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Overview of the Rho-Method

In 1975, J. M. Pollard introduced a Monte Carlo method for finding small
factors of integers, commonly known as the rho-method. His idea was to
iterate a function, creating a sequence of integers (S,) which behave

"randomly”. A factor of N is found when gcd(S;-S;,N) = 1. Since a prime
factor P will be found when SjES . (mod P), it is desirable to minimize the
number of iterations necessary for this. If the sequence (S,) behaves

randomly modulo P, then a repetition should occur on average in 1.03VP
iterations [1]. Empirical evidence suggests that the sequence

So=x, S,,=S3+y, y=0,-2 )

i+1
satisfies the randomness condition, but until very recently little was
known why.

My goal was to try to determine why this sequence’ behaves randomly,
so I started by gathering data on when the sequence repeats modulo
various primes. The following three graphs illustrate the behavior of this
sequence. The first shows the average and maximum iterations needed
before a repetition is encountered modulo P, using all possible values of x
and y. The sharp peaks on the maximum curve are due to the y=0 and y=-
2 cases. The second graph depicts the percentage of pairs (x,y) which yield
a repetition modulo P in fewer than v P iterations. The third graph shows,
for x=5, the number of iterations necessary for a repetition as a function of
y, averaged over all primes < 40,000. Here, Floyd's cycle finding algorithm
was used, which only checks for S,;=S; (mod P). The undesirability of y=0

and y=-2 is clear.



Why y=0 and y=-2 Don't Work

When y=0 or -2, the terms in the sequence (S;) can be written as the

2i_th terms in a two term linear recurrence. Because of this, the sequence
(S,) repeats in approxirnatly O(P) rather that O(P) iterations.

With y=-2, §; = a2+ @2z Wi , where w6=2, w,=X = a+‘é:, w; +2=(a+é)wi »
- w; Let a and k be the smallest integers for which w,,,=w, (mod P). It is
known that k is approximately O(P). To obtain a repetition in (1), S_,,=S,
(mod P), we need W,c+h=W,c (mod P), or 2°(2"-1)=0 (mod k). If we choose c
such that 2° > k, then the smallest h which satisfies this condition is
h=ords2, where k=2"f, f odd. Since h = O(k) = O(P), the sequence (S,)
repeats in O(P).

With y=0, we have S, = 2 A repetition in (S,) will occur when x? = x2
(mod P), or when 2i(2i% -1)=0 (mod k), where k=ordpx. As in the y=-2 case,

this leads to an O(P) estimate for j-i.
It turns out that y=0 and y=-2 are the only y values which yield a nice
linear recurrence relation which can be used to generate the sequence (S,).

Recent Results

In a recent paper, Eric Bach [2] showed that for a fixed k, the
k
probability of a repetition in- (1) by the k'™ iteration is at least (Z)P +

O(P-3/2) as P oo, and that the probability of a repetition by L Hog,P]

iterations is Q(log?P)/P. These are the best results known, but are still far
from the desired results.
Bach formalizes the rho-method by defining polynomials fie Z[x,y] by

fo=x,  fi= i +y

He then defines a set of polynomials pi’j(x,y), each uniquely determined by
the following:

1) p;; is an irreducible divisor of fj - f;.

2) pi’j(mi,j,O) = 0, where o, ; is a primitive 2i-2i-th root of unity.
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of f's in the same way the cyclotomic polynomials j(x) are constructed.
From known relations

[[®x)=xi-x°  and ®,(x) = [Toxd-x0par®
dlj dlj -

where u(x) is the Mobius function, I derived

. ’,i
Poj =11~ fg ) O/9) and Pij= [I(ficteq * f1-1)“(lp (5)
dlj dlj-i

which can be seen by replacing xi by fj or fj RE Using‘(S), f(x,y) =
f..,(x2+y,y) and fi(x,y) = fi(-x,y) for i21, I discovered that

Pj+1(X¥) = Po,;(-%-¥) (6)
and

pi+1,j+1(xv}') = Pi,j(xz"'}’,)’) , i21 (7)

Combining (6) and (7) yields

pi,i+j(x’y) = po,j('f'.l(xi’y)’Y) y i21

This makes computing values of p-polynomials with large indices and a
small index difference very easy. More importantly, it provides an
algorithm for constructing the solution set of p;; +j(x,y) = 0 (mod P) from

the solution set of po’j(x,y) = 0 (mod P). Let S;; represent the solution set
of pi,j(x,y) = 0 (mod P). Then we have

Sl,j+1 = { (xy) 1 (x,y) eso,j }
Siprjer = { ®Y) 1 (&P+y.y) €8;5)

Looking at it another way, if (x,y) € Si,j , and x-y is a quadratic residue
modulo P, then (x,y) "generates” the two solutions (s,y), (-s,y) €S, +1,j+1



Solutions to rho_i,j (x,y):() (mod 59)
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solutons

Solutions to rho_i,j(x,y)=0 (mod 251)
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Solutions to rho_i,j(x,y)=0 (mod 971)
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