Directed Percolation in Two Dimensions
by Ken Loo & Randy Doser
1989 REU at OSU

Various percolation models have been studied in depth in
recent years, by both mathematicians and physicists. The particular
model we looked at was a variation of bond percolation which we
will call directed percolation. We will first explain both models since
many comparisons will be made between the two models.

[. Models Explained.

A. Bond Percolation.

Consider the integer lattice in two dimensions. At each point x in
the lattice, define a neighbor of x as any point y such that Ix - y I=1.
Define also a bond as the edge of a graph connecting all the
neighbors of Z2. In bond percolation each bond is assigned a
probability p of being "open” and 1-p of being "closed”, with
choices made independently for each bond. We define a cluster
containing point x as the set of points y such that x — y (i.e. y can be
reached from x by only open bonds). More precisely, 3 a sequence
of neighbors x=x1, X2, 3, - + - Xn-1» £n=y in Z2. such that for every
m<n 3 an open bond between xp.; and x . Percolation is said to
occur if Cyo={xe Z2%:0 - x }(the zero cluster) then, P(ICyl=20)>0. In
other words there is a positive probability of the zero cluster
containing an infinite number of points. This probability of
percolation is a non-decreasing function of p, so we define a
critical probability, p.= inf{p:P(ICyl=20)>0}.

It has been shown that p. is non-trivial and that pc=15 (Kesten,
1980).

B. Directed Percolation.

Different from bond percolation in that it has no probability
associated with the bonds. At each point in Z2? choose two of the
four neighbors and declare these bonds open in a direction away
from the current point. This can be thought of as a system of
"one-way streets" on the lattice that allow that allow a first point
to be reached from a second point but not the other way
around(unless the first point chooses a directed bond lying on the

IL.

same edge). Since there are four neighbors, there are (;)zé

possible configurations at each point.

T (3) () '
e 5y &>

(1 (@) \L l (6)

Each configuration is equally likely and. so has a probability of 'é‘ of

being chosen. The event of percolation is defined in the same way
for this model as it was for the bond model; however, the question
is not, "at what p.?", but simply,"Does it percolate?”

4
N

Computer Simulations.
A. "As A Physical System.
After mucking through some proofs on bond percolation, we wrote
a program to simulate both bond and directed percolation. Below
is a simulation on the Macintosh of bond at p=.50 and p=.60.

© Bond Percolation at p=.50
{oxigin at center)

-r-’a-fgi'x-ﬂ'ﬁ:'~

r.
g

seracoind

1]

'

s
-

:1"7 LS
=0

R
.
My

- furid

i

l--'h-r

T

brid

-

e

A HE

i
-1

THH

-—L

s (3 = T

s

M
il

F

1.

3
hil=
1

HTey:
e
ZiTh

™

L

e
EF

ek

o

O

o
fed ded’

11

ol

HH

fae

=z

1880
1T

T
Tt

[d

L

HHTH

1243

i
0

4
-

o

1R2REBY

- e §
. 3

iy
Erpel

valy

il

Eric g
o TR

-

-

qeid | }4 bd

-

=

o Bt o
o -

b [

1
-
.19

HOHD

e

ananeles.
T T

()
-
"
L™
-
d
.o.e
.1.c
L
KA
un
b
e.n
Mo
-“’\
©
-]

We first looked at the models as a physical system with the
latticed comparable to a porous substance and C; the set of wet

With this in mind the

sights if a fluid source existed at 0.
comparison dealt only with the "filling" of the screen.

A glance at

the two pictures above shows what a striking change there is

Below is

a magnified simulation of directed percolation with arrows to

when p differs by only one one-hundredth of a percent.

indicate directions and another simulation(without arrows) at the

A

visual comparison would seem to indicate that the extent to which

directed percolation fills the plain can be related to bond

same magnification as the previous bond percolation pictures.
percolation with a .50 < p > .60.

.......
.......

(W)
L4\

..............

Directed Percolation
(origia at center)

..............

€€
e~ -
o
\
\z

Directed Pexcolation
(origin at cenater)

B. As A Growth Model.
After little or no success at relating the two percolation models,
we decided to consider them as growth models. Starting with the
origin as infected at time t=0, its neighbors are infected (if at all)
at time t=1 (the infecting point is now considered dead), and etc.
At each time step, the number of points that were infected were
saved to a file so that the rate of growth could be analyzed. This
was done for both percolation models. Let us set forward some
notation. Let A;=ICyl at time t, and let N be the number of newly
T
infected points at time step t, thus 7\(52 N,;. We can consider N,
t=0
N:-l
to be the sum of a sequence of random variables, NFZ X,. Thus
i=0
each N, is also a random variable.
1. Directed Percolation Growth.
For the directed model it is easy to see that Ny=1, N;=2, and Nj
takes on a value between 1 and 4. Below is a graph of the N;
for one run of the directed percolation.simulation which is also
shown.

Directed Percolation Growth

- 150

E J

&

£

=)

=) 100

=)

5]

o .

&

= 50 o

; o

P

=

-

-]

& o 11 CCrLlry
) 100

time steps (t)

Directed Percolation Growth
at time t=93.

