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1 Introduction
The sequence of Fibonacci numbers F(n) is defined by the recurrence relation
Fn+1l)=F(n)+ F(n-1)

with the initial conditions F(0) = 0 and F(1) = 1. When this sequence is
considered modulo p, i.e. in the field with p elements, it will clearly repeat
itself as there are only p? possible pairs of numbers. We shall call the number
of terms before the sequence repeats itself its period.

Roberts showed that for p = +£1 mod 5 and + 2 mod 5, the periods of
repetition for the Fibonacci sequences modulo p divide p — 1 and 2p + 2

respectively, [5]. He also gave an elementary proof of the following lemma.



Lemma 1 The period of the Fibonacct sequence mod p is equal to the order

of a in the ring Z[a]/(p) where a = lii-@

For simplicity in this paper we will restrict our attention to the case of
maximal period. In his paper, Roberts also made the following conjectures
about the number R of different residues that appear in the Fibonacci num-

bers mod p with maximal period k.

Conjecture 2 [fp = +2 mod 5,k = 2p 4+ 2, then R~ 0.75p.
Conjecture 3 Ifp = +1 mod 5,p =3 mod 4,k =p—1, then R~ 0.625p.
Conjecture 4 Ifp=+1mod 5,p=1mod 4,k =p—1, then R~ 0.43p.

The following table of conjectures reflects data collected through com-

puter experimentation by Wedekind and Greco, [7].

p (mod 20) | k R/k
3,7 2p+2 3750
13, 17 3+ 2 37
11, 19 p—1 6250
9 p—1 .6250
3,7,13,17 | (2p +2)/3 | 45
3,7,13 (2p +2)/9 | 48
11, 19 (p-1)/3 | .70
11 (p=1)/9 |.72




Note that the first three lines of the table agree with the conjectures
of Roberts, while the fourth line contradicts his results and was probably
an error in their report. My results show that in Conjecture 2, the residue
ratio which appears is 5/8. Also, my results confirm Roberts’ Conjecture 3,
putting the value of the ratio at 7/16. The main results of this paper are

presented in the following three theorems.

Theorem 5 For p = +2 mod 5 such that the Fibonacci sequence modulo

p has period 2p + 2, the number of residues appearing in the sequence is

$p+ O(/P).

Theorem 6 For p = 1 mod 5 and p = 3 mod 4 such that the Fibonacci

sequence modulo p has period p — 1, the number of residues appearing in the

sequence s 2p + O(,/p).

Theorem 7 For p = £1 mod 5 and p = 1 mod 4 such that the Fibonacct
sequence modulo p has period p — 1, the number of residues appearing in the

sequence is =p + O(,/p).

The method of proof is similar for all three. The numbers F'(n) can be



written as

S

o~ @ wherea=1+ and&:l—
a—a 2 2

15

(1)

When considering o® — @ mod p, we must work in the ring of integers in
Q(v/5). The meaning of modp varies depending on whether or not the ideal
(p) splits in this ring. That is whether p = 2 mod 5 or p = £1 mod 5.
We must also consider whether or not -1 is a quadratic residue in the ring,
i.e., whether p = 1 mod 4 or p = 3 mod 4. The following variation of Weil’s

theorem, [2], will become useful in our proofs:

Theorem 8 (Weil) If C is an absolutely irreducible affine curve of degree

d over F,, then the number N, of affine F,-rational points on C satisfies

—(d=1)(d=2)yG-d< N, —(g+1) < (d-1)(d~2)yT.

This theorem can be applied to the equation 5m? + 4 = s? for example.
For the number N of solutions to this equation, we see that p—1 < N < p+1.
A proof of Theorem 5 can be found in §2, preceded by the proof of a
powerful lemma due to Roberts. A proof of Theorem 6 and a similar proof of
Theorem 7 are in §3. The paper concludes with some generalizations which

can be made from these theorems.



2 The Case p=+2mod5

Greco and Wedekind did not prove any of the ideas generated from their data,
but Roberts came close to a proof of his first conjecture with the following

lemma.

