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Perhaps the most famous identity in the theory of partitions is Euler’s
pentagonal numbers theorem, which gives a formal power series identity for
a product which is fundamental to the theory:
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Here w(k) denotes the pentagonal number 1/2(3k* — k). Euler used this
identity to find a recurrence relation for the partition function p(n), which
may be defined by the generating function
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By multiplying the above expression through by the product in the denom-
inator and using the pentagonal numbers theorem, we get the following re-
currence relation for p(n) :

(1)
p(n) = (=1 (p(n — w(k)) + p(n — w(-k)),

k=1
where we define p(n) = 0 for n < 0 and p(0) = 1. Thus we have, for example,

p(15) = p(14) + p(13) — p(10) — p(8) + p(3) + p(0).

Hardy and Ramanujan found an asymptotic (divergent) series for p(n)
which, when truncated appropriately, gives p(n) exactly. Hans Rademacher
altered their analysis slightly and arrived at an exact, however complicated,
formula for p(n):

p(n) = fZAk(n)\/‘ —‘i

where
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and s(h, k) is the famous Dedekind sum defined as follows, with ((z)) =
T — |z| — 1/2 for nonintegral z, and ((z)) = 0 for integral z:
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We may regard Rademacher’s expression as a closed-form solution to
the recurrence relation (1) for p(n). Thus the main question of this paper
presents itself: if we were to replace w(k) in (1) by an arbitrary quadratic
which maps integers to integers, could we solve the corresponding recurrence
relation? Trying to get exact solutions to arbitrary recurrence relations is
a notorious problem, so of course a more feasible question is: what can be
said asymptotically about the generated sequence? As will be noticed later,
the recurrence relation (1) for p(n) seems to occupy a special place amongst
recurrence relations of the type

o0

3a(n) = ?_:l(sa(n — a(k)) + sa(n — o —k))).

Once again, we need to define s,(n) = 0 for n < 0. If we had a generating
function for the sequence s,, we could of course use it to find asymptotic
estimates via standard analyses such as the circle method (due to Hardy and
Littlewood) and the so-called saddle point (or steepest descent) method. In
his book Ramanujan, Hardy gives a simple demonstration that p(n) grows
with e®VY™, while he and Ramanujan (and independently, Sierpinski) showed
that the correct order of magnitude is %—%. Given an arbitrary quadratic
a(k), it is no simple matter to produce the generating function, and it is
possible that no “nice” generating function even exists. Given only methods
accessible in an undergraduate curriculum, the problem may seem hopeless.
Thus I back off a little and ask more reasonable questions. One (naive but
helpful) attack on the general problem is utilizing standard facts about linear
recurrence relations. These facts are perhaps helpful since the recurrence
relation for s4(s) is linear for n between consecutively increasing a(k)’s. For
example, the linear recuurence relation

p(n) =p(n —1)+p(n —2) —p(n —5) —p(n - 7)

may be solved explicitly given p(1) through p(7), and the solution will give
p(8) through p(11) correctly since 12 is the least pentagonal number greater
than the pentagonal number 7.



If we are to obtain useful asymptotic information by considering the lin-
ear recurrences that arise, we are of course interested mainly in the roots of
the characteristic polynomials corresponding to the linear relations. These
eigenvalues, especially the ones with maximal moduli, dictate the growth of
the sequence. Since the characteristic polynomials are monic polynomials
with all coefficients 0, 1, or -1, it is natural to expect that the spectrum, the
set of complex roots, will approach the unit circle as the degree of the polyno-
mial increases. This idea will be important in the observations which follow.
The mathematical software Mathematica was used to generate lists and plots
of the spectra arising from characteristic polynomials for various a(k)’s. A
natural place to begin looking for patterns in the spectra is the characteristic
polynomials corresponding to the recurrence (1) for p(n). For example, the
linear relation given last paragraph has characteristic polynomial

z" — zn—l - zn—2 + zn—s + zn—7,

and this is useful for n between 7 and 11. On the following pages are plots
of the spectra of the linear recurrences arising for w(k) (the pentagonal num-
bers); i.e., they represent the complex roots of the characteristic polynomial
of degree w(k) for the recurrence (1) with n = w(k). Patterns are not very
evident for small pentagonal numbers, but by the time we have plotted the
roots of the polynomials of degrees greater than 26=w(—4) or so, a very
definite pattern begins to form. I show two diagrams- the first for the poly-
nomial of degree w(7) = 70, and the second for degree 301 = w(—14). Given
the memory I had available to run Mathematica on, this was about the limit
of such computations; of course, one does not need any more roots to predict
what the spectra are going to “look like” as w(k) increases!
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Do[ListPlot[roots[pent[n]], AspectRatio->1], (n,7,8}]
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The apparent “bumps,” which look much like circular arcs, occur primar-
ily around roots of unity e?*/* for small k. These plots prompt the questions:

1. Why are these polynomial roots distributed more heavily around such
roots of unity?

2. Why do the “bumps” seem to form circular arcs, and what are the
radii and angle sizes of these arcs?

3. Can we expect to see such nice plots for other recurrences in the class
under consideration? For example, if we set a(k) = w(k) + 1, will we get
such predictable behavior in the spectra?

