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what happens to the critical points of the population model F(x) =
xexp6(x), 6(x) = -1.9(x-1) + oc(x—l)3. as the model loses global stability on
the real line? This paper will focus on understanding the above question and
my attempts to answer it. | will present a conjecture explaining the
resulting behavior; this conjecture is based on Read's wark and Deveney's
paper. However, | am far from able to prove it at this point in time.

Before | start to explain the population model given above, it is
necessary to define some important and relevent terms. For instance, what

is a population model? Cull provides an exact definition:

A papiiistion madel has the form xts 1 = AXy)

where 7is a8 continuous function from the non-
negative reals to the nonnegative reals, and there
is a positive number X, the equilibrium point so
that £0)=0
AX) (< for 0<x<x
{: Lforx=x
>xforx>x

and if /(%) = 0 and X < X,

then 7°(x) > 0 for 0 ¢ x < xm
- 7'(#) < 0 for X > Xy such that 7(x) > 0." (1968, p.2)

This definition describes a population model as a difference equation with
the additional cheracteristics depending on the value of x. These |
characteristics are more clearly understood when visualized in the graph of
a population model {see fig. 1). But there are other definitions that need to
be clarified. The equilibrium point x occurs when f(X) = x: this is also

colled the critical or /ised paint. A cycle of periad nris a cycle of n
distinct points (x{, %9, ..., Xy) such that 1(x) = xp, f(x2) = %3, .., 1(%p) = %1.
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Fig. 1: F(x) = xexp(-1.9(x-1)] and H(x) = x.F(x)

is & population model and satisfies the conditions
outlined in the definition. The point of intersection
of F{x) and H(x) is the fixed point, in this case x=1.
The dotted line that spirals in towards the fixed
point demonstrates global stability.

In order to understand stability, recall that %y, = f(xy) is a difference

equation which means that it is an iteration process. For example, the
second iterate is Xy45 = 1{f(xy)) which is the composite operation. Stability
depends on the destination of successive iterstes. A fixed point is s/st/eif
the iterates of points tend towards it. This leads to the distinction of
global and local stability. A population model is g/alis//y stsbie when every
initial point kg, such that f(xy) > 0, has its nth iterate converging to the
fixed point as n goes to infinity. To be /acs/ly stat/emesans that there
exists some radius r such that the neighborhood centered at x contains only
points whose nth iterate goes to X. And finally, /nstatir7ity occurs if
iterates don't approach the fixed point. With these definitions in mind, the



given population model, the question, and the conjecture chould be easier to
understand.

The population model is F(x) = xexp6(x), G(x) = -1.9(x- 1) + x(x-1)3.
Cull introduced this equation as an example of a population model that is
locally but not globally stable for « nonzero. When o = 0 the equation
exhibits global stability. This is seen in Fig. 1; the spiraling tends toward
the fixed point x = 1. Another fixed point for F(x) is x = 0 but it is unstable.
Last summer, Read investigated the convergence scheme for different «. He
disregarded . > 0 as he "found [no « > O] that would have reai cycles” and
“since the function is continuous,... there are no positive alpha with resl
cycles of period 2." (Read, p.4) So, noting that « = 0 leads to the global
stability of the model on the real line, Read used the rerhaining o« (i.e o< 0)
as he addressed the influence of cycles in the complex plane on the resl line.
He found that cycles appearing on the real line appeared simultaneously in
the complex plane. But how does the information presented by Read help us
better understand the equation? | think he helps in two ways: he provides
useful information on when the real line loses global stability and breaks
down into cycles of period 2,4, etc; he extends the model into the complex
plane and this extension is invaluable in addressing the question presented
at the beginning of this paper. Now we can assume X is 8 complex number
such that x = u + vi where u is the real part and v is the imaginary part of x.

The question centers on the behavior of the fixed points as the
population model experiences a loss of globsl stability. Clearly, the first
step to answer this question is to identify the fixed points and to evaluste
them for stability. Recall that a fixed point is a point for which f(x) = x
holds. So the fixed points of the given model must satisfy the equation

exp6(x) = 1. From complex analysis we know that exp(2nim) = 1, for integer



m, s0 expG(x) = exp(2nim). Taking the logarithm of both sides, we get G(x) =
Znim. For every veiue of m there are three distinct roots. Whenm = 0, the
equation reduces to -1.9(x-1) + «(x-1)3= 0 and we get the real root X = |
(note that the other two roots are complex). For any other value of m, the

fixed points are complex. In other words, X = 1 is the only real root for the
equation G(x) = 2nim. This is verified mathematically in the following wauy:

Assume that a(x-1)3 - 1.9(x-1) -2nim has a resi root r.
Then a(x-1)3 - 1.9(x-1) - 2nim = (x-r)(ax2 + bx + c).
The other two roots can be found using the quadratic

equation but for this proof they aren’t necessary.
Match the coefficients for the x terms:

Term Coefficients

X3 gz

%2 -ra+b= 3
since &8 = o we have
b=a(3+r)

X c-rb=3x-19

1 cr=19+2naim-o

Thus we find that since « is real, a is real. This implies

that b is real since o, are real in the x2 term. This im-
plies that c is resl sincew, b, and r are real in the x term.
This implies that cr is real but this leads to a contradiction
since there is the imaginary part 2nim, for m nonzero.
Thus, for m nonzero, there can never be a real root.

