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The goal of this paper is to calculate Fibonacci numbers using the Chinese
Remainder Theorem (CRT for short). The reason for using the CRT is that
there are several properties known about the Fibonacci numbers mod a prime!
. Iwas working with Paul Cull and David Holloway who had just completed
a paper on computing Fibonacci Numbers quickly. I asked them if they had
looked into the CRT and they said they had glasnced at it, but for some reason,
it was too slow. Paul said they hadn’t looked into it too deeply, and for me to
take a closer look anyway. I will attempt to:

o Explain The Chinese Remainder Theorem.
¢ Define Fibonacci numbers recurrence.

o Cycle lengths of Fibonacci numbers mod p.
o Minimal cycle lengths.

o Cycles mod a Fibonacci number.

e Closed form for remainder.

o Consecutive Fibonacci numbers are coprime.

Inverses.

Formula.

Cutting of multiplications
e Order of Algorithm.

General recurrence.

o fastest known ways so far.

Possibilities.

[

1Boyd's, Wall's, Brother Ted'’s paper



I assumed the CRT was known, but when talking to people they always said

...now which part do you mulltiply by the remainder ..., so in order to save
you the time of looking it up in your old number theory textbook I give the
following.

The Chinese Remainder Theorem. Let m;,m,,...,m; be pairwise
relatively prime positive integers. Then the system of congruence

X = n modm;,
b

X = r modms
)

X = n modmg

has a unique solution modulo M = mym;---m;. To find the unique
solution let

M,=M/[m=mimg - Me_1Mey1- e
Since my,---m; are pairwise prime then we know (M, m;) = 1. From
this we can find the inverse i; of M; modulo m;, so that Mym; =1
(mod m;). This gives us:

X = riMyiy + raMaiz + - - - + reMgiy  (mod M).

Let u, denote the nth Fibonacci number of the sequence up = 1,4, =
1,%, = tin_y +4n_3. If you take the sequence »; =u; (mod p), you even-
tually a return to your two starting values, thus forming a periodic
cycle of period d. Refer to papers by Wall and Brother Alfred’s for
complete details. This is the motivation for using CRT, since there
exist cycles that are less than p, thus forming an incomplete residue
class. Having a periodic cycle allows us to look at the index of the Fi-
bonacci number modulo the cycle length d, ug4in = 4, (mod p). So if
we had a table of the first d remainders in the cycle then for any r we
only need to find i =z (mod d) and look up the ith remainder. There
is a limit though, because if we want to calculate ux exactly we can
only calculate values using CRT that are less then M. This causes a
problem since u, grows exponetially. Rounding Binet’s formula gives
you

un = 2o
"7 Vb

1+v5
2
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Therefore I was looking for large p with very small cycles. I wrote
a program to calculate cycle length of u, mod i an integer, not a
prime, since it was easier to program a simple for loop then a routine
to generate the primes. This actually proved an advantage. As I
wrote down the i that had a high magnitude to cycle length value, I
noticed the numbers 144, 233, 377. Aha! These were the Fibonacci
numbers. It seems very obvious now, that my best bet was to use
the Fibonacci numbers. The cycle would hit a zero mod u, at the n
the remainder. If n is even then d = 2n, if n is odd then d = 4n. It
turns out that the cycles generated by Fibonacci numbers moduloa
fibonacci number are quite predictable and after a while it was easy
to write a somewhat closed form for the remainder. For n even the
sequence goes

}1 1! Ug, Uq, -, Un-2, un—l)0) Up-1, —~Un_3, Un-3,UN — 4) ‘e :—1’ 1;9

2n

If n is odd then the sequence goes as follows:
11 1, U3, Uq -, Un_2,Un-1, 0) Up_1) —Un-2,Un_3) —Un—-4,° ", la "'17 0) —1) —1) —us, —U4’ vy —Up_2, un—lyo‘

