i

Is Fi1 Random?

And Related Matters

By Thomas R. Amoth
MTH490X, FProf. Robson

8/7/88

Introduction

Many articles have been written on the subiect of normality
of pi and other numbers (Wagon, 1985), (Stoneham, 1983) and seem
to make the unwritten assumption that if pi is normal then it’'s
random. But very little, if any, attention has been given to the
question of whether such irrational numbers have a distribution of
digits that is more uniform than would be produced by a random
sequence or have some other subtle bias.

Clearly, pi and other such calculated numbers never were
really random in an absolute sense since they can be calculated
from well-known algorithms. Therefore a sufficiently _
sophisticated computer program looking for biases might detect the
digit sequence as being pi and therefore be able to predict the
digits which follow. This paper deals with not with such highly
tailored tests but with more conventional statistical properties
which would then dispel the notion pi and other numbers “look"
random.

A chi-squared test on the first 2000 digits of pi yvields chi-
squared = 3.97 giving a probability of only 9% that a random
sequence would be closer to perfectly uniform (Hald, 1958). The
distribution of the first 10 million digits of pi (Wagon, 19835,
yield chi-squared = 2.78 for a probability of 2.83% that a random
sequence would have a smaller value. These values are biased
enough toward too great a uniformity to be suspicious but not
conclusive and amounted to a "teaser" that inspired this project.

One control in this experiment-—a sequence of digits
that acts truly random-—-might be found. Such a sequence could
vyield more insight into whether the behavior of pi is random.
Another control would be to analyze rational numbers with
denominators large enocugh so they won’t repeat within the block
being tested. These controls could show whether a given
"apparent bias" occurs or doesn®t occur in random sequences and
serve as a check on statistical theory, intuition, and
shortcomings of both. Other possibilities to investigate are
digit seguences generated from a series of constantly changing
rational numbers and the interleaving of such numbers.

This project has an interdisciplinary flavor. It involves
mathematics via the formulas for pi and computer programming via
implementation of the computation and analysis algorithms. It
then uses statistics to analyze the results. I figured it did rot
involve the fourth of my favorite 4 fields——physics, but then I
realized I might some day have to use statistics to decide if some
data from a physics experiment was meaningful or Jjust a "random
fluctuation. "

Statistical Analvysis

The obiect is to find a more conclusive test——one showing a
result having a much smaller probability of occuring by chance.
One possible approach is to analyze more than one block and
combine the results. Suppose 100 blocks are analyzed. Since the
total number of digits in each block is tived, there will be 100

-

constraints (on the 1000 counts of the number af digits O through
? in each of the 100 blocks). Therefore, the chi-squared test can
be handled using 900 as the number of degrees of freedom (i.e.,
the number of counts of digits that can be varied independently).
Another simple example can be obtained directly from the above
data: take the first 2000 digits away from the 10 million digit
sample (presumably having a only tiny effect on chi—-squared for
the remaining 9.998 million digits). Then the value of chi-
squared for the two samples combined would be 3.97 + 2.78 = .75
with 18 degrees of freedom yielding a prabability of about 0.2%
which strongly suggests such a bias is present.

That approach seemed promising, but the actual tests showed
that pi doesn’t exhibit such a bias, and the mean chi-squared cver
all blocks converges to 9 as expected for a random sequence (see
graph, "Mean Chi-squared of pi Blocks") with the vertical avie
labeled, "Chi-squared (9 deg. of freedom)").

It then seemed plausible that there might be something
different about the first block for a variety of block sizes but
the remaining blocks of any given block size would appear random.
The graph, "Chi-squared (ist pi block)" shows that the I.97 value
at 2000 digits (LoglO(Digit#) = I.3) is not far from both local
and global minimums and is therefore misleading-—at least in the
first 40 thousand digits.

While chi-squared stays below the nominal value of ? until a
little over 2000 digits, it gets above 16 soon after that, so it
certainly doesn*t stay low all the time. Random data would have a
chi-squared less than 16 about 94% of the time which seems a bit
less biased than the 10 million digit case and would tend to
cancel out the apparent bias of the latter.