This simulation raises questions as to the shape of C, for large t.
The graph of the N, shows quite a healthy growth rate and one
that suffers very little from the winds of probability. A
comparison needs to be made with bond percolation as to the
rate of growth that it exhibits. An average of ten runs of the
directed percolation growth model yielded an average difference
of | N,- N,_I=1.45. Linear regression yields a similar slope.

2. Bond Percolation Growth.

In contrast to directed percolation, we found that the bond model
exhibited a more erratic growth pattern. A very unstable graph
of the N, follows along with the corresponding simulation having a
p=.53. One would expect directed percolation to be more stable
since bond percolation has a wider range of possible
configurations at each point. Similarity is expected also however
since near p=.50 the expected number of open bonds at a single
point is two, the exact number for directed percolation.

Bond Percolation Growth (p=.53)

120

100 -

infected points (N)

of

]
0 20 40 60 80 100

Bond Percolatioa (p=.53)
at time t=86.

3. Comparing the Models
For the comparison we will define V(t)=A,.

QOur program calculated the total number of points our
percolation(bond or directed) model reaches at time t. With
the assistance of CricketGraph, we found that the total number
of points, V, grows quadratically as t.(see graphs) For large ¢,
the square term dominates so V(t)—at2:

V(to)=at§ for t,>>0 where t,=inf{t:V(t)=at?}
and
log(V) = log(a) + 2log(t)

Plotting log(V) vs. log(t) and extrapolating, we found that t,=20

for the graph of the average directed percolation simulations.
(reference to graph)

4000 - -
Directed Percolation
y = 34.348 - 3.2165x + 0.70256x*2 RA2 = 1.000
3000
&
] =
-4
2000 4 o
=]

Number

20 40 60
Time Steps

80

Directed Percolation

Qoz(.to)”"‘ (-2

We have that:
2
V(to) = ato

V(tg+ 1) = até + 2aty+ a = V(ty) + 2aty+ a

in general,
V(tp+ n) = V(tg+ n - 1) + 2aty+ (2n - 1)a

The expression 2aty+ (2n - 1)a is the number of new
points created at t = tg+ n. Substituting t = ty+ n yields :

THE NUMBER OF NEW POINTS CREATED AT t IS 2at-a, (t > 20)
THE RATE OF GROWTH OF THE NUMBER OF NEW POINTS IS 2a,
(t > 20)

From the equation of the fitted curve(see graphs), a = .7.

We have that the growth rate

1.4.

Plotting the total number of points at time t for bond
percolation, and using the same argument as above, we have
the following data:

o)

orowth rate

.50

.53

. 54

.55

.47
.94
1.60
1.88

to_(time at which V — at2)
20

20
20

15

Bond Percolation (p=.50)

3000
= -41.709 + 8.1224x + 0.23678x*2 R*2 = 0.998
>
9]
2000 -
]
z
E —a— Column3
=N

1000 A

40
Time Steps

60 80

100

4 Bond Percolation (p = .5)
e
0 Vet
3 -
2-3
o Column 5
=
1
0 .
4000
Bond Percolation(p=.53)
y = 44.015 - 4.2761x + 0.46941x42 RA2 = 0.999
3000 -
2
=
2
2000 -
< —g-— Column 2
p T
L2
-]
g
=
10004 <
0 1 T T T M T T T

40 60

80

10

Bond Percolation(p=.53)

Column 4

log(V)

log(t)

4000
Bond Percolation(p=.54)
y = 51.497 - 7.4208x + 0.31459x"2 + 3.7860e-3x"3 R*2=0.999
3000 4 y = 176.14 - 24.320x + 0.80299x"2 R*2=0.997
K
.y
Q
=1
-t
-]
bt
2000 - é

1000 o

T T - T ™ T T

20 40 60 80 100

Bond Percolation (p=.54)

log(V)

Bond Percolation(p=.55)

—f— Column 4

/Qcé(.t.;)‘-" |15

Comparing the growth rate of directed percolation with bond
percolation, we speculate that the directed model might be
correlated with the bond model with .53 < p < .54. Imperically,

it seems that if V(t)=at2 holds for t — oo, directed percolation
percolates.

II. Conclusions.

Although we were unable to prove that the directed model
percolates, the similarities to the bond percolation model would
suggest that it does. The extent to which the model "fills" the plain
and the rate at which it grows when looked at as a growth model
both give strong indications that the model can be proved to
percolate. Directed percolation is deceptively simple in that there is
no inherent probability in the model other than the choice of
direction. The dependencies introduced by this aspect give it a
difficulty that is not encountered in other bond percolation models.
We hope that others will be encouraged, by the evidence we have
presented here, to pursue a precise proof of its percolation.

Bibliography

R. Durrett (1988). Lecture Notes on Particle Systems and
Percolation. Wadsworth & Brooks/Cole, Belmont.

H. Kesten (1980). The critical probability of bond percolation on the
square lattice equals 1/2. Comm. Math. Phys. 74, 41-59.

Appendix

Directed Percolation in Two Dimensions:
Programs and Documentation used in the analysis of.

READ ME _
Documentation for the Pascal Programs
Growth and D2dPerc
written by
Randy Doser

These two programs were written to study the problem of
directed percolation in the integer lattice in two dimensions. They
are computer simulations of the problem which was proposed in a
lecture by Bob Burton during the summer of 1989 at Oregon State
University. If you are not familiar with LightSpeed™ Pascal please
consult the nearest manual. DirPercolation is a compiled version of
D2dPerc under version 1.11 and GrowComp is a compiled version of
Bnd Grow Comp under version 2.0.