Lemma 9 For p = +2 mod 5 such that the Fibonacci sequence mod p has
period 2p + 2, the number of residues appearing in the sequence is the same
as the number of values of m such that at least one of 5m? + 4 and 5m?® — 4

is a quadratic residue in F,.

Proof: We would like to know when m appears in the Fibonacci sequence

mod p, i.e. when does

a™ —

Rl e

——=m mod .p (2)

for some n. As pointed out above, for any manipulation of this equation to
make sense we must consider it in the ring Z[a]/(p). Let (m/n) denote the
Legendre symbol. For p = +2 mod 5, (5/p) = (p/5) = —1, by quadratic

reciprocity. Thus the ideal (p) remains prime in Z[a] and we have:

Zla]/(p) = Fola] = Fp



By rearranging equation 1 in this field, we get the following equation for z

where z is a power of a and ¢ is the norm of z.
2 = VBmz —c=0.

Whether or not a value of m appears in the sequence depends on whether
or not there exists such an z. Some simple computation shows that the
two possible solutions to the above equation z = ﬁ’—"—#—‘é—m both have
norm c as desired if and only if VB5m? + 4c is an element of Fp. In this case
T = "/g—mtz-‘/—g-"—*—r'iz and it is easy to see that the norm of z is c.

Recalling Lemma 1, we see that the order of a is 2p + 2. Because « has
norm -1, all of its powers have norm 1 or -1. Note that in F,2, the size of the
kernel of the norm map is p + 1. Therefore, because the norm is surjective,
the number of elements with norm 1 or -1 is 2p + 2. Thus these elements
must be exactly the set of elements generated by «, and the condition for
m to appear in the sequence is that at least one of 5m? + 4 be a quadratic
residue.

The following proof of Roberts’ first conjecture uses his lemma.

Theorem 10 For p = +2 mod 5 such that the Fibonacci sequence modulo
p has period 2p + 2, the number of residues appearing in the sequence is
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3p+ O(\/D).

Proof: Given the above Lemma 9 all that remains to be shown is that
the number M of m in F, such that at least one of 5m? +4 and 5m? —4 is a
quadratic residue in F,, is approximately 3p/4 + O(,/p). Consider Ny, the
number of solutions to the equation 5m? +4 = s? in F, X F,. From Theorem
8 theorem we see that that p—1 < N, < p+1. We are actually interested in
the number of values for m such that there exists an s solving the equation. It
is easily seen that each value of m corresponds to two values for s, *s, so we
must divide the above inequality through by two. Note that I have simplified
by ignoring the case s = 0, since the affect this has on the value of M is
negligible. After a similar analysis is performed for 5m?—4, all that remains is
to determine the number of values of m for which there exists a simultaneous
solution to the equations 5m? + 4 = s? and 5m? — 4 = t2. With some
knowledge of algebraic geometry one can see that the algebraic set defined by
these two quadratic equations is a absolutely irreducible affine curve of degree
four. Both an inuitive glance at the equations and numerical data support
this statement. However, I have left it without proof here, because the proof

would involve a whole new set of ideas. The proof will be found in (3], but



for now it will suffice to say that a proof exists. The number Ny of points
on this curve is given by Weil’s theorem, p -3 - 6,/p < N <p+1+6,/p.
Here the number of boints corresponding to each value of m for which a
solution exists is 4, corresponding to +s and %t¢. Direct computation from

these inequalities produces the desired result:

3p—54—- 6P _ b < 3p+74+ 6y/F )

3 The Case p==+1mod5

Theorem 11 Forp = +£1 mod 5 and p = 3 mod 4 such that the Fibonacci
sequence modulo p has period p — 1, the number of residues appearing in the

sequence 1s 3p + O(,/p).

