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Investigations into Stable Marriages in Cases of Indifference

Introduction

The basic stable marriage problem of matching men and women
can be extended to include cases of indifference--where one or more
individuals' preference lists contain elements of equal rank. This
requires adaptations to the standard Gale-Shapley algorithm for
finding stable matchings. These changes and their results will be
investigated in cases of symmetric and identical ties, and
observations will be made about the general case.

x * % * * * *x * * * * *x

In the standard stable marriage problem, equal numbers of men
and womeh are matched together in a one-to-one correspbndence,
forming man-woman, (m,w), pairs, who are thus considered engaged.
Each man submits a preference /iét containing the names of all the
women, ranked in order kof preference, with first place being the
most preferred'. The women submit prefefence lists of men, as well.
From these lists, engagements can be made, with the goal of a stablé
matching in mind.

A stable matching is a matching for which there can be found
no blocking pair among the men and women. A blocking pair,
(mo.,Wo), consists of a man me who prefers woman Wo to his current
partner, while woman wo prefers mo to her current partner. Since mo
and wo would both prefer to be matched to each other, they break

their previous engagements. Therefore, (mo,Wo) creates instability



in the matching. As long as there exists no such blocking pair, a
matching is stable.

In 1962 Gale and Shapley introduced an algorithm which would
produce a stable matching in any instance. (An instance is a set of n
men and n women together with their complete preference lists.)
Additional steps were added to eliminate blocking pairs by
appropriately reducing the preference lists. The resulting algorithm
proceeds in the following way:

* The first man proposes to the first woman on his list. She:
accepts and deletes from her list all men who are ranked lower than
her new partner.

* The men deleted must then delete the now engaged woman
from their lists, as she is no longer a possible choice for them.

* The next man proposes to the first woman on his list. If she
is not currently engaged then she immediately accepts. If she is
currently ehgaged, she chooses between her partner and the
proposer, selecting the one she prefers and declining the other. If
the proposer is declined, he moves on tq the next woman on his list
and continues in the same manner.

* Appropriate deletions are again made from the newly
engaged woman's list, and she from the lists of those she deleted.

* This process continues until all men and women are engaged,
and the pairs necessarily form a stable matching.

* In order to further reduce the preference Iists and discover
any additional stable matchings that can be made from the instance,
- the process can be repeated by beginning with the already shortened

preference lists and allowing the women to be the proposers.



An example of the Gale-Shapley algorithm is as follow

Men Men's Pref. Lists Women  Women's Pref. Lists
1 1 2 3 1 2 3 1

2 2 1 3 2 1 2 3
3 2 3 1 | 3 3 2 1

* Man 1 proposes to woman 1 and the pair (1,1) is formed.
* Woman 1 has no deletions to make from her list.
* Man 2 proposes to woman 2 and the pair (2,2) is formed.

* \Woman 2 deletes man 3 from her list, and so man 3 deletes

woman 2 from his list.

The resuiting lists are:

1 1 2 3 1 2 3 1
2 2 1 3 2 1 2
3 3 1 3 3 2 1

* Man 3 proposes to woman 3 and the pair (3,3) is formed.
* Woman 3 deletes men 2 and 1 from her list, and she is

deleted from theirs.

The resulting lists are:

1 12 1 2 3 1
2 2 1 2 1 2
3 3 1 3 3

The matching (1,1), (2,2), (3,3) is stable.
To continue reducing the lists, the roles reverse and the

women propose, and the result is the stable matching (1,2), (2,1),

(3,3) , with the following reduced lists:



1 1 2 ' 1 2 1
2 2 1 2 1 2
3 3 | 3 3
It is evident by looking at the reduced preference lists that the
only possible stable matchings in this instance are the two already
mentioned, because the reduced lists contain all possible stable
matchings. |
To simplify notation, the matchings will henceforth be
represented by the women's numbers only, in order of their

engagements to man 1, 2, ...,n. For example, 2341 represents the

matching of (1,2), (2,3), (3.4), (4,1).

All of the previous information on stable matchings and the |
Gale-Shapley algorithm has served as a foundation for the primary
focus of this paper—-casés of indifference.

Simply stated, a man is indifferent if in his preference list he
has ranked two or more women equally. This, of course, generalizes
to women ranking men as well. The equally ranked individuals are
then considered to be tied. Thus, the term tie instance refers to a
set of n men and n women together with their preference lists, at
least one of which contains a tie. Henceforth a standard instance
will refer to an instance in which there are no ties.