I. THE MODEL
A. Directed Percolation

The model is a percolation model on the two dimensional integer
lattice. As in other percolation models it deals with the sights or
points of the lattice as well as what are called "bonds” between
these points. Distance on the lattice is defined in a "taxi cab”
metric fashion: for example the distance between the origin and
the point (x,y) is merely x + y. With this notion of distance we say
that bonds exist between points that are distance one apart (called
neighbors), giving us four possible bonds at each point. In
directed percolation(sometimes called oriented) each point has
two bonds that allow the passage of a "fluid" from itself to a
neighbor. These two bonds allow passage of the fluid in only one
direction: away from the point. The question for this model is
simply, "does percolation occurr?” Percolation is said to occurr if
there is a positive probability of the fluid flowing to infinitly
many points from a particular starting point. In other words if
C¢ 1is the set of all points such that these points can be reach by a

path of bonds from the origin, Percolation occurrs if the
probability of the number of elements of Cg being infinity is

greater than zero:

C0={xe22:0->x(x can be reached from 0)}.

and,
P(ICgl->00)>0.

B. Bond Percolation .
The model for bond percolation is slightly different(and much
more studied) from directed percolation. Each bond is assigned a
probability p of being open and 1-p of being closed independent
of all other bonds. The question is similar to directed, however,
with the added parameter of p. The question thus becomes, "At
what probability p does percolation occurr?” This probability is
referred to as P; (read as "p critical”).

For a good treatment of this percolation model refer to Richard
Durrett's book, . Pc is known to be 0.5 for bond

percolation.

II. THE PROGRAMS
A. D2dPerc.
This program was written with the view of directed percolation as
a system of random one way streets. Thus it is a recurrsive
algorithm that generates one "street" at a time for each point and
following that street until it dead ends at the edge of the screen,
the restricting radius, or into another previously generated street.
When the particular path dead ends the recurrsion returns to the
previous points on the path (stack) until it finds a point that has
not yet chosen two directions and then starts a new path at that
point, repeating this until all points have chosen two directions.
The program offers several options which will be explained below.
1."Bond or Directed Percolation?(B/D):"
This allows you to choose between the two different models
explained above. Bond percolation has been thoroughly
studied in two dimensions as was included in the program for
comparison with directed percolation.
2."Arrows?(y/n):"
This allows the user to include arrows in the graphics of the
directed percolation model in order to better visualize what is
occurring. The arrows can be very helpful at higher
magnifications (8-10) but usually just clutter up the screen at
the lower magnifications.
3."What probability?:"
This is for Bond percolation. The user should enter a real
number on the open interval (0,1). This number will be used
as the probability that a bond is "open".
4."What magnification?(3-10):"
This determines the number of lattice points that will be
visible on the screen and the size of the bonds. The number

represents the number of pixels from one lattice point to
another. We could have gone down as low as 2, however,
because of memory limitations this would only make the
picture smaller and give us no more lattice points than
magnification 3.
5 "Restricting Radius?(y/n):"
The resticting radius was added to aid the study of the model.
Its utility is questionable at best. The idea is that the radius
(which in the chosen metric form a closed set of points equal
distances from the origin) of size n might aid in analysis since
every minimum path is of length n to the outside of the radius.
The problem here lies in ridding the union of all probabilities
of minimum length paths of the intersection of these paths.
Running the program several times reveals that rarely if ever
is a minimum length path the one that crosses the radius.
6. CLICK THE MOUSE TO TERMINATE AFTER CURRENT
PERCOLATION.
B. GrowthRate.
This program was written to study directed percolation as a
growth model. The growth model starts with one individual(the
origin) at time t=1 which "infects" to two neighboring points at
random. These points in turn "infects" to two neighboring points
at time t=2, and etc. Once a point has infected two neighbors it is
considered "dead” and can no longer infect or be infected. The
aspect that the model was created to look at was the rate of
growth or spread of the "disease” and so the number of new
infections at each time step is recorded in a file for later analysis
(on a spread sheet for instance). OPTIONS INCLUDE ITEMS 2, 4, 5,
& 6 FROM THE PREVIOUS PROGRAM.

08/08/89 19:12 Bnd Grow Comp Page 1
program GrowthComp;

{This program was written to model Directed Percolation(see READ ME). It treats the problem as}

{a lattice with two one way streets chosen at random from the four directions available at each point.}
{The streets always head away from the point at which they are chosen. Since it concentrates on the }
{paths and not on a growth type model (see READ ME) it uses a recurrsive routine that follows each }
{to its termination and then returns to the last point on the stack and follows it until all points have }
{chosen two directions. Too compare the modei to Bond percolation a bond percolation model is also }
{available.}

const
WIDTH = 480;
HEIGHT = 280;
type
pointPTR = “elmnt; {Define the linked list used to store old & new points.}

elmnt = record
y, X: integer;
next: pointPTR;
end;

four = 1..4;
point = record
paths: set of four;
dead: boolean;
end;
graph = array({-80..80, -47..47] of point;

var
streets: graph;
oldlist, newlist: pointPTR;
afile: text;
x_origin, y_origin, i: integer;
arrows, radius: boolean;
respns, perc_choice: char;
yes, bond: set of char;
mag: 3..10;
n_box: 2..46;
openprob: real;
Event: EventRecord;

procedure WindowSetup;
{=== == === == = ==== SR EIS=SERER
{= PURPOSE: Resizes the drawing window for the graphics display. =
{= SUBROUTINES CALLED: SetRect, SetDrawingRect, ShowDrawing(system tools). =
{= INPUT: none. =
{= QUTPUT: none. =
{= GLOBALS: none. =