A real phenomena would have to involve some sort of a
systematic bias for which an unlimited amount of evidence could be
gathered merely by computing more digits, and no such bias has
been found. In short, if I°d started by testing chi-sguared on
4000 digits and the 10 million digit case, I never would have
suspicious enough about the randomness of pi to do this projiect.

For comparison, I generated a number of random walks (see
program description). Some of these had "peculiarities" that
"looked" like biases, and certainly any process that produced only
graphs like those is not random. And I would believe that any
process that produced two graphs like one that "looked" biased and
no others was not random.

Statistical Conclusions

-

The excess 0°s for pi exceeds 3 standard deviations at about
286 bits. In the first 120 thousand bits, the excess O's stay
within a band of about plus and minus 1/3 of a standard deviation
at the 120 thousand bit point for a while, suddenly deviate in the
negative direction to about 1 standard deviation, and finally come
back to the band. This behavior doesn’t look random, but
statisticians balk at coming to conclusions on the small (254 bit)
sample size of the first aberration, and the latter anomaly is

4

probably rot statistically significant and is difficult to analvyze
statistically. :

The graphs for the "Excess 0°s in the square roots of 2, I,
and 5 resemble the random walks I generated much better than the
one for pi does. Thus while I have obtained no statistically
convincing evidence, neither is the evidence convincing that pi is
random. Therefore there is nagging doubt about pi’s randomness
and much more than 8 weeks of research would be required to
resolve this question.

Fi Formul as

The old standard formula that goes back a couple centuries is
16 arctan(i1/3) - 4 arctan(1/239) which can be readily derived by
using the formula for the tangent of the sum of two angles. First
determine that arctan(i/5) + arctan(1/5) = arctan(5/12) ;
similarly, 4 arctan(i1/5) = arctan(120/119). Use the tangent of
the sum of angles formula one last time to determine that
arctan (120/119) = pi/4 + arctan(1/2I79), using -pi/4 = -arctan(i).
Solving for pi yields that old standard formula.

The April issue of Mathematics Magazine (Castellanos, 1988)
gives a history of calculation of Pi by describing a tremendous
variety of other pi formulas ranging from very crude ones to minor
improvements of the above. The better formulas in this general
category converge by an essentially fixed number of digits for
each term or iteration, so their execution time is essentially
pProportional to the square of the number of digits. I dreamed up
a variation based on the fact that Pi/4 is incredibly close to 27
arctan(1/28) and the remainder is the arctan of
1744507482180328366854565127/98646395734210062276153190241239
(using the rational number capabilities of LISP) or about
1/56546.78936. But even if some way could be found to compute the
arctan of that 28 digit numerator over the 32 digit denominator
efficiently, this formula could only yield a 2 to 1 improvement
over the arctan(1/5) version.

The June issue gives the modern formulas that are related to
elliptic functions and the arithmetic-geometric mean which uses
square—root extraction in such a way as to double the number of
digits of accuracy on each iteration. But the state-of-the art
formulas (Borwein, 1988) involve the extraction of fourth-roots
and are based on research by Ramanuian. That article (in the
Scientific American) actually gives a complete sequence of
operations on 1/4 of a page that will=--without doing any of those
formulas more than once——compute pi to 2 billion places if the
calculations are performed with that much accuracy.

Arithmetic Algorithms

Traditionally, arithmetic operations on long numbers (other
than addition and subtraction and similar simple operations) took an
amount of time proportional to the product of the number of digitsg
in the 2 operands. This relation applies to multiplication,
using the conventional, simple algorithms, and related

("

(]

operations have similar execution times.

In the last two decades., algorithms have been developed to
to do a variety of such operations in an running time proportional
to n times some power aof log n which are ultimately based on
applying the Fast Fourier Transform (FFT) to integer arithmetic
(where n = number of digits). The standard algorithm is the
Schonhage—~Strassen (Aho, et.al., 1974) (hereafter abbreviated 353).
The FFT can be used within a number system known in algebraic
number theory as a "ring" (as well as the conventional use with
complex numbers) if there are high-order roots of unity in that
ring and it is possible to divide by the total number of separate
data items being transformed (which is usually made to be a power
of 2). Splitting the large integer up into a number of blocks and
doing arithmetic modulo an odd number (to permit the above
division) makes it possible to use the FFT technique.