Proof: With p = £1 mod 5, (p/5) = (5/p) = 1. Therefore p splits in
Z[a] and

Z{a)/(p) = Fp x Fp

The same argument as above produces the quadratic equation z? — VBmz —
c = 0. Again m appears in the Fibonacci sequence exactly when there exists
a solution to this equation such that ¢ is the norm of z and z is a member

of the multiplicative group generated by «. In this case the solutions are



expressed as ordered pairs:

Vom?2 + 4c)

2

w_(\/gmiv5m2+4c —/5m +
- 2 ’

Here the condition that ¢ is the norm of z is satisfied when the + signs agree.
Taken together the two conditions, that z belong to the multiplicative group
generated by a and that ¢ be the norm of z, produce the requirement that
¢ = 1. Clearly such a solution exists if a least one of 5m? £ 4 is a quadratic
residue in F,.

The number of elements in F, x F, whose norm is 1 or -1 is 2p — 2.
However, here the period and thus the order of ¢, by Lemma 1, is only p—1.
Hence, a only generates half of the elements whose norm is 1, so the above
argument can not be used.

Note that in this case o is represented by the ordered pair, (a, @) where
the norm of a is a@ = —1. For p = 3 mod 4, -1 is not a quadratic residue
in F,. Thus exactly one of a, T is a quadratic residue. Without loss of
generality, we assume here that a is the quadratic residue. If z has norm
1 or -1 it is generated by a exactly when its first coordinate is a quadratic

. . . v/ 2 .
residue in F,. So m appears in the sequence when one of omat/Em?Ed 25"‘ £4 exists

and is a quadratic residue in F,.



First consider the two solutions to a particular equation z% — v/5mz +4 =

0. Note that their product,

\/Bni+ v5m? +4)(\/5m —V5m? + 4
2 2

( )= -1

Note that -1 is not a quadratic residue in F,. Thus if they exist, exactly one
of @325"‘@ is a quadratic residue. We see that m appears in the sequence
whenever they exist, i.e whenever 5m? + 4 = s? has a solution. Recall from
above that this happens M, times where

Bl < M, < 2

On the other hand when considering the two solutions to z? —v/5mz —4 =

0 we see that their product (\/3"‘+V25’"2‘4)(‘/g’”' ime=d) = 1 is a quadratic

residue. Thus if they exist, either both or neither of BmayEmI+d W are quadratic
residues and we must check first if the two numbers exist and second if they
are quadratic residues.

These two conditions produce the following pair of equations:
5m? -4 = s*

Vom + s 2r? (4)

If there exists a solution to these equations, then m appears in the sequence.
Note that the number of solutions corresponding to each m for which there

10



exists a solution is 4, corresponding to s and xr. By reasoning similar
to that used for the above quadratic equations, the algebraic set defined by
these two equations is an absolutely irreducible affine curve of degree 4. Thus

for M_, the number of values for m such that there exists a solution,

p—34—6\/1_)SM_Sp+1:—6\/1_)

The question remaining is how many values of m satisfy both of these
conditions, i.e. for how many values of m do the following equations have a

solution:

5m?+4 = g2

5m? —4 = t? (5)
\/5m+t = 2r?

If there exists a solution for a given m, then there exist exactly eight
solutions, corresponding to s, +t, £r. By reasoning similar to that used for
the above quadratic equations, the algebraic set defined by these equations
is an absolutely irreducible affine curve of degree eight. Thus from Weil’s

theorem, we have the following inequality for My, the number of values of

11



m satifying the above conditions:

p—7;42\/5S Misp+1-;42\/ﬁ

The total number of residues which appear in the sequence, M is then

determined by simple arithmetic M = My + M_ — M.

5p-178-54\/139‘4S 5p+6;—54\/5

Theorem 12 For p = +1 mod 5 and p = 1 mod 4 such that the Fibonacc:
sequence modulo p has period p — 1, the number of residues appearing in the

sequence is 1=p + O(/D)-

Proof: This argument is very similar to that for p = 3 mod 4, with the
exception that here -1 is a quadratic residue mod p. Again a = (a,@) and
a@ = —1, which in this case implies that either both or neither of a and @ are
quadratic residues. If both of them were quadratic residues, then the order
of @ could not be p — 1, which it is. Therefore neither is a quadratic residue.
If z has norm 1 or -1, z is generated by a exactly when either both of its
coordinates are quadratic residues or neither of its coordinates is a quadratic
residue.