(=== e == =====cm===== }
var
text_window, drawing_window: rect;

begin

08/08/89 19:12 Bnd Grow Comp Page 2

HideAll;
SetRect(drawing_window, 0, 37, 510, 339);
SetDrawingRect(drawing_window);
ShowDrawing;

end;

{.""i'*'iﬁﬁ"""ﬁfﬁ"tt'tit‘titt.t’."'*'i't""fif.it'fit*'f"}

procedure Drawlattice (var dead: graph);

{======= ——————————— = == == ==== ============}
{= PURPOSE: Draws the integer lattice according to the restricting radius and the magnification
{= selected by the user.

{= SUBROUTINES CALLED: PenNormal, MoveTo, LineTo (Quickdraw).
{= INPUT: dead= array of lattice points boolean.
{= OUTPUT: dead= initialized.

{= (draws the lattice).
{= GLOBALS: radius= bolean, tells whether user wants to restrict the growth to a specific radius
{= from the origin on the lattice.
{= n_box= integer value of the restricting radius. =
{= mag= integer value of the magnification. Represents the # of pixels =
{=======— = ==== = E=EE=

var

X, ¥, i, j: integer;
begin
PenNormal;

if not (radius) then
{If the user chose not to use a restricting radius then draw a lattice on the full window.}
for i := (WIDTH div mag) downto 0 do
for j := (HEIGHT div mag) downto 0 do
begin
X :=i- (WIDTH div (2 * mag));
= | - (HEIGHT div (2 * mag));
streets(x, yl.dead := false;
streets{x, y].paths := [];
MoveTo(i * mag, | * mag);
LineTo(i * mag, }] * mag);
end
eise
{If the user wants a restricting radius then draw only those lattice points that are within “n_box"}
{units of the origin.}
begin
for i := n_box downto -n_box do
for j := (n_box - abs(i)}) downto -(n_box - abs(i)) do
begin
streets(i, jl.dead := false;
streets(i, jl.paths := [];
MoveTo(x_origin + i * mag, y_origin + j * mag);
LineTo(x_origin + i * mag, y_origin + | * mag);
end;
{Draw the radius itself.}
MoveTo(n_box * mag + x_origin, y_origin);
LineTo(x_origin, n_box * mag + y_origin);
LineTo(x_origin - n_box * mag, y_origin);

08/08/89 19:12 Bnd Grow Comp Page 3

LineTo(x_origin, y_origin - n_box * mag);
LineTo(n_box * mag + x_origin, y_origin);
end;
end;{DrawlLattice}

{’."'t‘.'.".i"t'itti'i'ﬁ"ﬁ'tiit'i't"'tt'ttb.'ﬁ'ii"tifttitttt}

rocedure Floodit (x, y, dir: integer; var u, v: integer);

il
o

PURPOSE: Figures the coordinates of the new point from the given dir(ection) and draws an
arrow or a line to that point.
SUBROUTINES CALLED: LineTo, MoveTo, Move, Line (QuickDraw).
INPUT: x,y: integer coordinates of the current point.
dir: the direction (1,2,3,or 4) to move from current point.
u,v: the coordinates to be calculated.
OUTPUT: u,v: the coordinates of the point that is one unit in dir{ection) from x,y.
LOBALS: arrows: boolean telling whether the user wants arrows drawn or line segments.

wow o moHog o
o

[O { I N '}

]
[]

begin
U= x - (dir - 3) * ((dir mod 2) - 1); {Compute the new point's coordinates.}
vi=y 4+ (dir - 2) * (dir mod 2);
MoveTo(x_origin + x * mag, y_origin + y * mag);
LineTo{x_origin + u * mag, y_origin + v * mag);
it arrows then
begin
Move(x - u, y - v);
Line(((x - u) "2 + (y -v) " (-2), ((x -) " (-2) + (y - V) " 2));
Move(((x - u) " (-2) + (y - Vv) " 2), ((x - u) "2+ (y -v) " (-2)));
Line(((x - u) 2+ (y -v) " (2)), ((x -u) " (2) +(y -Vv) " 2);
end; v
end;{Floodlt}

{t"'t"#tt'.ﬁf""""""tfﬁt""!‘i"tf"'"t"#"’ﬁ"i"ttt#**t}

tunction OnTheEdge (x, y: integer): boolean;
{=S—- ===}
{= PURPOSE: Determines if a point is on the edge of the radius or the screen.
{= SUBROUTINES CALLED: abs.
{= INPUT: x,y: the coordinates of the point in question.
{= OUTPUT: OnTheEdge: booiean value.
{= GLOBALS: none.
(_. = - = = =====
begin
it ((abs(x) = (WIDTH div (2 * mag))) or (abs(y) > (HEIGHT dlv (2 * mag) - 1))) then
OnTheEdge := true
eise it radius and ((abs(x) + abs(y)) = n_box) then
OnTheEdge := true
eise
OnTheEdge := faise;
end;

et St gt At At Nt

{’Q'.""'."."Qt't"t""'tt'.t't't"’t"'t't"t't""t"f.iﬁ't}

08/08/89 19:12 Bnd Grow Comp : Page 4

procedure AddEImnt (var n, x, y: integer; var n_list: pointPTR; var dead: graph);

{= PURPOSE: Adds an element to the linked list of new points if it has not already been visited.
{= SUBROUTINES CALLED: none. ')
{= INPUT: n: the number of points in the new point list.