It is now necessary to cover a number of definitions
concerning different fypes of ties and different types of stability |
that should be considered, since the stable matching (now to be

referred to as standard-stable) does not readily apply to cases of

indifference.



The term random tie refers to an instance in which there can
be any number of ties of any number of individuals (up to n in an

instance of size n). For example, the instance

Men Men's Pref. Lists Women Women's Pref. Lists
1 (1 2)3 4 1 4 3 1 2
2 2 1 4 3 ~ 2 (1 2 4) 3
3 34 2 1) 3 1 2 3 4
4 1 4 3 2 4 3 2 1 4)

is considered a random tie instance, as there is no pattern to the
placement of the ties in the lists. Note that the parentheses
represent ties--they surround elements which are equally ranked.
The number of possible random ties for an arbitrary instance
of 'size (n > 2) is quite large. For n=3, for example, there are dver
3500 random tie combinations possible. It is not practical to work
with such a group of variations, and thus the observations to follow
will focus on symmetric tie and identical tie instances. In both
symmetric and identical tie instances, each individual's preference
list contains the same number of equally ranked elements. For a
symmetric instance of size n, if each man has equally ranked
elements i, i+1,..., k on his list, then each woman has equally ranked

elements n-i, n-(i+1), ..., n-k on her list. An example of a symmetric

tie instance is as follows:

Men Men's Pref. Lists Women Women's Pref. Lists
1 (1234 1 43 1 2
2 2 1 43 2 1 (2 4 3)
3 (3 4 2) 1 3 12 3 4)
4 (1 4 3)2 4 3@ 1 4



In an identical instance, if each man has equally ranked
elements i, i+1, ..., k on his list, then each woman has also equally
ranked elements i, i+1, ..., k on her list. An example of an identical

tie instance is as follows:

Men  Men's Pref. Lists Women Women's Pref. Lists
1 (1 23 4 1 4 31 2

2 2 1) 4 3 2 (1 2) 4 3' :
3 (3 4 2 1 3 (1 2) 3 4

4 (1. 4 3 2 4 B 21 4

Before describing what is meant by stability in a tie instance,
it is necessary to introduce some new notation.

Let pw(m) represent the position of man m on woman w's list,
and let pm(w) represent the position of woman w on man m's list. In
an instance of size n, each individual's list contains n positions,
regardless of ties. If pw(m)=1 then m is in the first position on w's
list. Likewise, pw(m)=n implies that m is in the last position on w's
list. Position number increases from left to right in a list.

Let rw(m) represent the rank of man m on woman w's list, and
let rm(w) represent the rank of woman w on man m's list. Each
individual of an instance of size n has <= n ranks on his/her list; n
ranks if there are no ties in the list and less than n ranks if there
are ties. If rw(h)=1 then m is ranked the highest (is the most
preferable) on w's list. Rank number increases (preference

decreases) from left to right in a list. In an instance containing no

ties, pw(m) = rw(m) and pm(w) = rm(w).



There are three kinds of stability associated with matchings
of a tie instance. The first, and strongest, is super-stability. A
matching M is not super-stable if there exist pairs (m',w') and
(m*,w*) in M such that
rw*(m') <= ry*(m*) and rm"(w*) <= rp'(W'). The individuals m' and w*
are considered to form a blocking pair against super-stability. If no
such pair exists, the matching is super-stable. |

The second type of stability in a.tie instance is strong-
stability. A matching M is not strongly-stable if there exist pairs
(m',w') and (m*,w*) in M such that either ry*(m’) < ry*(m*) and
rm'(W*) <= rm'(w') holds or
rw*(m') <= ry*(m*) and rm'(w*) < rm(w') holds. In this case m’ and
w* block strong-stability. Without such a blocking pair, M is

strongly stable.
A third type of stability in.a tie instance is strict-stability. A

matching M is not strictly-stable if there exist pairs (m',w'). and
(m*,w*) in M such that ry+(m') < ry*(m*) and rm(w*) < rm'(w). Here
m' and w*, if they exist, block strict-stability, and if they do not
exist, M is strictly-stable.

Super-stability and Strong-stability will be focused on and
compared to e‘ach other and to standard-stability from this point.
Gusfield and Irving assert that strictly-stable matchings are
basically trivial, becauéé, by breaking ties arbitrarily, any matching
which is standard-stable in the standard instance can be found to be
strictly-stable in the corresponding tie instance. Super-stable and

strongly-stable matchings do not always exist for arbitrary tie

instances.



