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We asked the question “When does |n sinn|, for integer values of n, ap-
proach zero?” In this paper we will present how this question led us to the
study of continued fractions, why continued fractions led us to chaos theory
and Fourier analysis, what conclusions exist, and questions for further study.

Our research started with the fact that |n sin n| will get close to zero if =
is a good approximation to 7. Since the convergents of continued fractions
are “best approximations” of irrational numbers (Niven, 196), we began to
study these approximations.

A continued fraction appears in the form
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where the a; are called partial quotients. The a; are generated by the for-
mulas (Niven, 194)
ax = L&kJ,

1
b —ar

With the formulas m),+1 = Qpp1Mi + Mio1, Nk41 = Gk41Nk + Nk—y and
|m — 2| < mu:u.“ (Niven, 190, 196) we were able to determine a relationship
between |sin n| and the partial quotients (ai) of the continued fractions. The
relationship is derived by the following process:

fk+1 =

|sin(max — ng)| = |mew —nx| when 2% is close to x
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To extend this relationship to one with |nsinn|, we multiplied the last
equation by n; and recognized the fact that 7+ < |r — L__| With these
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manipulations we found the upper bound

nilmer — ni| < .
Qk41



Further, this inequality describes a nearly exact approximation, as the a;
are bounded below by approximately —=— (for large a;). These bounds

ak41+1
confirm experimental data that the magnitude of |nsinn| was the smallest

right before large values of the ay.

After we established a relation between |n sin n| and the a; of 7, we began
to focus attention on the behavior of the a;. If the a; were unbounded then
the value of |nsinn| would become arbitrarily small. On the other hand, if
the a; were bounded, then we would know exactly how small |nsin n| could
be.

The nature of the partial quotients of irrational numbers is unknown ex-
cept for two instances. First, all quadratic irrationals have periodic partial
quotients. Further, any string of partial quotients which are periodic, or
eventually periodic, represents a quadratic irrational number (Niven, 204).
Secondly, the partial quotients of e are in a regular pattern, almost cyclic,
(12,1,2,1,1,4,1,1,6,...]) which has been proven unbounded. No other irra-
tionals are known to have bounded or unbounded partial quotients. (Khin-
chin, 50)

Since the behavior of the a; seemed erratic (see fig. 1a ), we decided to
look at chaos theory. The serious study of continued fractions was at a high
point about 50 years ago, long before the development of chaos theory. We
hoped that the theories of attactor points for functions with chaotic behavior
would tell us something about the boundedness of the a.

We used the following defintion of a chaotic function (Devaney, 50):

Definition: Let V be aset. f:V — V is said to be chaotic on V if

1. f has sensitive dependence on initial conditions,
2. f is topologically trasitive, and
3. periodic points are dense in V.

At first we had a problem with this definition because the function which
produces the a; of the continued fractions maps the real numbers into the
integers. We needed a mapping related to the continued fractions which
mapped the interval to itself. We then found a new map,



f:(0,1) = (0,1),
]

T
The relation between the new function and continued fractions is =, = £, —a,,
where z,, is the n'* iteration of f and ¢, is part of the continued fraction
formula. We then plotted f(r). (see fig. 1b)

The following is a proof that this map is chaotic:

1. The slope along each line in f is greater than one, meaning that the
function stretches points apart. For example, let z = [ay, ..., Gn, b1,.. ]
and y = [a1,@2,...,an,¢1,...], where by # c; After n iterations of f,
z, = [b1,...] and y, = [c1,...], diverge measurably. Discontinuities
also play a part in separating points; after an iteration two points can
end up on different sides of the discontinuity. These two facts combine
to show that f is sensitive to initial conditions.

2. Take two open intervals U and V. Let z be a point in U with decimal
expansion z = 0.4ga1d3...4d,... and y be a point in V' with decimal
expansion y = 0.bgd; ... b,a0a; .. .a, .... After n iterations of f acting
on y, the first n terms of the decimal expansion of y are removed leaving
0.aga; . .. or z. Therefore, after n iterations of f, y has moved from V
to U and thus is topologically transitive.

3. Since f is related to the continued fractions, the periodic points of the
continued fractions are the same as the periodic points of f. For the
continued fractions, the periodic points are the quadratic irrationals,
so take the quadratic irrationals on (0,1) as the periodic point of f.
Let € f given z = [a;,4a,,...] a sequence, {z.}32,, of the form
T, = [a1,a2,...,an,01,82,...] (a periodic point of period n) can be
constructed. Then lim,_ ., T, = z. In other words, it is possible to
construct periodic points with large periods which will get arbitrarily
close to z.

Part three states that a periodic point of period n can be constructed. This
statement implies that all periods are represented.

All fixed and periodic points are repelling points. That is, they “repel”
other points from remaining in their neighborhood. We know this for two
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reasons. First, only quadratic irrationals can have a periodic orbit, thus,
non-quadratic irrationals cannot remain in the neighborhood of a periodic
point. Secondly, by definition (Devaney, 24-26), since |(f*)'(p)| > 1 they
are repelling points. (We are assuming continuity as there are a countably
infinite number of discontinuities which have measure zero.)