X,y: coordinates of the new point.

n_list: pointer to the current element (last element) of the new list.

dead: 2D array of boolean values telling whether a point has been visited.
OUTPUT: n: new number of points in list (if element added).
GLOBALS: newiist: pointer to the root of the new point list.

o n w non oo

it Rere et et)

EEEEEEEEEEEEEEEERT ===================——————_—_———-————======================}
var
new_elmnt: pointPTR;
begin
if not (streets(x, y].dead) then {If the point has not yet been visited...}
begin
streets(x, yl.dead := true; {It's as good as dead now.}
n=n+1; {Increment list length.}
it newlist = nil then {If the list is empty...}
begin
new(newiist); {Initialize the roct pointer.}
n_list := newlist; {Initialize the list pointer.}
end
else {If the list is not empty...}
begin
new(n_list*.next); {Add a pointer to the end of the list.}
n_list := n_listr.next; {Move the list pointer to the new element.}
end;
n_list*.x = Xx; {Add the values to the new linked list element.}
n_listAy = vy;
n_list*.next := nil;
end;
end;

("'Q'tt'tii'i.it"tt'.'t't"tti'tt"t't.'tt'tttt't.ttttt*'i"t"}

procedure Grow (var dead: graph; z, w: integer);

=TS mmma= SSoSNsDnsmSsIs===s s=R= TSRS CSCSSREEESEEISRIIIS===

PURPOSE: This is the major routine of the program. This procedure goes over the list of old
points and chooses two directions for each point. It calls AddEimnt for each new
point and Floodlt to create the graphics display. After the old list has been exhausted
the new list becomes the next old list. This process repeats untii OnTheEdge returns
a value of true.

SUBROUTINES CALLED: OnTheEdge, Floodit, AddEImnt.

INPUT: dead: Array of boolean values representing the lattice and telling whether each point

has been visited or not.
z,w: Starting point for the Grow routine (the origin unless changed).

OUTPUT: (Graphics of directed percolation and growth data to a file.)

GLOBALS: newlist: root pointer to the list of new points.
oldlist: root pointer to the list of old points.

P R Rere Reve Rete Rate Rere Rete Rate Rene Rete Rate Rara i)

oW uwonu
Tt St ot M At Mt St St Nt St St At et

<
2
il

08/08/89 19:12 Bnd Grow Comp : Page 5

far_anough: booiean; {far_enough teils if the generation goes off screen or radius.}
n_list, o_list: pointPTR; {list pointers.}
x, y, dirl, dir2, u, v, n, i: integer;

begin

far_enough := false;
newlist := nil;
new(oldlist); {Set the first oldlist equal to the starting point provided.}
oldlistr.x = 2z;
oldlistry := w;
oldlist*.next := nil;
repeat{until far_enough}
n = 0;
while (oldlist <> nil) and not (far_enough) do

{while there are still points in the oldlist and the generation hasn't violated its radius.}

begin
dirt := 0O; {Initialize the primary direction.}
x = oldlistr.x; {Get the coordinates of the next point.}
y := oldlistry;

if OnTheEdge(x, y) then
far_enough := OnTheEdge(x, y)

else {If point is not off screen or over radius...}
begin
dirt := (abs(random) mod 4) + 1; {Choosa the first direction.}
Floodit{x, y, dir1, u, v); {Update the picture.}
AddEImnt(n, u, v, n_list, dead); {Add new point to the new list(if not dead).}
repeat ‘ {Choose a direction different from the first.}

dir2 := (abs(random) mod 4) + 1;
until dirt <> dir2;

Floodlt(x, y, dir2, u, v); {Update the picture.}
AddEImnt(n, u, v, n_list, dead); {Add new point to the new list(if not dead).}
o_list := oldlist; {Save pointer to previous point.}
oldlist := oldlist* next; {Move root to next list slement.}
dispose(o_list); {dispose of previous point.}
end;
end;
writeln(afile, n); {Write the generation size to the data file.}
oldlist := newilist; {Swap lists.}

newlist := nil;
until far_enough;

end;{Grow}

{'

tt"i'.t"""tt"t't't"ttt'*i'ti""'ﬂ'tft"'*t”'t.'t*t'ﬂt*t}

procedure BondGrow (var streets: graph; z, w: integer);

——— -— T = ===

{=

*ﬁﬁﬁﬂ_
W

=== ==}

PURPOSE: =}
SUBROUTINES CALLED: OnTheEdge, Floodlt =}
INPUT: x,y: the coordinates of the point needing directions.

strests: an array of lattice point paths and whether the point has chosen 2 directions.
OUTPUT: (Pretty pictures).
GLOBALS: none.