It should be clear that the standard Gale-Shapley algorithm for
finding standard-stable matchings is not adequate for finding super-
stable and strongly-stable matchings in tie instances. The
algorithm must therefore be amended to provide for these

differences in stability.
First, however, it is helpful to find relationships between the

types of stability, in order to later simplify the search for all of the
stable matchings. Four relationships are presented as formal

statements with their corresponding proofs.

[ In a tie instance, all matchings which are super-stable are
necessarily strongly-stable.

proof:

* Let | be a tie instance with a super-stable matching M.

* Then for-all pairs (m,w) in M there do not exist pairs
(m*,w*) and (m',w') in M such that ry+*(m') <= ry*(m*) and rm'(W*) <=
rm'(w').

* So for all (m*,w*) and (m',w') in M, .

(i) rw(m) > rw*(M*) or rm'(W*) > rm(w').

* In order for M to be strongly-stable, there must not exist
(m*,w*) and (m',w') in M such that:

rw*(m') < ry*(m*) and rm'(W*) <= rm(W').

or

fwe(M’) <= rw(m*) and fm:(W*) < m'(w').

* 8o for all (m*,w*) and (m',w') in M,

(i) rw*(m') >= rg+(m*) or rm'(W*) > rm'(w')

and



(i) rw=(m') > ry+(M*) Qr rm'(W*) >= rm'(W')
must hold for strong-stabilfty.
* |t is clear that whenever (i) holds, (ii) and (iii) necessarily

hold.
*  Therefore if M is super-stable it is necéssarily strongly-

stable.

. (follows from 1.)

In a tie instance, any pair which blocks the strong-stability of
a matching necessarily blocks the super-stability of that matching.

proof:
* Let | be a tie instance with a matching M which is not

strongly-stable.

* Then there exist (m*,w*) and (m',w') in M such that:

(i) rwe(m) < ry+(m*) and rm'(W*) <= rm'(W')

or

(i) rwr(m’) <= rw*(m*) and rm'(W*) < rm'(W').

* Thus m' and w* form a blocking pair against strong-
stability.

* In order for (m',w*) to be a blocking pair against super-
stability, it must hold that:

(i) Twe(m) <= rw(m") and fm(W?) <= fm(w).

*It is clear that given (i) or (ii), (iii) necessarily follows.

*  Therefore, if m' and w* block the strong-stability of a
matching, then they also block the super-stability of that matching.

For the proofs of statements Il and IV it must be defined that

a tie instance which corresponds to a particular standard instance



simply consists of the exact elements in the exact positions as the
standard instance, but with ties placed in the lists. This may change

some of the ranks, yet the positions remain fixed.

I1l. For a given standard instance of n men and n women, any

matching which is not standard-stable is therefore not super-stable
in any corresponding tie instance.

proof:
* Let Is be a standard instance of size n.

* Let M be a matching of the n men and n women which is not
standard-stable. |

* Then there exists a blocking pair.

* So for some pairs (m*,w*) and (m',w') in M,

(i) pw*(m) < pw*(m*) and pm'(W*) < pm'(W').

* Let Iy be an arbitrary tie instance which corresponds to Is.

* Assume M is super-stable in I

* Then there does not exist a blocking pair against super-
stability.
| * So for any pairs (m*,w*) and (m',w') in M,

(i) rw+(m') <= ry*(M*) and rm'(W*) <= m'(w')
does not occur.

* All of the positions pw(m) and pm(w) in It are the same as
they are in Is.

* However, for any lt, ry(m) <= pw(m) and rm(w) <= pm(w) for

pair (m,w) in any matching in Is.

* Therefore, (from (i), since pw*(M') < pw+(m*) and pm'(W*) <

Pm'(W')



it is clear that ry+(m') <= ry*(m*) and rm'(w*) <= rm'(W').
* This contradicts (ii).

* Therefore M is not super-stable in any tie instance

corresponding to Is.

For a given standard instance of n men and n women, any matching
which is not standard-stable may or may not be strongly-stable in

any corresponding tie instance.

proof:
* Referring to the proof of Il where M is a matching which is

not standard-stable, the result stands that there exist (m*,w*) and
(m',w') in M such that

(i) rw+(m') <= ry*(m*) and rm'(W*) <= rm(W’).

* |n order to prove that M is not strongly-stable in an
arbitrary corresponding tie instance .It, there must be found a
blocking pair such that |

(i) rwe(m) < rwe(m*) and fm(W?) <= rm'(W)

or .
rw*(m’) <= ry+(m*) and rm'(W*) < rm'(w).

