Lines and Conic Sections in Different Norms
Sandra Davis, LeMoyne College

0SU Summer REU Program, 1991



We wish to. determine what conic sections look like as we
change the norm. We are familiar with conic sections in the
Euclidean norm, also called the 2-norm. A parabola is the set of
points equidistant from a fixed point F and a fixed line D, the
directrix. An ellipse is the set of points P such that for a fixed
point, F and a fixed line, D and a real number, e such that O<e<l,
the distance from F to P is e times the distance from P to D.

Definition: The function N is a norm if the following properties
hold for vectors v and w and scaler k:

1. N(v) >= 0 for all v and N(v) = 0 iff v = 0
2. N(k*v) [k *N(v) ’
3. N(v+w) N(v) + N(w)

o

All of the functions such that N(x,y) = (IxI|?P + [yIP)¥? are norms
for all p > 0. Norms of this form are called p-norms. As p

approaches infinity the norm can be represented as max{Ix|,|yl}.
In this paper we will be discussing norms where p >= 1.

The circle has a formula of (IxI|®P + |yIP)¥? = ¢ where c 1is a
constant and the origin is its center. The unit circle looks like
it "puffs out" as p increases from one to infinity. The fact that
all circles where p >= 1 are convex is important for later proofs.
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Before we can determine what the conic sections other than the
circle look like, we must know what a line is in the different
norms. Geometrically, a line is a collection of segments whose sum
totals the calculated distance between two common end points, say
(X9,Vo) and (x,,v,). In a p-norm, the distance, D is

We then say for all (a,b) satisfying equation 1 that follows
/
(1x = al® + ly, - bI®)¥® + (Ix, - al® + ly; - bI®)¥? =D

that there is a segment from (X,,v,) to (a,b) combined with the
segment (a,b) to (x;,y,;) that together form one of the many lines

that may be in the set of lines that have distance D.

Theorem 1: A line contains all segments in any p-norm such that
the straight line is in the collection. A straight line 1is

considered a line of the formy = mx + b.

Proof: The equation of a line is b=m(a-x,) -y, where m is the slope
Substitute the line into equation 1 and

and m = (yO - y17/(Xo - Xl) .
we have
[la-%,1P + Im(a-x,) [P1¥® + [la-x;|P + Im(a-%y) + yo - v1IP]1'F =D

Factor the first part and substitute for m and we have

|a_xol [(le—Xolp + IY]_—Y()IP)/lX]_—XQI]l/p
+ [Ia-—xll" + IY1“YQIP/|X1_XQIP]1/IJ =D

which is equivalent to

| (a-%,) / (%1-%e) 1D + la=x;| (1+1y;1-volP/ %% ?) " = D.

Through similar manipulations we have
la-xg1 /1%,-%,1D + la-%;1/1%x;-%,1D = D.

Divide by D and it is easy to see that the equation holds for all
a where a is a value between x, and x, and thus every (a,b) on the

straight line forms a line of distance D.::

Theorem 2: A line is unique except in the one and infinite norms.

Unit circles are convex and curved in all but the one and
infinite norms when p>=1. Therefore, two circles may intersect in
0,1,2, or infinite locations. Look at a line from (a,b) to (c,d)
. with distance D. Construct a unit circle with radius r around
(a,b) and radius D-r around (c,d). '

Proof:



Suppose the circles intersect in 2 points. Then the intersection
of the circles is non-empty and must contain a point say (x,y) that
is not on either circle’s graph. Since (xX,y) is in the circle of
radius r the distance (a,b) to (x,y) < r and similarly the distance
from (x,y) to (c,d) would be < D-r. Summing them the distance
(a,b) to (c,d) < D, which contradicts the triangle inequality
defined in the norm. If they intersect in an infinite number of
places the circles must be on top of each other. This can only
happen when they have the same center or the circles contain
straight ~ lines as happens in the one and infinite norms.

