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This paper describes the dynamics of a cellular automata system based an 3
proposal of Stanislaw Ulam and Robert Schrandt. A modification in the form of a
computer program ailovwed for an aging process as well as a birth pattern. Since
this structure is a finite space, starting canfigurations either result in
elimination of the colony, or a cycle of finite period. There are several examples
of each exhibited in this work. Since a number of the cycles are complicated, and
the spaces are too large to enumerate comfortably, windows are used to construct
projections that indicate the presence of an attractor or stable point. Twa
methods of constructing the window are used to eliminate bias; resulting plots are
presented here. The Hausdorf dimension of the attractor of the associated
continuous set was calculated using the method in Berge et. al. The dimensian is
found to be fractional.

Ulam and Schrandt created a population model that featured competition
between two ageless species for space. The model used in this study is a
madification of their model, using the rules for reproduction, but only one species.
The program allowed the user to determine the initial configuration of the colony
and the lifespan of the organism to be studied. Any organism could have, at mast,
four offspring in any one generation; actual reproduction depanded an the
praximity of other organisms. Rules are as follows:

1. Birth can occur 17 exactly one neighbor cell is occupied.

2. Birth can occur in a cell where death occurs

3. If two units could have been born in the same cell, or in adjacent cells

no birth occurs.

5rovwth and death takes place on tori of varing sizes, which eliminates boundary
conditions and accompanying difficulties. For this paper the investigation is
restricted to square tori and a two cycle lifespan. Sample generations are shown
below( Figure 1).



Figure 1.

6x6 Torus
Generation | Generation 2 Generation 3 Generationd GenerationS Generation 6
0000GOo 010000 020000 g10101 020202 000000
010000 121000 202101 101202 202000 000000
000000 010000 020000 010101 020202 Q00000
000000 000000 010000 121000 202000 000000
0000600 000000 000000 000000 000000 000000
000000 000000 010000 121000 202000 000000

Trial runs of the model for varying sizes enabie sbservations concerning the
nature of the colonies. The colonies and their progress are represented by
matrices, here referred to as boards. Moore proves that a Garden of Eden
configuration is a necessary condition for the existance of self-reprooduction.
Boards can be divided into regenerative and nonregenerative types. Regenerative
boards will be reproduced at some time in the life of some cyclic colony.
Nonregenerative boards can be divided into three types: terminal, Garden o7 Eden,
tailboards. A tail is a set of boards leading to a cycle. Cycles can vary in length
and it is often not clear if a series of boards is a tail or a set of terminal boards
until the appearance of the cycle or death. Any board is made of an arrangement of
zeros, ones, and twos; the configuration of the nest board being determined by the
rules of the model applied to the previous board. The existance of tails implies the
existance of regenerative boards with more than one parent. Some statements
concerning the model are:

1. Any configuration with solely ones is a Garden of Eden configuration.

2. Let a be the number of ones in a configuration, b the number of twos.

If a > 4b, the configuration is a Garden of Eden. '

3. Any configuration of twao's or zero's has a parent.

4. Any configuration of two's or zero's cannot regenerate itself.

5. All 1x1, 2x2 , 3x3 configurations will always die out due to space

restrictions.

6. If the number of ones on @ mxm torus exceeds m2- 4the colony will die.

Simple initial conditions such as one or more organisms arranged linearly
resulted in elimination of the colony. In the case of a lone unit with a two cycle
lifespan, the lifespan of the colony is of the form 2M+2 and colonies with the
ssame lifespan are grouped in clusters of 2" As the number of prganisms in the
initial state increased, the lifespan of the colony retained the same value, but the




cycle of elimination changed by a constant, for example a linear arrangement of
three has lifespan 2M3,

Figure 2 LIFESPANS OF COLONIES WITH N=1 AT T=0.