* Given a matching M for which (i) holds, (ii) may or may not
hold.

* Therefore, M may or may not be strongly-stable in It when it

is not standard-stable in Is.

Now that some' fundamental relationships have been presented
about stability in tie instances, it is éppropriate to introduce the

adapted algorithm for finding super-stable and strongly-stable



/

matchings, provided they exist. The first five steps in the algorithm

are the same for both types of stability, and thereafter it branches

to satisfy the differences between super- and strong-stability.
le-Shapley Algorithm for Indifferen

* Begin with the men proposing, following the standard Gale-
Shapley algorithm. ,

* An unengaged man who has two or more women tied at the
head of his list must propose to all simultaneously.

* When a woman receives a proposal, all men on her list who
she prefers strictly less than the proposer must be deleted from her
list, and she from their lists.

* A woman may hold more than one‘engagement if the
proposers are tied on her list.

* |f the proposing process concludes with one or more men's

lists empty, no super-stable or strongly-stable matching exists.

Continued algorithm for super-stability:

*  No multiply engaged woman can have stability with any of
her partners or those tied with them on her list. Delete such pairs,
and then continue with the proposals, until there is a one-to-one
correspondence between men and women in the matching. This will
be a super-stable matching;

* |f some man's list becomes empty, there exists no super-

stable matching.

Continued algorithm for strong-stability:
* |f the bipartite graph of pairs contains a perfect (one-to-



one correspondence) matching, then it is a strongly-stable matching.

* Otherwise there is a set of m men collectively engaged to
fewer than m women (a deficient sef).

* Let X be the minimal deficient set' (a deficient set that
contains no smaller deficient set).

* Any woman engaged to more than one man in X cannot have
any of these partners or those tied with them. Delete the pairs and
continue proposals.

*  Continue until there is a perfect matching in the bipartite
graph. The matching will be strongly-stable.

* |f some man's list becomes empty, there is no strongly-
stable matching.

Since much theory has thus far been presented, examples will
now be given to demonstrate how to apply this adapted algorithm.

Random tie:- instance of size 3.

Men Men's Pref. Lists , Women Women's Pref. Lists
1 i1 2 3 1 2 (3 1)
2 @ 1) 3 | 2 1 2 3
3 1 3 2 3 2 1 3

* Form pair (1,1). Delete nothing.
* Form pairs (2,2) and (2,1). Delete pairs (3,1) and (1,1)
(eliminating the already engaged pair (1,1)).

The resulting lists are:

1 2 3 12
2 2 1) 3 2 1 2
3 3 3 2 1 3

** Since man 1 no longer has a partner, go back to him and form



(1,2). Delete (2,2).

The resuiting lists are:

1 2 3 1 2
2 . 13 2 1
3 3 3 2 1 3

The current pairs are (1,2) and (2,1).

* Form pair (3,3). No deletions resuit.

Following the first few steps of the adapted algorithm has led
to the matching 213. It can easily be verified that this matching is
indeed super- and strongly-stable. The continued algorithms for the
two types of stability were not needed in this case.

A second examplé follows in which the continued adapted

algorithms are needed.

Identical instance of size 4:

Men Men's Pref. Lists - Women Women's Pref. Lists
1 (1 2)3 4 1 3 1) 2 4
2 2 3 1 4 2 2 4 3 1
3 3 4) 2 1 3 . (1 32 4
4 (1 42 3 4 (1 2)3 4

* Form pairs (1,1) and (1,2). Delete (2,1) and (4,1).

Reduced lists:

1 (1 2) 3 4 1 @ 1)
2 (2 3) 4 | 2 @ 4 3 1
3 (3 4) 2 1 3 (1 3 2 4
4 4 2 3 4 (1 23 4

* Form pairs (2,2) and (2,3). Delete (3,2), (1.2), (4,3).

Reduced lists:



1 23 4 1 3 1)

2 2 3) 4 2 2 4)
3 (3 4) 1 3 (1 3) 2
4 4 2 4 (1 23 4

Current pairs are (1,1), (2,2), (2,3).
* Form pairs (3,3) and (3,4). Delete (2,3) and (4,4).

Reduced lists:

1 2 3 4 : 1 3 1)
2 2 4 2 2 4
3 (3 4) 1 3 (1 3
4 2 4 1 2 3

~ Current pairs are (1,1), (2,2), (3,3), (3,4).
* Form pair (4,2). No deletions resuit.