If you use the fact that u_, = —1"*!u, it becomes more lucid. The
cycle starts with the Fibonacci numbers then goes up to u,_2. The
next term i8 #,_2 — ¥,.; = u,_; then that repeats and we just get
the series going back down with alternating sign. When n is even
the cycle hits -..,2,-1,1,0,1,1,.-. where it repeats again. When n
is odd the cycle misses on its way back down the first time hitting
vee,=2,1,-1,0,—1,~1,.... This makes the next 2n elements equal to
the negative of the first 2n elements. So on its way back after 3n it
hits -.-,2,-1,1,0,1,1,.... This allows for the closed form that follows.

j=z (mod n) (D

k=2 mod2 2)

= ([{; | (mod 2))(n mod 2) 3)
Fp= —1*FG+DHF 1y mod F, (4)

In the first equation j repesents the position in the n cycle. We
actually only need to know the first n Fibonacci numbers because
the rest in the cycle are just those numbers, positive or negative.
Equation 2 just checks the parity of the cycle. If it is zero then we
just have the positive sequence of the Fibonacci numbers. If k£ is one
then we are descending, and alternating signs. In equation 3, [ is



the parity for the odd cycle. In the first part of [, if [ is 0 then we
are just doing a regular 2n cycle, but if / is one then we are negative
the first 2n cyclle. We multiply this by the parity of n, since we
have a 2n cycle for n even, and therefore don’t need to woory about
a negative 2n cycle. Equation 4 takes care of all these parities and
gives the correct remainder. Make sure to take modulo least positive
residue in equations 1,2,3. This is because most routines to calculate
Fibonacci numbers, don’t take into consideration negative indexed
Fibonacci numbers. Equations (1-4) also work for the generalized
sequence Ry ) = kR n_1] + Ri,n-2)Rix,0) =0, R iy = 1.

We have taken care of finding the remainders. So now we need to
choose coprime Fibonacci numbers. I chose to look at three consecu-
tive Fibonacci numbers, we know (un, tm) = %(n,m), and that the ged of
three consecutive integers is at most 2. So the gcd of three consecutive
Fibonacci numbers is either u; or uswhichbothequall.Sowehavethreepairwisecoprimenumbers.

Now we need to worry about the size of the numbers we can com-
pute, it has to be less than M.

n+2

M= Hu,-
j=n

But now we can use Binet’s aprroximation to get a rough estimate of
the sizes.

n+2
1 1
M 7—0:3""'3 ~—=a"xu
JU" f ( 5)3 % n

As a result we can calculate Fibonacci numbers in the range 0 to
3n. Of course it would be ridiculous to calculate Fibonacci numbers
in the range 0 to n+2 since we need to know those numbers already
to find the remainders.

Now we come to the problem of calculating the inverses iy, is, i3.
We would normally have to solve m,z = 1 mod u,, butinthecaseofthreeconsecutive Fibonaccinumber
—-1" mod u,
is = —1"*! mod un41i3 = —1"*! mod u,42(5)This makes finding the in-
verses a constant time process.

Now without loss of generality, assume n is even then the formula
for calculating ux is:

UX = Fitpp1ling2 — F2Unlns2 —F3tntn + 1 mod upunyrun + 2 = M(6)We
can factor out a U,;iloget :ux = un+ 1(riunya — r3un) — raUpln42 mod
M(7)Now use the fact that uy_jun41 = vl + —1(N +1 to get:

— F2Unlint2 = -"2“?..,.1 + ratix = tn41(F1tings — Fatingr = T3Un) + 72 (8



And finally replace riup43 = r1(tn41 + Uy) = FrUn41 + ritiny) giving us:
ux = tny1((r1 — r2)tngr + (11 —r3)un) + 12 (9)

The order, O, of the calculation given you have all the values for
Y1, o, Ugrac{x 3 i8 O(%—'ye\e) for ¥ = loga. This is the order of the bit
operations where vn is the number of bits in u,,.Thisisbasedon Binet’ saprrozimation.
In cocclusion I showed that using the CRT allows you to calculate
Fibonacci numbers rather quickly. I also came up with a closed form
for the remainder of Fibonacci numbers modulo another Fibonacci
number. Further directions would be to write the routine recursively
and also to try using four remainders, or maybe five and find out if
there our ways to cut multiplicatioins, and find easy inverses.
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