12



We must also consider the product of the first coordinates of the two

solutions to a particular equation z? — VBmz + 1.

VBm + \/5m2j:4)(\/-5_m— VBim? £ 4
2 2

( ) = +1

Both 1 and -1 are quadratic residues in F,. Thus either both of the solutions
to 22 — v/Bmz + ¢ = 0 are quadratic residues for a given value of ¢ or neither
solution is.

A residue m appears in the sequence when at least one of the following

sets of equations or corresponding sets for 5m? — 4 has a solution.
5m?+4 = s°
Vim+s = 2t (6)
Vim—s = 2r?
or
5m?+4 = s°
Vim+s = 2¢t (7
Vim—s = 2qr

Here q is a given quadratic nonresidue in F,. Mi, the number of values

of m such that there exists a solution to a set of equations is the same

13



for all four such triples. By reasoning similar to that used for the above
quadratic equations,‘ the algebraic set defined by these three equations is an
absolutely irreducible affine curve of degree eight. If there exists a solution
for a given m, then there exists eight such solutions, corresponding to the
different combinations of +s, ¢, +r. From this information and Weil’s

theorem, we have the following condition on M.

p—7-8—42\/ﬁsM1Sp+l-;—42\/17

There are four different ways in which a value of m can satisfy more than
one set of equations, (for each ¢ either both solutions must be quadratic
residues or neither solution must be a quadratic residue.) For example, con-
sider M,, the number of values of m such that there exists a simultaneous

solution to the following set of equations.

5m?4+4 = §°

5m?—4 = ¢
Vim+s = 2u° (8)
Vim—s = 2v°

\/gm—{—t = 2uw?

14



\/gm—-t = 2r?

By reasoning similar to that used for the above equations, the algebraic
set defined by these equations is an absoutely irreducible affine curve of
degree 64. For each value of m for which there exists a solution, there are
exactly 64 such solutions, (coresponding to the different values for +s, *£t,
+u, +v, 2w, £r). From this fact and Weil’s theorem we have the following
inequality for M,.

p—63 g43096\/;5 <, <P +6 3906\/5

The total number of residues m which appear as residues in the Fibonacci

sequence, M is then 4M; — 4M,.

Tp — 1191; 225 TPH9 ;1242@

4 Generalizations

These results can easily be generalized to determine the number of residues
which appear in a Fibonacci sequence mod p* with period 1/n times the
maximal period in the following theorems:
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Theorem 13 The number of residues which appear in the Fibonacci se-

quence modulo p of period 1/n times the mazimal period is as follows with

error of order |/p:

4:7;—2110 for p = £2 mod 5 and n{(p + 1)
2221y for p = £2 mod 5 and not n|(p + 1)
2a=1p for p = 1 mod 5 and 4n|(p — 1)

82-1p for p = £1 mod 5 and not 4n|(p — 1)

The analysis which produces the equation z* — vB5mz + ¢ = 0 remains
intact. For p = 42 mod 5 the condition that 2 = a™ is converted into a
requirement that ¢ = y™ and for p = £1 mod 5 a requirement that the first
coordinate of z be equal to y*®. Whether or not one solution generated by «
insures the same for the other sol‘utioﬁ depends for p = £2 mod 5 on whether
or not the equation z” = —1 has a solution in F,2 and for p = £1 mod 5 on
whether or not z?® = —1 has a solution in F,. Then depending on whether
or not one solution generated by a implies the same for the other solution,
an analysis similar to that for p = +1 mod 5 and either p = 3 mod 4 or

p = 1 mod 4 will produce an inequality bounding the number of residues

16



which appear in the sequence. This type of analysis may easily be extended

to sequences generated by other recurrence relations as well.
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