It is interesting to note that m = 0, @ = O is the only case when there is oniy
one root; this case coincides with the initial global stability of the real
line.

The identification of the fixed points in the complex plane needs to be
accompanied by stability analysis in order to understand any possible
influence these points have on the real line. Stability of a point is

determined by the following relationship:



> 1 X is unstable

=1 noinformation can be abtained from this method.

IF{(x)l [( 1 xis stable

IF*(x)l is the norm of the complex function F'(x) at the point x.
F'{x) = expG(x)[1 + XG'(x)] can be reduced to F'(x) = [1 + xG'(x)]; since F'(x) is

to be evaluated at the fixed point % we can substitute the known equation
6nim
X-1-

exp6(x) = 1. After some reduction and substitution, F'(x) = 1 + 3.8x +

| broke this equation down into real and imaginary parts, R and |
respectively: then RZ + 12 = [F'(x)l. With x = u + vi, we have

R Gamv +38u+1and
Wu-1)2 + w2 7

enm(u2-y+v2)
Tu-1)2 + y2

For u=1, | was able to show that the fixed points were all unstable with

+ 3.8v

the possible exception of one point. But for u not equal to one, my efforts
were thwarted by grotesque formulas.

with the above information on complex fixed points, the next step to
answering the question is to analyze the influence these points have on the
real line and to look at the influence the loss of stability has on the fixed
points. At this point it would be useful to discuss the observations and
conclusions of Read and Devaney. Read observed that

"there seems to be a series of 'valleys’ of points that
diverge, and these valleys get deeper, or closer to the
real line... Al some point (betweeno = -1.14015 and
-1.1402) these valleys stop growing, and then suddenly,
for a slightly different value of «, entire areas between
valleys ‘turn red’, that is, cycle instead of converging to
a fixed point."(p.9)
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These “valleys™ may be the basins of the unstable complex fixed points (that
is, these basins make up the basin of attraction for infinity). The
interaction of these unstable valleys with the stable reai line leads to the
dramatic change of 8 region from the unstable and stable parts to an area
that cycles.

Meanwhile, Devaney sheds a different light on the dynamics of
changing stability through his analysis of Julia Sets and expioding fixed
points. He explores the change inflicted on two fixed points, one stable the
other unstable, as the parameter lamda is increased. He describes the
change as the following: the fixed points merge as lamda increases until
the bifurcation point is reached. At that point the merged point splits and
enters the compiex plane as, it appears, complex conjugates. These new
points become repellors. In this way, he provides an explanation of the
stability of the fixed points and their changing dynamics as the parameter
is increased.

¥hen c. is no longer zero, the real line becomes locally but not
globslly stabie. For anya we know that X = 1 remains locally stable. My
conjecture is that the fixed points undergo a change similar to that
presented by Devaney but in reverse order. The unstable fixed points in the
complex plane seem to approach the real line, as noted by Read. Rather then
joining to create a new point at the bifurcation point (somewhere between o
= -1.14015 and -1,1402), the dynamics of the unstable meeting the stable
leads to cycling in both the real and complex regions.

However, | was unable to prove this mathematically. | had
difficulties in proving the fixed points are unstable, and in graphing the
interaction of the two regions. | blame my inability to establish whether or

not the fixed points were stable on my frustration of working with an un-




manageable equation. With the help of Paul Paimer, | was able to produce
numerous graphs that fell into three groups. The first set of graphs looked
at the second iterates of the function F(x): Xy is on the x-axis and %445 is on
the y-axis. These graphs vary with respect to aipha. Asa tends toward
negative infinity, these graphs show the breakdown into cycles. The second
and third sets of graphics dealt with the compiex roots of F(x). In the
second set, we fixed o and changed m. This showed the path of the three
roots as m varies. In the third set, we fixed m and changed «. Once again,
the graphs displayed the path of the three roots but for «. varied. After all
the kinks were out of the last two sets, the graphs proved to be accurate but
difficult to understand. One of these two sets should have indicated the
nearness of the fixed points to the real line. | was unable to get passed the
unexpected graphs that v?ere produced. Thus, the stability of the fixed
points in the complex realm and their encroachment on the real line
remained undetermined.

Without the necessary dats, it is impossible to prove anything. So
what do | need to do in order to be able to answer this question? | need to
show the fixed points in the complex plane are unstable by reducing the
grotesque equations to something more manageable. Then, the “valleys” in
the pictures produced by Read need to be confirmed as the besins of the
unstable fixed points. Perhaps Devaney's work on Julia Sets can be extended
in this case to illustrate the dynamics of the real and complex regions and

to support my conjecture.
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