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An Expioration into the Cycle Lengths of Matrices

Introduction: The things we show in this paper are:

I Given an nxn matrix with entries that are elements of a field of characteristic p (R,),

find all possible cycle lengths w of the matrix.

II.  Given an nxn matrix with entries that are elements of a field of characteristic p (Pp).

calculate the number of Jordan forms with cycie length w.

IT1. Given an nxn matrix with entries that are elements of a field of characteristic p (Pp).

calculate the number of matrices with cycle length w for non-derogatory case.

Part |

Consider a matrix A with coefficients in a field F,. We define the cycle length of A to

be w = |k-r| where k and r represent the first time that A¥ = AT, We will denote the
characteristic polynomial of A by X,. The characteristic polynomial can be factored into

powers of irreducible polynomials:
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Where P; are all irreducible of degree d; with coefficients in our field F;. We know that

we can find a matrix ] in Jordan form similar to A with coefficients in the algebraic
closure of Fp. Now, there exists an invertible matrix Q such that

QAQ™! - )
So that,
A"-Q7'

Hence if

A¥ < AT
then

Q' Fo-0'ro

or

J-rr

S0 a matrix A has the same cycle length as its Jordan form.

Theorem: Suppose A has Jordan form ]. Then there exists an h such that when ph z,

where v is the size of the biggest Jordan block, J"h is diagonal.

Proof: We can write every Jordan block, J, in this form J = Al + Nwhere Nis a
nilpotent matrix such that N®= 0.

Then,
oh

I e
- 2004 Z[f ])"h"N‘ -0,

i=1

h
because [r ]- 0 when 1 sisp®1 and N"h-O. (3]

Consider an irreducible polynomial P of degree d. We know that all of the roots of P will
exist in de. Now, if we exclude the zero element of this field, we are left with a

multiplicative group F':d of order P3-1. By LaGrange's theorem, we know that the order of



an element divides the order of the group where the order of an element A is the smallest
power 4 such that A* = 1. Therefore, u divides p"-l. Now, let e, = Icm [orders of roots of
the characteristic polynomial ()], where lcm denotes least common multiple. Then

).?° = 1if A;j# 0. Let hy be the smallest integer such that ph°z v. Then we have the

following theorem.

ho
Theorem: J°*? "-H where H is a diagonal matrix with ones and/or zeros on the

diagonal. [3]

Notice that p“-l = -1 mod p, 50 p is not a divisor of p"-l. Therefore, p does not divide
for any A. Hence, ph° and e, are relatively prime. Thus, the cycle lengths of an nxn

matrix are of the form e, ph°.

Part I1

A. Given an irreducible polynomial q(x) and p find the cycle length k of the roots.
If x¥-1=q(x)t(x) =0 and A is a root of q(x)
Af-1-q(A)t(2)-0
Ak
then Kk = the smallest k such that q(x) divides x¥-1. [2]

B. Calculation of the number of irreducible polynomials of degree d with coefficients

o X
over F, whose roots are w-th roots of unity in P od-

We start with the following lemma.



Lemma: Let A be an element of ]F:d and let w divide p%-1. Then A® has minimal

d
oD -1
- polynomial with coeficients of P, of degree d if and only if " does not

divide p3-1 for all g < d.

Now, we know that

l':d 22/(p%-1)2 ; where = denotes group isomorphism.

We also know that
2/(p% 102 2 2/q,'2 x 2/q,°2 x -~ x L/q; 'L

where

d e| e2 et

p-l-= q; 4y °q, ; q's being prime.

Consider w such that w divides pd-l. Then w can be factored as product of the
- following primes:

fi f f . .
= q"q22~ ‘ -qt‘ ; q's being prime.

We have the following :

The number of elements in Z/(p%-1)Z of order w is equal to the product of the

. . f .
number elements in Z/q?‘l of orders qi'. If we can find out how many elements

of order p” are in 2/p%Z for r2s our problem is done. This is the same as counting
the elements of (0,1.2,........p*-1) which are refatively prime to p". This is given by
the Euler phi function

¢(p") -p-p"! :p prime.