The first question is fairly easy to answer heuristically if we know of the
generating function for the partitions. If we did not have this information,
the question would be very difficult to answer; I know of no estimates for the
partition function which are based soley on the recurrence relation and are
independent of the generating function.

This idea, of using computers to crank out plots of spectra for various
quadratics a(k) so that a person can try to guess asymptotic behavior of the
spectra (and thus of the sequence), may seem awfully naive. However, the
history of useless mathematics, a.k.a. number theory, has many examples of
conjectures first noticed numerically and later proved (or at least remained
unsettled). The law of quadratic reciprocity was first conjectured by Euler,
who noticed the result via his numerical computations. Gauss something
similar for the prime number theorem, and of course we cannot forget about
the Riemann Hypothesis! In this setting, perhaps computer spectra plots
for various recurrences similar to ours may lead to conjectures regarding the
existence of canonical forms for generating functions. After giving a par-
tial answer to question 1, I will give a couple examples of other recurrence
relations which could fall prey to such simple computing-and-conjecturing;
however, these examples have known generating functions, so their spectral
behavior can be (at least partially) explained via estimates using the gener-
ating functions!

This type of haystack-searching does have a bright side- whenever the
spectral behavior is apparently unpredictable, we have a clue as to the com-
plexity of any canonical form for a generating function (e.g., rational func-
tions in products similar to that for p(n)) that could possibly work. I will give
spectral plots for a few quadratics a(k) which are just shifts of the pentagonal
numbers by integer constants; this is meant to show that similar quadratics
do not necessarily imply similar sequences or generating functions. In fact,
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the plots will seem to become less and less predictable as the shift integer
gets larger! This will hopefully lend some support to the notion that the
pentagonal numbers occupy an important place in additive number theory.
This discussion is related to question 3, and there will be more on this in a
few pages... for now, I will present a very non-rigorous argument to answer
question 1.

The generating function for the partition function is, as given earlier,

1

a1l — z")'

If we denote by Fy(z) the Nth partial product [T%_, of the above, then it is
easily seen (using Euler’s pentagonal numbers theorem) that the character-
istic polynomial of degree N, for N a pentagonal number, is just

N F(2) ~ En(a),

where En(z) is a polynomial of degree 1 +2 + -+ N = N/2(N + 1),
with all terms of degree greater than N. The roots of Fy(z) are the same
as the roots of zVFn(1), so it should at least be suspected that the roots
of the characteristic polynomials may approach the roots of the generating
function with error term. To make this precise, one probably needs facts
about polynomials with all coefficients 0, 1, or -1; I have not been able to
find a precise treatment which proves that the roots of the characteristic
equations do indeed approach the unit circle as they so obviously do! Given
more time to check the standard literature on polynomial root estimates, I'm
sure that the argument could be filled in precisely. A particular reference
I intend to search through is Marden’s The Geometry of the Zeros (copy.
1949, American Mathematical Society).

Of course, this presumably weak statement (about the roots heading to
the unit circle as the polynomials’ degrees increase) says nothing specific
about the manner in which the roots approach the unit circle, and this is
the problem of question 2 above. I will mention here that knowledge of the
generating function will allow integral estimates via Cauchy’s integral not
just around z = 0, but by substitution, also around z = €**/¥  so that we
can find specific information regarding the radii and angular measurements
of the apparent circular arcs straddling the roots of unity in the computer
plots.




If we examine the circle method analysis of p(n)’s generating function,
we see a strong analogy to our plots. For the circle method, we estimate
contributions to an integral by the so-called major arcs around low order
roots of unity (which constitute the “heavy” singularities of the function and
thus make a quick truncated estimate of p(n) surprisingly close to actual
values!). In our spectrum plots, we see that the eigenvalues of maximum
modulus (indeed, just about all of the ones which lie just outside the unit
circle) do more than just approach low order roots of unity— they do so in
a very patternistic manner. I do not know whether the integral estimates of
the major arcs in Rademacher’s analysis reflect this behavior; if they do not,
but instead use a less complex estimate, then it is certainly worth looking
into. I intend to continue searching for analogies between the circle method
and the spectra plots, because at the very least the plots provide a high-tech
yet simplistic and interesting motivation for the circle method analysis.