oo

——t St A

08/08/89 19:12 _ Bnd Grow Comp Page 6

{================================== ————————— =————===========================}
var
far_enough: boolean; {far_enough tells if the generaticn goes off screen or radius.}
n_list, o_list: pointPTR; {list pointers.}
X, ¥, U, v, n, ii integer;
begin

far_enough := false;

newlist := nil; ’

new(oldlist); {Set the first oldlist equal to the starting point provided.}
oldlistr.x := z;

oldlistr.y = w;

oldlistr.next := nil;

repeat {until far_enough}
n := 0;
while (oldlist <> nil) and not (far_enough) do
begin
x = oldlistr.x;
y = oldlistry;
it (OnTheEdge(x, y)) then
far_enough := true

else
fori:=1tod4do {Do it for all four directions.}
If not (i in streets(x, y].paths) then {if bond hasn't been closed/opened...}
If abs(Random) <= (MAXINT * openprob) then {If bond should be open...}
begin

Floodlt(x, vy, i, u, v); {Draw path to new point.}
{Add the reverse path to the new point .}

streets[u, v].paths := streets(u, v].paths + [(i - (i div 3) ~ (4) + 2)];

AddEImnt(n, u, v, n_list, streets);

end
else {If bond should be closed...}
begin
ui=x-(i-3)"((imod 2) - 1) {Calcuiate opposite point.}

viay+(i-2)*(mod 2);
streets{u, v].paths := streets{u, v].paths + [(i - (i div 3) * (4) + 2)];{Add reverse path.}
end;
o_list = oldlist;
oldlist := oldlist*.next;
dispose(o_list);
end;
writein(afile, n);
oldlist := newlist;
newlist := nil;
until far_enough;
end;{BondGrow}

{'t"ti'i"""'t"'.".tiit"ttﬁﬁ""'i.'fi"ﬂ"""'*'iti."'#}

begin
bond := ['b', 'BY;
yes := [y', 'Y']; ,

RandSeed := TickCount div 2;

08/08/89 19:12

showtext;

write('Bond or Directed Percolation?(B/D):");

readin(Perc_choics);
If not (Perc_choice in-bond) then
begin
write('Arrows?(y/n):');
readin(respns);
arrows = respns in yes;
end
else
begin
write('What probability?:');
read!n(cpenprob);
end;

write('What magnification?(3-10):');
readin(mag);

x_origin = (WIDTH div (2 * mag)) * mag;
y_origin = (HEIGHT div (2 * mag)) * mag;

write('Restricting Radius?(y/n):');
readin(respns);
radius := respns in yes;
it radius then
begin
write('Radius =(2-48)");
readin(n_box);
end;
write('Prepare to create a data file.');
for i:= 1 to 400 do{Pause}

rewrite(afile, NewFileName("));

while not (GetNextEvent(2, Event)) do
It perc_choice In bond then

begin
arrows := false;
WindowSaetup;

Drawlattice(streets);
BondGrow(streets, 0, 0);
end
else
begin
WindowSetup;
Drawlattice(streets);
Grow(streets, 0, 0);
end;

end.{GrowthComp}

Bnd Grow Comp

{Repeat until mouse is clicked.}

Page 7

08/09/89 14:35 d2dperc Page 1
program D2dperc;

{This program was written to model Directed Percolation(see READ ME). It treats the problem as}

{a lattice with two one way streets chosen at random from the four directions available at each point.}
{The streets always head away from the point at which they are chosen. Since it concentrates on the }
{paths and not on a growth type model (see READ ME) it uses a recurrsive routine that follows each }
{to its termination and then returns to the last point on the stack and follows it until all points have }
{chosen two directions. Too compare the model to Bond percolation a bond percolation model is aiso }
{available.}

const
WIDTH = 480;
HEIGHT = 280;

type
four = 1..4;
point = record
paths : set of four;
dead : boolean;
end;
graph = array{-80..80, -47..47] of point;

var
streets : graph;
x_origin, y_origin : integer;
arrows, radius : boolean;
respns, perc_choice : char;
yes, bond : set of char;
mag : 3..10;
n_box : 2..46;
openprob : real;
Event : EventRecord;

procedure WindowSetup;
{===== EZ2Z==2= -+ £ & 1 31 === = ===
(= PURPOSE: Resizes the drawing window for the graphics display.
{= SUBROUTINES CALLED: SetRect, SetDrawingRect, ShowDrawing(system tools).
{= INPUT: none.
{= OUTPUT: none.
{= GLOBALS: none.
{======——— == ==z s== ===
var
text_window, drawing_window : rect;
begin
HideAll;
SetRect(drawing_window, 0, 37, 510, 339),
SetDrawingRect(drawing_window);
ShowDrawing;
end;

{t'ttt"'tttt'ttttt'tttt't'ttttttﬁttttt’ttitt'ﬁtttttt"t't'tttt'tt}

08/09/89 14:35 d2dperc Page 2

procedure Drawlattice (var dead : graph);

{=============_——-—====-—-—-—=—=== ——————— P 2 3 3t 2 3 2 4 & 1
{= PURPOSE: Draws the integer lattice according to the restricting radius and the magnification
{= selected by the user.