I have slowly begun to realize the Schonhage-Strassen
algorithm has some additional efficiencies built-in that are not
at all obvious on a first (admittedly difficult) reading. The
modulus is chosen to be 1 greater than a power of 2 and the roots
of unity are themselves powers of 2. On a binary computer,
multiplication by a power of 2 can be done by shifting and is
considerably faster than ordinary multiplication—-—and this
difference is far greater for a multiple precision number as for
the blocks in 58. 85 seemed to be using larger blocks than would
be needed to meet these conditions. At first I thought this
was to make that power of 2 divisor be equal to unity, but that
would require the number of blocks to be at least as large as the
number of bits per block which seems to be backwards from the way
S5 is designed. Nevertheless, there are enough subtle design
points that I would give careful thought to changing the
algorithm.

Such efficient algorithms are known for calculating algebraic
functions (such as finding the roots of a polynomial), converting
between different bases (as between binary and decimal), and
elliptic functions (complete elliptic integrals)-—which led to an
efficient pi formula. According to Borwein (1988), even this
formula for pi has been improved recently. However, Brent (1976)
gives an algorithm for calculating trig, exponential and inverses
of these functions in log n times the time to do a multiplication.
Such an algorithm would make it possible to calculate e
efficiently.

I haven’t had time to implement any of the above during the 8
weelk course, due in part to complexity and also because Schonhage-
Strassen itself used a simpler algorithm for efficient
multiplication whose execution time is the log base Z of I (about
1.6) power of the number of digits. RARs of this writing, I Jjust
got reciprocal and sqguare root routines essentially working whose
efficiency depends only on the speed of the multiplication routine
they call. I hope to be able to use this with the 1.é6th—-power
multiplication algorithm written by Russell Ruby and calculate
sguare roots to hundreds of thousands of digits in reasonable
time. I also hope to use the Kolmogorov-Smirnoff statistical test
as suggested by Prof. Ed Waymire in the 0SU Math Department on
several irrational numbers and may try to implement an efficient

&

binary to decimal conversion routine. But that is the most that
can be expected during the B week course.

I have determined how to calculate the gocd {(greatest common
divisor) efficiently. Presumably other functions such as Bessel
functions can be calculated efficiently since all simpler
functions can as shown by the article by Brent, although it is
probably very difficult to discover how to do any particular
function. Apparently, numerical analysis problems such as
nunerical integration or differential equation simulation could
not be done efficiently because great accuracy would require
evaluating the function a number of times that is roughly
proportional to (or a polynomial of) the number of digits. But
this observation is just a special case of the view that no
conventional algorithm can have "log n times a multiplication”
efficiency. So the gquestion of whether an efficient algorithm
exicsts for doing any numerical operation is equivalent to the
gquestion of existence of an unconventional algorithm that
converges quadratically or at a similar rate.

Frogqram Description

1 wrote the program to do the calculations in c (which, for
the uninitiated, is most simply described as a competitor of
Pascal). While LISF has considerable capabilities to do
multiprecision arithmetic, it is apparently not possible to
improve those algorithms, and I felt I didn’t want to be
constrained by the operating environment and any other limitations
it imposed—--particularly in regard to efficiency. Whereas c is
apparently the most efficient of the common high-level languages,
and would permit easy interfacing to assembly routines later, 1+
desired since it operates on data in a matter that is close to the
way assembly language programs do but retains good machine-
independeaence. For example, ¢ can step through arrays using
pointers (machine addresses——like assembly language programs
would) rather than indexing as a Fascal program would (unless the
Fascal programmer “cheats"). The main incompatibility between
different systems ['m aware of is the number of bits in type "int"
{integer).

My c program produced output data files in Ascii
(character/text) format that were essentially Just tables of
numbers. 1 chose to make the file be in character rather than
binary format based on the recommendation of one consultant in
the CS lab who said there were sometimes incompatibility problems
with transferring binary files. An ascii file also has the
advantage of being human readable and immediately compatible with
a far greater variety of programs.