To see if there was an attractor other than a periodic point, we then
looked at the phase portraits of f for 500 iterations each of =, e, five other
cubic irrationals and 13 quadratic irrationals. We took the union of phase
portaits. (see fig. 2) This new phase portrait looked similar to the graph of
the first iteration of f, done with 3,000 intitial points (see fig. 3).
~ The only unusual aspect in this graph are the values approaching zero
horizontally at .50 on the veritcal axis. (see fig. 2) These represent the
iterations of e. It is interesting to note that e has a pseudoperiodic cycle
of period 3. The first point is approaching .50, the second 1 and the third
zero. Particularly interesting is the fact that the third point approaches
zero in such a manner that when iterated, the integer, a; produced is two
graeter than in the previous cycle(ax_3) and f(z) is closer to .50 than in the
previous cycle. We realized that a countably infinite number of irrationals
would follow this pattern. This family would have partial quotients of the
form

[bl,bz,---,bn,a,',bl,bg,...,b,,,,a,-+1,,,,]

where the psuedoperiod is n + 1 and a; < a4 for all ;. However, these
pseudoperiodic cycles are also not attactors, due to the sensitive dependence
of the function.

As a result we know the partial quotients of almost all non-quadratic
irrationals will continue to have arbitrary values, over the whole interval,
which would make them unbounded (Devaney, 269-270). Also we know from
continued fractions that almost all irrationals have partial quotients that are
unbounded (Khinchin, 60-62). Looking at the phase portrait of 7 (see fig. 4)
it appears that the partial quotients of = do actually take on all values in the
interval. Unfortunately, we have no way of proving that they actually will.
That is, we cannot prove that the 431" partial quotient of = which is 20, 776
is not the largest partial quotient that will ever occur nor that as k — oo
there will not be a larger partial quotient. We know the global behavior of
this mapping, but we do not know the behavior at any specific point.

Next we did a Fourier analysis of the first 512 partial quotients of =. (see



fig. 5) The square of the magnitude of the Fourier coefficients falls within a
small range. The middle of the range is the square of the largest a; calculated
thus far. For exapmle, the largest ax calculated for &k = 512 is at a4 =
20,776. The magnitude of aZ;; = 4.4210® Thus, this is the average value of
the square of the magnitude of the Fourier transform.

The meaning of the graph is that all frequencies are represented; the
frequencies did not converge to any value. Our graph shows the fact that the
ar are chaotic. It does not tell us anything about the bounded/unbounded
nature of the ay.

When we performed the transform on the partial quotients of e and the
partial quotients, [1,1,2,1,1,2,1,1,2,...], these graphs looked very differ-
ent from 7 in that they have spikes. (see figs. 6 and 7) The spikes of .
[1,1,2,1,1,...] show an orbit that is periodic. The graph of ¢ has the same
spikes at 1;- and 2—3"-, where k is the number of partial quotients used, as the
graph of [1,2,1,1,...]. This indicates that e has a periodic nature. The
other spike at the end of the interval shows that the behavior of e is not
quite periodic. (see fig. 6)

Many open questions have resulted from our study of this problem. A
possible approach to take is to look at e as

1
a-stat (D

e =

o =f =

and try to find something similar for =.

The final question we have deals with the family of psuedoperiodic cycles
we found. Their form is like e, but are they transcendental? Is there some
way to link transcendental numbers to their partial quotients?

The smallest value of |nsinn| that we found happens right before the
430" convergent, c4a. The bounds on cgp are 1.901870 x 10%1® < c43 <
1.9801871 x 10?'® and a43; = 20,776, thus |nsinn| < 0.0001512. This is the
smallest values of |nsinn| found for the first 4,700 convergents.
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F(Xk)= 1/Xk - [1/Xk], Xo=Pi-3

newai2

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65

i

st aﬂ [l | ! l
0.50 J | | I
0.45 el # N il -
qx |
o L i i
0.25 l ! : |

0.20
o i
0.05 ‘
0.00

-0.05 k
0.00 50.00 100.00 150.00 200.00

Figure 1b:



Xn+1

1.00

Phase Plane, 500 Iterations

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20-

0.15

0.10

0.05

0.00

' H
. ‘.
: : H \
! H i
: : \ \
; : \
! :
. . 1
: : i \
. ! 1 \
: ‘ \ \
T \
. i \ 3
: ‘~. \
: : ! ‘
) \
- . }
! A
H !
i y
H
. L]
' R
F N 1
‘o ! \
1 . 1
T i 1 \
c 1 b
s ! : \
1 )
. . |l [y
. 1
- . 1]
il \
PR \
. 1
L i \ \
. 1
: i \
: i \
: ! '_
3 : i
3 N \
. [
: 1 \
: \

-0.05

0.00

0.20

0.40

0.60

Figure 2:

0.80

1.00

graphtotal



X1

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

-0.05

First Iteration, X(n+1)=1/X(n)-[1/X(n)]

5
H

.........

0.00

0.20

0.40

0.60

Figure 3:

0.80

1.00

firstiter

Xo



Xn+1

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00
-0.05

Phase Plane, 500 Iterations of Pi

0.00

0.20

0.40

0.60

Figure 4:

0.80

graphpi



009

‘¢ 2anBr g

00¢ 00y 00¢ 00<c 001 0

T ¥ T T T Gt

- 1y
| | 1 _ é | _ , | it

- ) ' , nlv
n 19
- 16°6
n 19

] 1 | 1 1 mrs.@

("syd 2yg 10 payndwo)) 1d JO qe ‘ULIOJSUEBL] JOLINOY

gO1X



00

I

:9 amndi g

0001 008 009 00¥ 00<

1 ] 1 1 ]

(*s1d $201 aoj poyndwo)) @ jo e ‘ULIOJSURL], I2LINO

601X

01

cl

14!



1}, 2B g

_ ,..m......_ —.,. — ._ _..:_ .—: -._._:.— _:“.h—

e

1

51




Phase Plane, 500 Iterations of e
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