{= SUBROUTINES CALLED: PenNormal, MoveTo, LineTo (Quickdraw). =
{= INPUT: dead="array of lattice points booiean. =
{= OUTPUT: dead= initialized. =

{= (draws the lattice).
{= GLOBALS: radius= bolean, tells whether user wants to restrict the growth to a speczflc radius
{= from the origin on the lattice.

n_box= integer value of the restricting radius.
mag= integer value of the magnification. Represents the # of pixels

—— ey g
Won

var
X, ¥, i, | : integer;
begin
PenNormal;

it not (radius) then
{If the user chose not to use a restricting radius then draw a lattice. on the full window.}
tor i := (WIDTH div mag) downto 0 do
tor | := (HEIGHT div mag) downto O do
begin
=i - (WIDTH div (2 * mag));
y = j - (HEIGHT div (2 * mag));
streets(x, yl.dead := false;
streets{x, y].paths := [J;
MoveTo(i * mag, j * mag);
LineTo(i * mag, | * mag);
end
else
{If the user wants a restricting radius then draw only those lattice points that are within "n_box"}
{units of the origin.} -

begin
for i ;= n_box downto -n_box do
for j := (n_box - abs(i)) downto -(n_box - abs(i)) do
begin

streets{i, jJ.dead := false;
streets[i, jl.paths := [];
. MoveTo(x_origin + i * mag, y_origin + j * mag);
LineTo(x_origin + i * mag, y_origin + j * mag);
end;
{Draw the radius itself.}
MoveTo{n_box * mag + x_origin, y_origin);
LineTo(x_origin, n_box * mag + y_origin);
LineTo(x_origin - n_box * mag, y_origin);
LineTo(x_origin, y_origin - n_box * mag);
LineTo(n_box * mag + x_origin, y_origin);
end;
end;{Drawlattice}

*

{"""’.'.'ﬁ"'."t't'i"tt""’ifﬁ'fitii't"i"iﬁ'ﬁtt"""t.ﬁt}

procedure Floodit (x, y, dir : integer;

08/09/89 14:35 d2dperc Page 3

var u, v : integer),
{===—— - -+ + 3 =+ + ¢+ ¢+ + ¢+ -+ 4+ 1+ + 1+t 3 -+ 2 -t F - 4 3 ZmEEooSSEED
{= PURPOSE: Figures the coordinates of the new point from the given dir(ection) and draws an
{= arrow or a line to that point.
{= SUBROUTINES CALLED: LineTo, MoveTo, Move, Line (QuickDraw).
{= INPUT: x,y: integer coordinates of the current point.
{= dir: the direction (1,2,3,or 4) to move from current point.
{= u,v: the coordinates to be calculated.
{= OUTPUT: u,v: the coordinates of the point that is one unit in dir(ection) from x,y.
{= GLOBALS: arrows: boolean telling whether the user wants arrows drawn or line segments.

{===SE -3+ 2+ ¢+ 41 m=== EmESRESESESI=SS
begin
u = x - (dir - 3) * ({(dir mod 2) - 1); {Compute the new point's coordinates.}

v =Yy + (dir - 2) ¥ (dir mod 2);
MoveTo(x_origin + x * mag, y_origin + y * mag);
LineTo(x_origin + u * mag, y_origin + v * mag);
It arrows then
begin
Move(x - u, y - v);
Line(((x - u) "2 + (y - v) " (-2), ((x - u) " (-2) + (y - V) " 2));
Move(((x - u) " (-2) + (y - v) " 2), ((x - u) 2+ (y - V) " (-2)));
Line(((x - u) "2 + (y -v) " (2), ((x-u) " (2) +(y-Vv)"2)
end;
end;{Floodit}

*

{t'ttttt'ttttt"ttt"'tit'ttttttttttt'tttttttﬁittti'ttttttﬁtt'ttt}

function OnTheEdge (x, y : integer) : boolean;

{= PURPOSE: Determines if a point is on the edge of the radius or the screen. =}
{= SUBROUTINES CALLED: abs. =}
{= INPUT: x,y: the coordinates of the point in question. =}
{= OUTPUT: OnTheEdge: baolean valiuse. =}
{= GLOBALS: none. =}

—————————— }

{388—5 === === === =2==== _=== == =

begin
it ((abs(x) = (WIDTH div (2 * mag))) or (abs(y) > (HEIGHT div (2 * mag) - 1))) then
OnTheEdge := true
else If radius and ((abs(x) + abs(y)) = n_box) then
OnTheEdge := true
else
OnTheEdge := false;
end;

{tit"ttt"tt'ttit"'tQ'ttttttt't't'ttttt.itf.'tt'ttt'ttttttttttt}

procedure Percolate (var streets : graph;
X, Y . integer);
(= I
{= PURPOSE: This is a recurrsive routine that models directed percolation. Each point chooses one =}
{= direction at random calling Percolate on the new point until the path dead ends on the =}
{= edge of the screen or radius or into another path.- The recurrsion then returns to the =}
{= last point before the dead end and chooses the second direction, repeating this =}

08/09/89 14:35 d2dperc Page 4

process until all points have chosen two directions at random. =}
SUBROUTINES CALLED: OnTheEdge, Floodlt, Percolate. =}
INPUT: x,y: the coordinates of the point needing directions. =}
streets: an array of lattice point paths and whether the point has chosen 2 directions. =}
OUTPUT: (Pretty pictures). ' =}
GLOBALS: none. =}
}