Therefore, circles may only intersect in one or zero points. From
Theorem 1 we know that for all a there is a b such that equation 1
is satisfied. Therefore, the circles must intersect and they
intersect in only one point. As r increases from 0 to D each a
has exactly one b corresponding since the unit circles only
intersect once for each r. Therefore, the line is unique for each
p where 1 < p < infinity. (This argument can easily be extended to

the case when O<p<l.)::

Note that in the one and infinite norms there are an infinite
number of different lines that have distance D. However, i1f the
change in x is equal to the change in y, a unique straight line is

produced.

Theorem 3: The shortest distance between a point and a line in the
l-norm is the vertical distance when the slope of the line is less
than 1 and the horizontal distance when the slope of the line is

greater than or equal to 1.

Proof: We begin by parameterizing our line; p=(0,b)+k(1l,m) and
chose point (0,0). We then want to minimize the function

|k|+|!b+km|. Look at k>0 and b>=-km. We then have k+b+km. The

first derivative is m+1 and never = 0 for |ml<l so the minimum must

be at an endpoint. If |ml>=1 then m+l1=0 when m=-1. So when m=-1
all points are equidistant. M=-1 is there exists 2 endpoints. The
minimum distance between (0,0) and p is b. This occurs when k=0 or
k=b, creating the two end points, (0,b) and (b,0). When [m| > 1,
we know from definition that the change in y is greater than the
change in x. Therefore, it follows that the shortest distance is

o (b,0), the horizontal distance. Also, for |m| < 1 the shortest
distance is to (0,b), the vertical distance. The other cases
involving the other values for the absolute values follow in the

same manner. ::

We continue by trying to determine the shortest distance between a
point (x,y) and a line in any given norm where p > 1. We will
start by parameterizing the line so its formula is p=(0,b)+t(1l,m).
This is equivalent to saying p(t)=(t,b+tm).

We will look at x-t<0 and tm+b>0. This case is equivalent

(In later equations we may multlply through by
We wish to mlnlmlze the

Case I:
to x-t>0 and tm+b<0.
-1 thus reversing the conditions.)

function



((x-t)P + (y-(b+tm))P?)P.

If the inside of the function is minimized then the 1/p root will
be so it is only necessary to look at (x-t)f + (y-(b+tm))P. Take the
first derivative with respect to t. Using the first derivative
test, we have

-p((x-£)?! + m(y-(b+tm) )" ! = 0.

This equation is only defined in the real number system for m>0.
(If m<0 we would then be taking a negative root as well as having
a positive expression equaling a negative expression.) Through
algebraic manipulations we have the following series of equations:

x-t = (_y+b)m1/(p-1)+tm1+1/(p-l)
t(l_,_mp/(p-l)) = (y_b)ml/(p-l) %
t = (y-b)m/®ix

1 + e/,

Case II: We look at t-x>0 and tm+b-y>0 which is equivalent to the
case t-x<0 and tm+b-y<0. The procedure for Case I follows and we

have

£t = (b—"y') (_m)l/(p-1)+x
l _m(_m) p/(P‘l) .

If m=b=y=0 then the point is on the line so this case
is trivial. If t=x then the minimum distance is the horizontal
distance. If t=(y-b)/m then the vertical distance is the minimum

distance between the point and the line.

Other Cases:

In cases I and II, the point (0,b)+t(1l,m) gives a minimum distance .
when t eqguals the given expression in each. For example, the

distance between (x,y) and (((y-b)m!/®+x)/ (1+m?/PH,
((y-b)mP/ PV imx) / (1+mP/®Y) +b) is the shortest distance in Case I.

We then wish to see what the slope of the shortest distance is when
p>1l. We look at

! Slope= tmt+b-v
' t-x

-

We then chose case I or II and substitute for t. This simplifies

to
Slope= -m/(e-)

in both cases. This result can also be found by minimizing

(ltlP+ltm+b|?) /P,



We are now ready to begin looking at different conic sections. We
will begin by looking at parabolas with focus (0,1) and directrix,
y=mx+b. The formula in the l-norm is

Ix|+ly-1l=min{|x-(y-b)/ml, ly-mx-bl}.