Reduced lists:

1 2 3 4 1 (3 1)
2 2 4 2 @ 4)
3 (3 4) 1 3 (1 3)
4 2 ‘ 4 (1 2) 3

Current pairs are (1,1), (2,2), (3,3), (3,4), (4,2).

At this point in the algorithm woman 2 is engaged to two men.
According to the continued algorithm for super-stability, woman 2
cannot have stability with 2 or 4. Thus the pairs (4,2) and (2,2) are
deleted, and man 4's list becomes empty. Therefore there is no
super-stable matching in this tie instance.

As far as strong-stability is concerned, the bipérﬁte graph



Men Women
1 1

2 2
—
4 —~4

is not a perfect matching.

X = men 4,2 (collectively engaged to woman 2).

Since woman 2 cannot, therefore, be engaged to either 2 or 4,
man 4's list becomes empty, just as it did in the super-stability
case, and there is no strongly-stable matching.

The previous examples have served to demonstrate the
algorithmic process of finding at least one matching. The remainder
of the paper will focus on attemping to make comparisons between
super- and strong-stability. All of the identical and symmetric tie
instances corresponding to a particular standard instance are tested
for stability, and observations are made thereafter.

Although it is by no means adequate to draw conclusions based
on one particular example, the goal is to reach more of an

understanding of the occurrences of étability by looking at concrete

cases.
Standard instance of size 4:
Men  Men's Pref. Lists Women  Women's Pref. Lists
1 12 3 4 1 4 3 2 1
2 2 1 4 3 2 3412
3 3 4 1 2 3 2 1 4 3
4 4 3 2 1 _ 4 12 3 4

This instance was chosen as the primary example due to the



fact that it contains ten standard-stable matchings, the maximum
number for an instance of size 4. The high degree of symmetry
makes it easier to recognize patterns in stability and predict
results. Since the primary goal is to make comparisons between
super- and strong-stability, and not to locate all matchings of those
stabilities, statement IV will be ignored (the fact that there may be
additional strongly-stable matchings to consider), and stability

will be tested on only the ten standard-stable matchings.

The ten standard-stable matchings are:

1234 3142
1243 3412
2134 3421
2143 4312
2413 4321

All of the results are located in table 1 (identical ties) and
table 2 (symmetric ties)--located at the end of the paper. It is

important to note the following regarding the structure of the

tables: .
* Ties are labeled according to which columns of the instance

are included in the tie. For example, "1,2 & 3,4" represents the tie

of the first two women in the men's lists and the last two men in

the women's lists. _
* “sup" is an abbreviation for super-stable; "str* is an

abbreviation for strongly-stable.

* ‘*yes" indicates the matching is stable; if "no*, then one
blocking pair is given.

* The tie "none" corresponds to the standard instance.



Observations from the identical ties:
* Tie 1,2: yes to sup and str for pair (m,w) if m is in a tie on
w's list and w is not in a tie on m's list, and conversely.
* Tie 2,3: yes to sup when no member of a pair is involved in
a tie, yes to str when no member of a pair is involved in a tie or all

are involved in ties.
* Tie 3,4: yes to sup and str when all w in a tie and no min a

tie, and conversely.
| * Tie 1,2,3: no sup's; yes to str when all members are in the
tie.

* Tie 2,3,4: yes to sup and str when all m are in a tie and all
w are not, and conversely.

* Tie 1,2,3,4: no sup's; yes to all str.

* Tie "none": yes to all sup's and str's.

* Standard stable matchings that are never sup in a tie (other
than "none") and are never str in a tie (other than "none" and 1,2,3,4):
1243, 2134, 3421, 4312.

Observations from the symmetric ties:

* Super-stable matchings occur where none kof the men or
women are involved in ties.

* There is symmetry of stabilities in matchings between 1,2
& 3,4 and 3,4 & 1,2, and between 1,2,3 & 2,3,4 and 2,34 & 1,2,3. (To
be expected due to the symmetry of the standard instance itself.)

*  Strongly-stable matchings which are not super-stable occur
where: (1) it is not the case that both partners of some pairs are in a

tie while neither partners of the remaining pairs are in a tie; (2) all



members of the pairs are in ties.

It would seem logical that different instances would produce
widely varying results in regard to stability, and each case would be
analyzed differently. These examples have merely tipped the iceberg
of possibilities for cases of indifference. Further explorations
could be made into numerous areas, such as finding all super-stable
and strongly-stable matchings, investigating strict-stability and
confirming its relation to standard-stability, searching for
properties of random tie instance stability, and much more. The
adapted algorithm is more or less a launching pad into this area of

stable marriages. The first page on indifference cases has been

turned, but a whole library remains.