M LIFESPAN M LIFESPAN
3 3 18-33 18
4,5 4 34-65 34

5-9 6 66 66

10-17 10

Several simple 4x4 initial configurations lead to cycling. Most have short
tails, these here have tails of one or two, and cycle of period two. A list is given
below(Figure 3). Note the element of diagonality in each one. It is possitile to
eliminate a large number of boards as potentiall tails or cycles by the simpie

observation that of the 3]6 possible boards, :2“5 are not candidates. This still
leaves nearly forty-million boards to be eliminatad, a formidable task.

Figure 3
SOME CYCLIC CONFIGURATIONS IN 4¥4 TOR!

1000 1010 1011 1010 1010 1001 1100 1100 1010 1011 1100
0010 0100 O100 1100 O110 1010 0100 1000 0101 0100 0000
0000 0000 0000 0000 D000 (€000 1000 0100 QOO0 0000 1000
0000 0000 Q000 QO0Q Q000 0000 0000 0000 Q000 0000 Q100

Note: The second configuration above cycles for 5x5 through 12x12 but not for
9x3.

Other interesting resuits are obtained by examining the results of initial
colonies of two units with a diagonal orientation,, as well as those for which the
two beginning units are a chess horse move apart. For tori of sizes 2x2 through
10410 (with the exception of 6x6), 11x11, 16x16, 17%17 and 20x20, extinction of
the colony occured, although at unexpected places. In this configuration, for other
sizes of tori, cycles of varying lengths are observed, from a cycle length of
- one{constant) and up . The most interesting are those of dimensions14x14,

18218, 19219, and 22x22 since these have cycles of very long duration. Often the
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ras in the cycle had a strong diagonal orientation, regardless of initial
figuration. These last few merit closer attention.

The size of these spaces are very large: {0,1,2] =N o 3 98 tor the case of
the 14x14 tori, and some method of telescoping the space is needed to make
conclusions. A good method of gleaning information is to use windows in the
<pace that retain enough of the character while providing some simplification.
Two windows into the space are constructed from lines camposed of runs with
zequential boards as points. The measurement of one involved & square patch on
the torus of dimension n/2, the other three parallel lines an the torus of length
n/2 unevenly distributed on the torus. In bath cases the values of the cell (0. 1,2)
are regd in sequential order to form a BaseZ number, which was then converted
into a Base 10 number and mapped to the interval {0,1]. The values are paired as
data points representing the state at time t vs. the state at time t+1. The
resulting graphs are not sensitive to sampling method and indicate the presence of
attractors; see graphs below. A sample of the graph without connecting lines ig
also included.

The extension of a finite system to a continuous system as an approximation
1€ considered appropriate due to the large number of cycie points . The farmula
given by Berge for calculating the attractor dimension is as follows:

ol

o Cr

1

. fw , .
C(r) = !.-‘me_ H(r-lxi-le) = Bro where xi,x]- are points in the window,
) E
’ r is the distance between them,
3,Be R, ais the attractor dimension,
and H is the Heavyside function, where
H(x) = 1if 80,
Dif %<0,
This method is modified to eliminate measuring pairs of points twice and points
yhere i=j. .
1’! [
C(r) = 2/(m? -m EZH(r-Ixp-x;l) = Br®

-‘;9,'—'\

The straight portion of the graph In(C{ri)vs. In(r} gives the dimension of the
attractor. Sample runs are listed below.
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Figure 4.  WINDDWS AND DIMENSIONS

m [nitial arr. sample Dim m Initial arr Sample Dim
[ 14 diag. 1 238 019 diag. 2 230
3 14 diag 2 182 619 horse 1 154
<18 diag 1 225 719  horse 2 . 225
4 18 diag 2 276 €22 horse 1 200
519 diag 1 233 922  horse 2 260

The average dimension is .222. This indicates that only a very small portion of the
space is visited during cycles. Thus only a very small portion of the space is
regenerative, and this may indicate predicatability.

After examing the results presented here, several questions remain
concerning this model. What happens to the dimensionwith larger spaces and other
cyclic coionies? Ig this model predicatable, as the small dimension indicates?
what role dooes the geometry play in determing viable colonies? And that is what
we did on our summer vacation.
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