Note that in the min statement we know which is the minimum by
looking to see if |m| is greater than or less than 1. It is easy
to observe that if b>l1 then the parabola will be concave down for
m<l and if b<l and m<l then it will be concave up.

-2



Tf b>1 is raised the graph also rises until it flips.

| |

As m goes from -1 to one the parallel lines extending to infinity
shift from right to left.




If m>1 and b<l or m<-1 and b>1, then the parabola 1s concave left.
If m<-1 and b<l or m>1 and b>1, the parabola is concave right.
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Lowering b widens the space between the parallel lines extending to
infinity and lifts the graph. Also, changing b changes how far
left the graph extends.
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Changing the slope shrinks the graph.

m=2

In larger norms, the parabolas move and the center axis tips as it
does in the two norm. The only observed difference in movement is
that the l-norm graphs don‘t tip. As p increases, the graphs of
parabolas fill out very much like the unit circles and approach the

graph of the infinite norm very quickly. The infinite graph has
sides appear to be parallel to the center axis. The bottom of the
parabola square off- and appear to become flat. The guestion of
whether or not there is a consistent relation among cases as to
where the graph squares off remains. The formula for a parabola in

norm > 1 is
(1x[P+]y-11P)¥® = (Ix-t|P+|y-tm-Db|?)'/®

where t is as found above. The following graphs contain the same
parabola in different norms. Observe the‘boundaries of the black

region.
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Ellipses can be determined in two ways in the 2-norm. One
description uses two focus such that the distance from one to a
point plus the distance from the other to that point equals some
constant. The other way to describe an ellipse is with the focus
directrix definition. Which is a better description outside the
two norm. If you think of a cone being a set of circles of
increasing size stacked on one another, I believe that the focus
directrix definition is better. We will look at some examples in
the one norm using the two focus description.

We will start by observing an ellipse with one focus at (-1,0) and
the other at (1,0). Here we obtain an ellipse with six sides.

AN
/

N

Conic sections are cross sections of a cone. The circle in the.one
norm has only 4 sides. How is it possible to make 4 sides 1into
six. Further, if we look at the ellipse with one focus at (1,1)
and the other at (-1,-1) we have an 8 sided figure.

B

;
C

It seems like the directrix definition may be a better degcriptiop.
All ellipses here have 4 sides so it is possible to imagine 1t
being a slice of the cone. These ellipses also behave in a manner
similar to the parabolas. The values of m and b determine which
direction the longer side of the ellipse faces in the same way they
did for the parabola. Using the focus, (0,1) and.the directrix
y=mx+b, in the one norm the formula for an ellipse 1is

1

Ix|+|y-11= e * min{|x-(y-b)/m|, |ly-mx-bl}.



shrunk.

If b<l and m increases the ellipse is

If b<l and b is decreased the graph is lowered




As e decreases the figure is smaller. Depending on the value of b
in relation to the focus if m is decreased either the width or the
height will decrease. Notice in the following figure that if b<l
then the width decreases.

In norms lager than one again the ellipses_fill out to the infini;e
norm at a rapid rate. Here, they tip as in the two norm the main
difference in their movement. The formula for an ellipse in norm

> 1 is
(I1xIP+]y-11P)? = e*(|x-t|P+|y-tm-b|P)!/P

where t is as found above and O<e<l. The following graphs are all
of the same ellipse in different norms. Observe the boundary of

the black region.
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sSummary :
While a line is not unique in the one and infinite norms, it is in

the rest of the norms. Parabolas and ellipses are unigque in norms
greater than or egual to one. They have the convenience that the
shortest distance between a point and a line is at a slope of -m”
/(e-1) ipn relation to the directrix’s slope, m. The parabolas and
ellipses appear to act as has been studied in the two norm.
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