In particular, I downloaded these text files to an IBM-FC
then took them home to my IBM compatible and "imported"” them to
the spreadsheet "Quattro" which is essentially a compatible
competitor of "Lotus 1-2-3" (Trademarks of Borland Int’l and Lotus
Development Corp., respectively). In the case of the data giving
the number of binary 0°s in pi. this file was Jjust two columns:
bit number. and number of O°s up to that point.

>

Once the data was in my spreadsheet, I entered formulas to do
arithmetic on those two columns of numbers to obtain the number of
excess 07 s. Spreadsheets make this easy because you just have to
enter one formula and then make lots of copies of it. I then
entered other formulas representing the points corresponding to +1
and -1 standard deviation at each bit number (row of spreadsheet).
These two formulas together became the parabolas facing sideways
which you see on the graphs giving the "number of excess zeros" 1n

P1a

Then I told Quattro to graph the results. There were 3
columns: bit # (which became the X—-axis), number of zeros (not
used directly for graphing) and the three columns of results
calculated by Guattro which became the three lines printed on the
graph. 1 then produced other graphs by creating versions of the
spreadsheet with this data by entering other formulas to get, for
example, the "log(bit #)" versus "excess 0's (in standard
deviations)" plots. Thus, the c program did the heavy
computational work, and Guattro was able to do arithmetic
operations on that data to produce a variety of graphs.

For comparison, I generated "random walks" (which is what the
evcess O0's of pi should be if it is truly random) entirely by
using GQuattro. Since I wanted as many bits as practical, I
used Quattro’s random—number generator 4 times in each line and
therefore only plotted every fourth step in the random walk.
Each random number was compared with .5 and the results of these
4 comparisons were added together and 2 subtracted from the sum.
This formula gives a random number for each line of the
spreadsheet between ~2 and 2 that looks like 4 random steps of -
1/2 or +1/2 with 30% probability for each step. Each formula
except the first was added to the one above to produce a
cumul ative effect and therefore a random walk with every fourth
step displayed on the graph.

The random—-number generator appears to be an "unpredictable"
one in the sense that there is no way to recreate a set of random
numbers it generated; the usual method for creating such numbers
is to look at the system (time—of-day) clock or other
"unpredictable"” event and do some complicated transformation on
it. Since I didn®t save a copy of the disk file for each random
walk, there is no way I can print additional copies of those
random walks with the computer.

Other Areas to Investigate

Relationships between statistical and mathematical
properties might be made by classifying all real numbers

according to the way they are "defined," (i.e., how are the
digits "chosen") and whether they behave periodically,
chaotically, randomly, or some combination thereof. The existence

of (partial?) correlations between these two ways of classify real
numbers could prove interesting.

Works Cited

Aho, Hopcroft, Ullman. The Design and Analysis of Computer
Algorithms. Addison—-Wesley 1974'.270_276 (Schonhage-Strassen
integer-multiplication algorithm).

Bhattacharya, Rabi N., Edward C. Waymire. Stochastic Frocesses
With Applications. 1987 (unpublished at this time).

Brent, Riachard F. "Fast Multiple~Precision Evaluation of
Elementary Functions." Jowrnal of the Association for
Computing Machinery 23 (April 1976) 242-251. (Describes
algorithms of order log n times the time of a
multiplication, and agives references for Euler’s constant

and the Gamma function.)

Rorwein, Jonathan M. and BRorwein, Feter H. "Ramanuian and Fi1."
Scientific American 258 (Feb. 1988) 112-117.

Feller, William. An_Introduction to Probability Theory and lts
Applications. John Wiley % Sons 1968.

Hald, A. Statistical Tables and Formulas. New York: John Wilevy,
1958. ‘

Knuth, Donald E. The Art of Computer Proqramming. Addison-UWesley
1981. 92-109 (spectral test), 290-297 (Fourier transform
algorithms).

Miller, L.H. "Table of percentage points of kKolmogorov
statistics." J. Amer. Statist» Asoc. S1 (19%4), 111-121.