[S T | B T}

var
u, v, dir : integer;
begin
it not (OnTheEdge(x, y)) then
while not (streets(x, y].dead) do {while the point hasn't chosen both directions...}
begin
it (streets(x, yl.paths = []) then {If the point has chosen no directions...}
begin
dir := abs(Random) mod 4 + 1; {Choose the primary direction.}
streets(x, y].paths := [dir]; {Record it in the points record.}
Floodit(x, y, dir, u, v); {Draw the path.}
end
else {If the point has chosen one direction..}
begin
repeat {Choose a different direction.}
dir := abs(Random) mod 4 + 1;
until not (dir in streets{x, y].paths);
streets(x, y].paths := streets[x, y].paths + [dir]; {Add it to the point's record.}
streets{x, y].dead := true; {The point is now "dead".}
Floodlt(x, y, dir, u, v) {Draw the path.}
end;
Percolate(streets, u, v); {Call Percolate on the new point.}
end

end;{Percolate}

{"".'."i"t'ﬁ'tﬁl"t"ﬁ"ﬁt""'*"tttt"'ttﬁttt"'t't"i'ttttﬁ}

procedure BondPercolation (var streets : graph;
X, y : integer);

{-' EESESSSSRERNSSS===S = EESSSSESRES=RS
{= PURPOSE: Simulates bond percolation on the integer lattice using a recurrsive algarithm similar
{= to the above.
{= SUBROUTINES CALLED: OnTheEdge, Floodlt, Percolate.
{= INPUT: x,y: the coordinates of the point needing directions.
{= streets: an array of lattice point paths and whether the point has chosen 2 directions.
{= OUTPUT: (Pretty pictures).
{= GLOBALS: none.

{-' =:m= ==== =z=mm=m= =z=mR== -=——-————————=====}

-«-—-t—.—-*w--r‘h-o\-!lav

[I O N | N I ')

var
i, u, v : integer;
begin
if not (OnTheEdge(x, y)) then

it not (streets{x, y].dead) then
forii=1to4do {Do it for all four directions.}

it not (i in streets{x, y].paths) then {If bond hasn't been closed/opened...}

08/09/89 14:35 d2dperc Page 5

if abs(Random) <= (MAXINT * openprob) then {If bond should be open...}
begin :
Floodlt(x, v, i, u, v); {Draw path to new point.}
{Add the reverse path to the new point .}
streets{u, v].paths := streets[u, v].paths + [(i - (i dlv 3) * (4) + 2)];

ifi=4then {If all paths are computed...}
streets(x, y].dead := true; {Point is dead.}
BondPercolation(streets, u, v); {Call recurrsion.}
end
eise {If bond should be closed...}
begin
U:=x-(-3)" (i mod 2) - 1) {Calculate opposite point.}

viz=y+(i-2)"({imod 2);
streets[u, v].paths := streets{u, v].paths + [(i - (i div 3) * (4) + 2)];{Add reverse path.}
end;
end;{BondPsrcolation}

{’."i."tf.it'ﬁ'i.tt't't'.i.'i't"'it'ttf"""'t"ifﬁ"tttt""}

begin
bond := ['b', 'B';
yes = [y, Y

RandSeed := TickCount div 2;

showtext;
write('Bond or Directed Percolation?(B/D):");
readin(Perc_choics);
if not (Perc_choice in bond) then
begin
write('Arrows?(y/n):'});
readin(respns);
arrows := respns in yes;
end
else
begin
write('What probabiiity?:');
readin(openprob);
end;

write('What magnification?(3-10):");
readin(mag);

x_origin := (WIDTH div (2 * mag)) * mag;
y_origin := (HEIGHT div (2 * mag)) * mag;

write('Restricting Radius?(y/n):');
readin(respns);

radius := respns in yes;

it radius then

begin

write('Radius =(2-46)');

readin(n_box);
end;

08/09/89 14:35

while not (GetNextEvent(2, Event)) do

if perc_choice in bond then

begin
arrows = false;
WindowSetup;

Drawl attice(streets);
BondPercolation(streets, 0, 0);
end
else
begin
WindowSetup;
Drawl.attice(streets);
Percolate(streets, 0, 0);
end;

end.{D2dPerc}

d2dperc

{Repeat until mouse is clicked.}

Page 6

miil=ii

1oy]
:d
T
s

4
LA
T
b
b
't T
%.' H H+ Hn P
il
U
n
af
el
0

! .~.---v,n“-*%g‘ﬁ
T .:, Hnin 0L =12 b
T e g o S KRy i !

i

Bond Percolation at p=.60
(origin at ceater)

We first looked at the models as a physical system with the
latticed comparable to a porous substance and C;, the set of wet
sights if a fluid source existed at 0. With this in mind the
comparison dealt only with the "filling" of the screen. A glance at
the two pictures above shows what a striking change there is
when p differs by only one one-hundredth of a percent. Below is
a magnified simulation of directed percolation with arrows to
indicate directions and another simulation(without arrows) at the
same magnification as the previous bond percolation pictures. A
visual comparison would seem to indicate that the extent to which
directed percolation fills the plain can be related to bond

percolation with a .50 < p < .60.

	6_LooDoser89.pdf
	7_doser89