If we compare the known estimate for p(n), we ought to be able to gain
rough estimates for the radii and angle measurements of the circular arcs
appearing in the plot. For example, if we want to know how fast the radii
tend to zero, we can use the major arc estimates from the circle method
individually for more precise results, or we can perhaps get a rough estimate
as follows. p(n), for n a pentagonal number, grows with the sum of the nth
powers of the n eigenvalues straddling 1 + 0:. If the maximum modulus is
A, then we’d have, very roughly, p(n) grows with A*, so that the asymptotic

p(n) ~ :—:% gives A ~ i‘/ﬁ This estimate ignores contributions made
by other eigenvalues with moduli relatively large. Another approach that
might take these other eigenvalues around 1 + 0¢ into account is to assume
that the eigenvalues are evenly spaced on the circular arc with supposed
radius A\. Then we can estimate “by eye” the angle measure of the arc and
get a sum of nth powers of eigenvalues which ought to be near p(n). If any
simplifications are possible, so much the better! One estimate I got in this

manner is (supposing that the angle approaches 7/2 rads as n — o)

L 3 i\
p(n) ~ o + £(r — 2cos(z(1+ D))"
=1 n
» Of course, this cannot be true in the sense of the limit of the ratio of the
right and left sides being 1, as the analysis completely ignores the “bumps”
around other low order roots of unity. I would like to continue this chain of



ideas further, in the hopes that a “good” estimate of p(n) can be made purely
on the basis of estimating correctly enough of the “bumps”around roots of
unity.

Returning now to the discussion of question 3, it should again be noted
that the spectra plots may not give such as a nice clue as to the form of the
generating function as for the partition recurrence. They may, however, give
some information as to the possibility of a generating function of a certain
form existing for the sequence at hand. On the following pages are more
spectra plots— since the plots for a(k) = w(k) =(a pentagonal number) are
so suggestive, | have chosen to “perturb” the quadratic w(k) by shifting it up
and down a number of units as given by the number ! accompanying each plot.
Thus the first plot for ! = 1 corresponds to a(k) = w(k) + 1. An immediate
observation is the fact that as ! increases in absolute value away from w(k),
the plots seem to become more scrambled, especially in the vicinity of —14-0z.
Corresponding to this observation is the fact that when a(k) = w(k), we have
the especially simple product generating function for p(n). And as an off-the-
record comment, the fact that w(k) has minimum —1/24, the constant which
is well-known to those who have studied Dedekind’s eta function, which is
related very closely to p(n)’s generating function. In fact, the circle method
analysis that yields Hardy, Ramanujan, and Rademacher’s results uses the
transformation formula for the Dedekind eta function. The big question is:
is this minimum value of w(k) just a coincidence, or is it pertinent in some
way?
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Do[Print[pent[n],"” " , gen[pent[n]]], {(m,2,5}]
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I mentioned earlier that I would give a couple of examples of sequences
which satisfy the more general “growing”(pseudo-linear, as named in the
title) recurrence relation where the coefficients in the relation for syx)(n) are
not restricted to 0, 1, or -1, but instead may be any integers, and a(k) may
be any sequence, not necessarily quadratic (or even polynomial). Of course,
the cases where a nice generating function exists similar to that for p(n) are
going to occur when the parameters in the recurrence follow some simple
formulae of their own. For example, Jacobi’s triple product identity yields
the formal identity (which is analytically correct for ||z|l < 1):

[T =2 = Y (~1)™(2m + 1)z +m)/2,
n=1 m=0

If we denote the above product by J(z), we can use the binomial theorem to
expand the function 11 in a product of Taylor series. Then we can multiply
this out formally to yizl-(g a sequence which may be thought of combinatorially
as a weighted partition of n, where the weights are triangular numbers arising
from the binomial expansion. In order to now find a recurrence relation for
this sequence, we use the sum for J(z): we multiply it by J(z) and set the
convolution sum for the coefficients equal to the coefficients of 1, i.e., all
except the first are simply zero. The recurrence we obtain has coefficients
which are just the ascending odd positive integers, and the index relation
(corresponding to a(k) earlier) is just given by the triangular numbers. If we
were to perform spectra plots for this recurrence, we ought to see behavior
that is even stronger than that observed for p(n)’s recurrence. Afterall, we
should find roughly three times as many eigenvalues near low-order rootss of
unity. Given more time, this would have made an interesting computation!

Another example is found by using the product identity
o0 " (>}
[T(1-3s%) =3 (-1yt™em,
n=0 m=0

where v(m) is the number of 1’s in the binary representation of m. Substi-
tuting z? for z and simplifying in the generating function

o = L )"

m=0 n=0



yields the recurrence

9(2n) — g(2n ~ 1) = g(n),

and obviously g(0) = 1 = g(1). However, a slightly more intriguing recurrence
relation may also be obtained using the method that gave the last example’s
as well as p(n)’s recurrences:

S(=1)Wg(n — k) = 0.

k=0

As before, plotting the spectra corresponding to truncated forms of this re-
currence ought to reveal familiar behavior near 2"-roots-of-unity.

For the asymptotic methods discussed in this paper, I refer the reader to
Tom Apostol’s Modular Functions and Dirichlet Series in Number Theory, chap-
ter 5 especially. A deeper circle method analysis of p(n) may be found in
Rademacher’s Topics in Analytic Number Theory, chapter 13. For an ele-
mentary treatment of p(n), see Apostol’s undergraduate number theory book
Introduction to Analytic Number Theory. All three of these books were pub-
lished by Springer-Verlag.
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