Stoneham, R. G. "0On a sequence of (i,epsilon)-normal approximaticns
pi/4 and the EBrouwer conjecture." Acta Arithmetica 42 (1983)
265-279.

Wagon, Stan. "Is pi Normal?" The Mathematical Intelligencer 7

(1985, No. 3) pbébS—67 (gives number of each digit in first 10
million digits of pi).

to

chi—squared (8 deg. of freedom)

Mean Chi—squared of all blocks
[

14

12

10

1 15 Z 25 3 35 4 4.5 5

Logl OBt #)

chi—squared (6 deg. of freedom)

-

Chi—squared (1st pi block)

18

16

14

12

10

nnn

--

[
1.5 Z 29 3 3

.
+
BN
$)
n

Logl OBt #)

tion

-

Staondard Devia

cess O's /

Ex

Excess O's in Binary pi

L —
v

_
3 4

—
N —

Log D(Bit #)

Excess O's

Excess ’s in Binary pi

200

0 =

Y

100

N

S0}

(Git #) Thousands

(# 19)01607

N

o

Excess (s - Stondard Deviations

n
!
|
]
{
|
f
B
| .
.‘
!
i
]
—

S90XH

S

(41

(e habg ur s

120
100
80

Excess 0’s in Sqrt(2)

--

nnn

R

_ [_
0 10 20 | A0 40

Bit # Thousands

dard Deviations

. Stan

Excess O's

Excess (’s

in Binary Sqrt(3)

0

N —
N
+a
h

Loy OBt #)

Standard Deviation

o~

+1,—1

Excess O's ;

Excess 0's in Binary Sqrt(3)

150

100

50

—100

—150

—200

—250

40 B0 850

Bit # Thousands

Stondard Deviation

Os : S

Excess

Excess O’s

in Binary Sqrt(5)

Logl O(Bit #)

+1,—1 Stondard Deviation

Excess O's

kExcess 0’s in Binary Sqrt(5)

e0

N

O ZE+03 4E+05 EE+03 8E+03

[aasd O [OEE}
P Y

- Chi—squared (1st pi block)

18

16

14

12

10

8

&

4
L
0 _ _ T _

0 10 20 30 40 50

of Bits in pi Thousands

ndard Deviation

ta

+] =1 5
1 ' L] A

Excess O's in Sqrt(3)

300

200

100

—100

nn

vvvvvvv

nn

(N

Bit # Thousands

400

s)

ndard Deviation

LoglO (Bit #)

+1,—1 Stondard Deviation

Excess O's

Excess ('s in Binary Sqrt(18)

400

300

200

100

—100

—200

—300

100 150 200

Bit # Thousands

4

L

H

Excess O's (Standard Deviations)

kxcess 0's in Binary Sqrt(18)

Log 10 (Bit #)

Stondard Deviation

-~

+1,—1

Excess Oz

sxcess (s in Binary Sqri(27)

300

QIO [+ e i W el

100

0
~100
200 e e —
—300 ! _ _
0 50 100 150 200

Bit # Thousands

(Standard Deviations)

Excess O's

Excess (0's

—q
3

in Binary Sqrt(27)

N

RO e R R T T RSP RRTOTUIN | . S

Log 10 (Bit #)

A

Value/A1 Standard Deviation)

Random .2&%

05

—BI1E-05

+1,—1 Standard Deviation

Value

Random walk

10

0 50 100 150 200 250 300
Steps of +,—1,2

+1,—1 Stondard Deviation

| Value ;

N

W?Sm%:

25

Random walk

20

15

10

100

150
Steps of +—1/2

Vaue/(1 Standard Deviation)

b b |
Biased Random walk

05 1 15 2 25
Log 10 (Step #)

Excess Cumuiative Occurences

S test: Sqri(13), 13—bit blocks

100

2E+03 4E403 . BEHO3 86403 1E4+04
13-bit block value{40K Hex=12307 Bks.)

Cumulative Occurences/Sqri(# samples)

i

2E+03 4E+03 EE+03 8E+035 1E+04

13-bit block value(40K Hex=12307 Bks.)

