) if and only if the matrix2
664
cos(�g) cos(�k) cos(�j) 0 0 0

t1 cos(�k) cos(�g) cos(�j) cos(�g) � cos(�k) cos(�j)
t2 sin(�k + �g) sin(�j + �g) � sin(�k + �j)
t3 sin(�k) sin(�j) sin(�j) sin(�g) � sin(�j) sin(�k)

3
775

has zero determinant.
First note that cos(�g) cos(�k) cos(�j) is nonzero following the rotation be-

cause for each d 6= 1; �d lies in the interval (�2 ;
3�
2 ): By setting the determinant

equal to zero, we �nd that sin(�j + �k) sin(�g) cos(�g) sin(�j � �k) + sin(�g +
�j) sin(�k) cos(�k) sin(�g � �j) + sin(�k + �g) sin(�j) cos(�j) sin(�k � �g) = 0:
After more simpli�cation, sin(2(�k � �j)) + sin(2(�j � �g)) = sin(2(�k � �g)):

To see if there are any such �g ; �j ; and �k in the allowed range of angles
satisfying this equation, �rst �x �k and �g : Now f(�j) = sin(2(�k � �j)) +
sin(2(�j � �g))� sin(2(�k � �g) is a function in the variable �j which vanishes
at �j = �k and �j = �g : First note that f(�j) is an analytic function. Then
the derivative may be used to �nd how many maximum and minimum values
occur in the interval (�g ; �k); and thus how many times the graph will cross
the x-axis. We will �nd that either there is only one extremum, and hence
no roots of f(�j) in the proper range of angles, or that f(�j) is identically
zero. To see that the latter case is ruled out, f is evaluated at an angle in the
allowed range and seen not to be zero. By taking the derivative, and setting
it equal to zero, 2 cos(2(�k � �j)) = 2 cos(2(�j � �g): But 0 < �j � �g < �
and 0 < �k � �j < � =) 0 < 2(�g � �g) < 2� and 0 < 2(�k � �j) < 2�:
So, either (1) 2(�j � �g) = 2(�k � �j), or (2) 2(�j � �g) + 2(�k � �j) = 2�:

(1) implies that �j =
�k+�g

2 and (2) implies that �k � �g = � which is not
possible in the allowed range of angles. Thus there exists only one maximum
or minimum in the interval (�g ; �k); unless f(�j) vanishes everywhere in the

interval (�g ; �k): Consider f(
�g+�k

2 ) = 2 sin(�k � �g) � sin(2(�k � �g)): Since
2 sin(�k � �g) � sin(2(�k � �g)) = 2 sin(�k � �g)(1 � cos(�k � �g)) is equal to
zero only when cos(�k��g) = 1; we have that �k��g = 0; a contradiction since
�g < �k: Thus we conclude that the determinant is not equal to zero for all �j
in (�g ; �k); reaching a contradiction when 
4 6= 0: Now suppose that 
4 = 0:

Then


1 +

2 sin(�1)� 
2m2 cos(�1)

sin(�j)�m2 cos(�j)
+

3 sin(�1)� 
3m2 cos(�1)

sin(�k)�m2 cos(�k)
= 0

follows from equality in the �rst coordinate.
After rotating to �1 =

�
2 and further simpli�cation we rewrite this equation

as Am2
2 +Bm2 + C = 0; where

A = 
1 cos(�j) cos(�k);

B = �
1 sin(�j + �k)� 
2 cos(�k)� 
3 cos(�j);

and
C = 
1 sin(�j) sin(�k) + 
2 sin(�k) + 
3 sin(�j):
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Similarly, from the second, third, and fourth coordinates,

Am2
1 +Bm1 + C = 0 (42)

Am2
4 +Bm4 + C = 0 (43)

Am2
3 +Bm3 + C = 0: (44)

Since m1 6= m2 6= m3 6= m4, A = B = C = 0.
A=0 =) 
1 = 0 since cos(�j) cos(�k) 6= 0:Then B=0 and C=0=) (1) 
2 sin(�k)+


3 sin(�j) = 0; and (2) 
2 cos(�k) + 
3 cos(�j) = 0:
Since (
2; 
3) 6= (0; 0); (1) and (2) imply that

sin(�k) cos(�j)� sin(�j) cos(�k) = sin(�k � �j) = 0:

However, this is impossible in the permitted range of angles. Hence a contra-
diction is also derived when 
4 = 0:

Thus, 2
664
1 �1 1 �1
ag �bg cg �dg
aj �bj cj �dj
ak �bk ck �dk

3
775

has rank four when 2 � g < j < k.

From this last result Cramer's rule may be used to solve for R1: Using
Cramer's rule to write R1 in terms of determinants yields

R1 =

��������

�1 �1 1 �1
�2 �b2 c2 �d2
�3 �b3 c3 �d3
�w �bw cw �dw

����������������

1 �1 1 �1
a2 �b2 c2 �d2
a3 �b3 c3 �d3
aw �bw cw �dw

��������

;

for each w 2 f4; 5; 6; 7; 8g:
Next, set the solutions for R1 from consecutive w's equal and cross multiply

to obtain ��������

�1 �1 1 �1
�2 �b2 c2 �d2
�3 �b3 c3 �d3
�w �bw cw �dw

��������

��������

1 �1 1 �1
a2 �b2 c2 �d2
a3 �b3 c3 �d3
aw+1 �bw+1 cw+1 �dw+1

��������

�

��������

�1 �1 1 �1
�2 �b2 c2 �d2
�3 �b3 c3 �d3
�w+1 �bw+1 cw+1 �dw+1

��������

��������

1 �1 1 �1
a2 �b2 c2 �d2
a3 �b3 c3 �d3
aw �bw cw �dw

��������
= 0;
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for each w 2 f4; 5; 6; 7g:
This scheme yields four equations, one for each possible w. Using Maple,

these determinants are taken, and the following equations in the mi emerge:

A(j; j+1)(m1m2m3m4)+B(j; j+1)(m1m2m3+m1m2m4+m1m3m4+m2m3m4)

+C(j; j + 1)(m1m2 +m1m3 +m1m4 +m2m3 +m2m4 +m3m4)

+D(j; j + 1)(m1 +m2 +m3 +m4) +E(j; j + 1) = 0;

for j 2 f4; 5; 6; 7g; where

A(j; j + 1) = cos(�2) cos(�3) cos(�j) cos(�j+1)

[�2 cos(�2)
3 sin(�j+1 � �j) sin(�j � �3) sin(�j+1 � �3)

+�3 cos(�3)
3 sin(�j+1 � �j) sin(�j � �2) sin(�j+1 � �2)

+�j cos(�j)
3 sin(�j+1 � �3) sin(�3 � �2) sin(�j+1 � �2)

+�j+1 cos(�j+1)
3 sin(�j � �3) sin(�3 � �2) sin(�j � �2)];

B(j; j + 1) = cos(�2) cos(�3) cos(�j) cos(�j+1)

[�2 cos(�2)
2 sin(�2) sin(�j+1 � �j) sin(�j � �3) sin(�j+1 � �3)

��3 cos(�3)
2 sin(�3) sin(�j+1 � �j) sin(�j � �2) sin(�j+1 � �2)

+�j cos(�j)
2 sin(�j) sin(�j+1 � �3) sin(�3 � �2) sin(�j+1 � �2)

��j+1 cos(�j+1)
2 sin(�j+1) sin(�j � �3) sin(�3 � �2) sin(�j � �2)];

C(j; j + 1) = cos(�2) cos(�3) cos(�j) cos(�j+1)

[��2 cos(�2) sin(�2)
2 sin(�j+1 � �j) sin(�j+1 � �3) sin(�j � �3)

+�3 cos(�3) sin(�3)
2 sin(�j+1 � �j) sin(�j � �2) sin(�j+1 � �2)

��j cos(�j) sin(�j)
2 sin(�j+1 � �3) sin(�3 � �2) sin(�j+1 � �2)

+�j+1 cos(�j+1) sin(�j+1)
2 sin(�j � �3) sin(�3 � �2) sin(�j � �2)];

D(j; j + 1) = cos(�2) cos(�3) cos(�j) cos(�j+1)

[�2 sin(�2)
3 sin(�j+1 � �j) sin(�j+1 � �3) sin(�j � �3)

+�3 sin(�3)
3 sin(�j+1 � �j) sin(�j � �2) sin(�j+1 � �2)

+�j sin(�j)
3 sin(�j+1 � �3) sin(�3 � �2) sin(�j+1 � �2)

+�j+1 sin(�j+1)
3 sin(�j � �3) sin(�3 � �2) sin(�j � �2)];

and

E(j; j + 1) = �1 sin(�j+1 � �j) sin(�j+1 � �3) sin(�j � �3) sin(�j+1 � �2)

sin(�j � �2) sin(�3 � �2)
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��2 sin(�2)
4 cos(�3) cos(�j) cos(�j+1) sin(�j+1��3) sin(�j ��3) sin(�j+1��j)

+�3 sin(�3)
4 cos(�2) cos(�j) cos(�j+1) sin(�j+1��j) sin(�j ��2) sin(�j+1 ��2)

��j sin(�4)
4 cos(�2) cos(�3) cos(�j+1) sin(�j+1��3) sin(�j+1��2) sin(�3��2)

+�j+1 sin(�j+1)
4 cos(�2) cos(�3) cos(�j) sin(�j � �3) sin(�j � �2) sin(�3 � �2):

We think, but do not know whether Cramer's rule may be used again to
solve for the symmetric polynomials in the mi. However, assuming it could,
�nishing the reconstruction would amount to solving a quartic polynomial in
one of the mi and ordering the mi. This polynomial will yield four distinct roots
since, by 4.2, the wedge is uniquely determined. Furthermore, no attempts have
been made at implementing this reconstruction, but it seems as if one sought a
generalization, this technique may prove to be computationally di�cult. Likely,
a least-squares method of reconstruction, or using Newton's method to solve for
the roots would be more e�cient.

6 Conclusion

We have proven that a generic polygon with no parallel wedges is uniquely
determined by its x-ray from a point source. We can uniquely determine the
arrangement of a nonparallel n wedge cone from either 4n x-rays or 4n � 1
derivatives at a point and the x-ray at the same point. An area for further study
would be whether 4n total x-rays and derivatives from points in the wedge are
enough to uniquely determine a nonparallel n-wedge cone in general.

The results proved here generalize to a collection of polygons in the plane,
as we never needed the assumption that the polygon was connected. The short-
coming of these results is that we require apriori knowledge of how many wedges
will appear in a cone. Determination of how many wedges are in a cornerless
cone from x-ray data is an open problem.
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