Matching\Tie 1 & 2 (sup) 1&2 (str) 2 & 3 (sup) 2&3 (st 3&4 (sup)
1234 no (1,2) no (1,2 yes yes yes
1243 no (1,2) no -(1,2) no (3,1) no (3,1) no (3,3)
2134 no (3,4) no (3,4 no (1,3) no (1,3) no (1,1)
2143 yes yes no (1,3) yes no (1,1)
2413 yes yes no (1,3) yes na (2,2)
3142 yes yes no (1,2) yes no (1,1)
3412 yes yes no (1,2) yes no (4,1)
3421 no (3,1 no (3,1) no (1,2) no (1,2) no (2,3)
4312 no (1,3 no -(1,3) no (1,2) no (3,4 no (4,1)
4321 no (1,3 no (1,3) yes yes yes
Matching\Tie 3 &4 (str) 1,2,3 (sup) 1,2,3 (str) 2,3,4 (sup) 2,34 (str)
1234 yes no (1,2) no (1,2) yes yes
1243 no (3,3) no (1,2) no (1,2) no (3,3) no (3,3)
2134 no (1,1) no (3,4) no (3,4) no (1,1) no (1,1)
2143 no (1,1) - no (1,3) yes no (1,1) no (1,1)
2413 no (2,2) no (1,3) yes no (1,1) no (1,1)
3142 no (1,1) no (1,2) yes no (1,1) no (1,1)
3412 no (4,1) no (1,2) yes no (1,1) no (1,1)
3421 no (2,3) no (3,4) no (3,4) no (1,1) no (1,1)
4312 no (4,1) no (1,2) no (1,2) no (4,1) no (4,1)
4321 yes no (1,2) no (1,2) yes yes
Matching\Tie 1,2,3,4 (sup) {1,2,3,4 (str) {none (sup) none (str)
1234 no (1,2) yes yes yes
1243 no (1,2) yes yas yes
2134 no (1,1) yes yes yes
2143 no (1,1) yes yes yes
2413 no (1,1) yes yes yes
3142 no (1,1) yes yes yes
3412 no (1,1) yes yes yes
3421 no (1,1) yes yes yes
4312 no (1,1) yes yes yes
4321 no (1,1) yes yes yes

TABLE 1

Identical

Ties




Symmetric Ties

Matching\Tie 1,2 & 3,4 1,2 & 3,4 3,4 & 1,2 3,4 & 1.2 2,3&23
(sup) (str) (sup) (str) (sup)
1234 no (1,2) yes yes yes yes
1243 no (1,2) yes yes yes no (3,1)
2134 no (1,1) yes yes yes no (1,3)
12143 no (1,1) yes yes yes no (1,3)
2413 no (2,2) no (2,2 no (2,3) no (2,3) no (1,3)
3142 no (1,1) no (1,1) no (1,4) no (1,4) no (1,2)
3412 yes yes no (1,4) yes no (1,2)
3421 yes yes no (1,4) yes no (4,3)
4312 yes yes no (1,3) yes no (1,2)
4321 yes yes no (1,3) yes yes-
Matching\Tie 23&23 12,3 & 2,34 1123 & 234 }{234&123 1234 & 1,23
(str) (sup) {str) {sup) (str)
1234 yes no (1,2) yes yes yes
1243 no (3,1) no (1,2) yes no (3,1) no (3,1
2134 no (1,3) no (1,1) yes no (1,3) no (1,3
2143 yes no (1,1) yes no (1,3) yes
2413 yes no (1,1) yes no (1,3) yes
3142 yes no (1,1) yes no (1,2) yes
3412 yes no (1,1) yes no (1,2) yes
3421 no (4,3) no {3,3) no (3,3) no (1,2) yes
4312 no (1,2) no (1,1) no (1,1) no (1,2) yes
4321 iyes yes yes no (1,2) yes
Matching\Tie 1234 & 1234 1234 & 1234 |none none
, (sup) (str) (sup) (str)
1234 no (1,2) yes yes yes
1243 no (1,2) yes yes yes
2134 no (1,1) yes yes yes
2143 no (1,1) yes yes yes
2413 no (1,1) yes yes yes
3142 no (1,1) yes yes yes
3412 no (1,1) yes yes yes
3421 no (1,1) yes yes yes
4312 no (1,1) yes yes yes
4321 no (1,1) yes yes yes
TABLE 2
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