So that the number of elements in Z/ (pd- 12z F:d which are w-th roots of unity is

#(0) - 0(q,19(a) - 9.



Since roots of polynomials or degree d come in sets of d co_niugates. the number of

irreducible polynomials in P,le with roots in F:d that are w-th roots of unity is

given by:
Tdow-9(w/d

C.  Given the cycle lengthw, of the roots and p find all irreducible polynomials.

We have already described a method to find the degree and the number of
irreducible polynomials. Now, we can go through all possible polynomials of degree
d and test all elements of Fp to see if they are roots of such a polynomial. When we
find a polynomial with no roots in the base field, use part A to find the cycle
length, &, of that polynomial. If &~ w, this is one of the irreducible polynomials we
are looking for. We can go through this process until we have found all such

polynomials (we know how many to look for [ roxh part B).
D.  Given Jordan form, p and the size of the matrix, find the cycle length of the matrix.

We must find a k such that pk 2 v. Then, we can use part A to get the order of
each root of the irreducible polynomials of the characteristic polynomial. Then, by
the theory described in part I, we can take pk e, to get the cycle length of the

matrix.
E. Givenw, n, and p, calculate the number of Jordan forms up to similarity.

Since ph° and e, are relatively prime, we can divide w by the greatest power |
of p that will divide it without remainder, k, and our result will be the least common
multiple of the orders of roots of our characteristic polynomial. Then we know that

pflivg p¥. From part B, we know the number of irreducible polynomials, %(w, d), with



cycle length w and their degree d. Now we are left with a combinatorics problem of going
s
through all possible combinations of d; such that n- Ze;di where, e; is the multiplicity of

i=1

the irreducible polynomial P; of degree d;.
Part I11.

If we consider only invertible nxn matrices, then the following group theory applies.
Let GL,(Fy) represent the set of nxn invertible matrices with entries over the field F;

GL,(F,) is a group with the operation of matrix multiplication. For A, an element of
GL,(F,). a conjugate of A, is any matrix of the form PAP™! where P is also an element of
GLn(Fp). The refation “A is equal to a conjugate of B, or A is similar to B is an equivalence
relation in GL,(F,). Thus, the relation -~ partitions GL,(F,) into equivalency (or conjugacy)
classes. For any A, an element of GL,(F,). the centralizer of A, written C,, is the set of all
the matrices in GL,(F,) which commute with A.

Ca = (Xin GLy(R,) : XAX ' - A)
Cy is a subgroup of GL,(F,) and thus its order divides the order of GL,(F,). We can say
something further, that is,if we know the order of GL,,(P,) and the order of the centralizer
of A then the number of distinct conjugates of A is equal to the index of C, in GL,(F,)
written (GL,(F)) : C,).

(GL,(Fp): C4) =1GL(F)1/1Cy |

where the order of GL,(P,) is given by:
n-1

1 GLo(® ) -l p® - o,
i=0

We can count the number of Jordan form matrices corresponding to a given cycle length.

If we knew the order of the centralizer of a given Jordan form ] then we could calculate
the number of conjugugates of . We showed in Part I that if A~] then A and ] have the




same cycle length. So, knowing the number of conjugates we could exactly determine the
number of matrices in GL,(P,) with a given cycle length.

For a special case, we can calculate the order of the centralizer.
Definition: Let A be in GL,,(F,,). A is nonderogatory if the minimal and characteristic

polynomials of A are equal.

In order to calculate the number of conjugates of A we have the ollowing theorem:
Theorem: Let A be in GL,(F,) with the following minimal and characteristic

polynomials

e ] e
mA(X) - XA(X) = pl ! 'p22' ' 'pss

where P;'s are irreducible polynomials in x. Let degree of each P;- d,. Then the

number of invertible matrices commuting with A is:

S
1c, 1= [ToeH
j-1

where §(u) is the Euler phi function. [1]
Therefore, the number of conjugates of A is:

n-1

$
1GLF) 1 /1C, 1= T1o" - o1 7 [To(o%)
i=0 j= 1
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Some Results
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