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Introduction

In this paper I will discuss a method of counting the number of
ways of tiling a mutilated grid with dominos. A domino is a 1 x 2 or 2
x 1 rectangle, and a mutilated grid is a rectangular grid from which
some squares have been removed. A tiling of a grid' is simply an
assignment of dominos to pairs of adjacent squares so that each square

is covered by one domino and each domino covers two squares. Here

is a tiling of a 4 x 3 grid:

Figure 1

Not all regions can be tiled by dominos; grids on which there is an odd
number of squares, for example, can never be tiled, since each domino
covers two squares. Also, if a rectangular grid is colored as in a
checkerboard (see Figure 2), it becomes clear that if two squares of the
same color are removed from the grid, the remaining squares cannot
be tiled, since each domino must cover oné 'square of éach color, and

there is no longer an equal number of squares of each color.
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Figure 2

There are, however, many ways of removing squares from a grid so

that the mutilated grid can still be tiled. In this paper I will study the



effect of removing two squares from the boundary of a rectangular
grid.
The Pfaffian

Kasteleyn (1961) has shown that the number of ways of tiling an
m x n grid with dominos can always be counted by evaluating the
Pfaffian of an mn x mn matrix. A Pfaffian is evaluated over the upper
triangular components of an n x n matrix A=[ajj] (n even). Its formula
is given by:

Pf(A) =Z sgn(c) ak,k;akgkq ceeak ko

ceP
v?here c=/1234 ... n
(k, k,kiky. .. kn>
and P is the set of all permutations ¢ of {1,2, ..., n} which satisfy
ki<k2;k3<k4;...;kn-1 <kn |

and

ki1 <k3i<ks<...<kn-1.
In other words, a term of the Pfaffian can by computed by forming
ordered pairs of the numbers from 1 to n so that each number appears
in exactly one pair and the smaller element in each pair is the first

component of the pair. The term of the Pfaffian is then
sgn(o) ak k.. - - ak _k,
where O‘=(1 23 ... n>
k. k k... k,/ .
and (k1,k2), ..., (kn-1,kn) are the ordered pairs placed in increasing

order according to their first component. It has been proved that if M

is a skew-symmetrix matrix, then (DetM)l/2 =Pf(M).



Application of the Pfaffian to Counting Domino Tilings

There are many ways to label the squares of an m x n grid. In this
paper I will use two, which I will call the "dictionary” labeling and the
"Cartesian" labeling. The first assigns each square a number, the

second a pair of numbers, as shown in Figure 3.

bt - 2] f-)me 3 nm, (9| (2n) |G7) ()
m= 1 |[m+2 m+3] . . . Am (lﬁ) C?.,l) (3)2) o (mjz)'
flal3] - [m| G| o )
Dictionary labeling Cartesian labeling
| Figure 3

Consider the matrix A=[aij] where

ajj = (1 if the squares numbered i and j (dictionary labeling) on the
grid can be covered by a domino

0 otherwise.

For example, with the 2 x 2 grid (see Figure 4)
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The matrix A will clearly have mn rows and columns since the grid
has mn squares. A term of Pf(A) is of the form

sgno ak k,akky. - - Kk, Ky,
This will be zero unless ak: ki, = 1 for all (odd) i; that is, each pair

(ki,kj+1), where i is odd, must correspond to a pair of squares which



may be tiled by the same domino. Then, since every number from 1
to mn appears in exactly one ordered pair in the Pfaffian term, each
square has been paired with exactly one adjacent square, and a tiling
of the grid has been found. Since every term of the Pfaffian has a
different permutation, each non-zero term must correspond to a
different tiling of the grid. Also, every possible tiling corresponds to a
non-zero term of the Pfaffian; the permutation can be found by
pairing elements that have been covered by the same domino, and the
appropriate terms of A will all be non-zero by construction.

Thus, there is a one-to-one .correspondence between tilings of the
mxn grid and non-zero terms of the Pfaffian of A. The way A is
constructed, however, the Pfaffian does not count the tilings; the sgno
in the terms of the Pfaffian makes some of the terms -1 instead of 1.
This can be avoided, as Kasteleyn has shown, by changing appropriate
elements of A to -1.

The signs of the elements can be determined by associating with
each domino a direction, as shown in Figure 5. 1In this figure, the

points represent the squares which are to be covered, and the bonds

represent the oriented dominos.
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Using this orientation, an mn x mn matrix D can be constructed in the

following manner:



Dij ={1 if the bond between i and j runs from i to ]
-1 if the bond runs from j to i
0 if there is no bond between i and j.
Kasteleyn (1963) has proved the following theorem:
If the bonds of a planar graph G are oriented so that the number of
arrows pointing clockwise around each mesh is odd, which is always
possible, and if the elements of D are assigned as described above,
then Pf(D) will equal the number of domino tilings which completely
cover G. | |

In terms of the Cartesian labeling of the grid, the matrix D that has
been constructed can be described by:

D(r,s; t+1,8) = -D(r+1,s; 1,5) = 1

D(r,s; 1,5+1) = -D(r,s+1; 1,5) = (-1)f

D(r,s; 1',s") = 0 otherwise.

D is skew-symmetric, so (Det D)1/2=pf(D), which is the number of
ways of tiling the grid.

D is not the only matrix that can be constructed to count the number
of tilings. Another matrix, Do, can be used to count the number of
tilings of a square grid, and will be used 1n this paper. Do satisfies the
following:

Do(r,s; t+1,s) = -Do(r+1,s; 1,8) = 1

Do(r,s; 1,5+1) = -Do(r,s+1; 1,8) = i

Do(r,s;r',s’) = 0 otherwise.

Do can be obtained directly from D by multiplying each row of D that
corresponds‘ to an even r by i, and each column that corresponds to an
odd r by -i. In the case of a square (n x n) lattice, this multiplies

Det(D) by ()/2(-i)n/2 = (-i2)n/2 = 1, since n is even..



Here is Do for a 2 x 2 grid (see Figure 6):

[0 1 i 0 .
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0O -i -1 O ' Figure 6

Det(Do) = 4 = 22, and there are two ways of tiling the 2 x 2 grid.
Matrices for Mutilated Grids
Kasteleyn's theorem enables us to extend the matrix counting

method to mutilated grids; we will study grids in which two squares

have been removed from the boundary of the grid. A directed graph

can be constructed which is identical to that of the unmutilated grid
except that the two squares removed from the grid are connected by a
bond, and all other bonds between them and other squares are
removed (see Figure 7).
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Figure 7
This grid satisfies the hypothesis of Kasteleyn's theorem, so if the ith

and jth squares of the grid are removed, a matrix F can be constructed

whose Pfaffian is the number of tilings, and which is identical to D

except that Fjj = -Fji = 1 (i<j) and the remaining elements of the ith and

jth rows and columns are all zero.



It is more difficult to construct Fo, the matrix obtained from Do
counting the ways of tiling the mutilated grid; Fo can be gotten
directly from F by multiplying the rows of even 1 by i and the columns
of odd r by -i, but the resulting matrix will depend on the r values of
the squares being removed. In the case where two adjacent corners
are removed (i=(1,1) and j=(n,1)), (Fo)ij = -Fo)ji = 1, the remaining
elements of the ith and jth rows and columns are all zero, and the rest

of Fg is identical to Do. For example, in the 2 x 2 grid if the two

bottom corners are removed (see Figure 8),

0 1 0 0
"Fo=|-1 0 00 (1) | (22)
A5
0 0 0 1 /g%;g%
0 0 -1 0] Figure 8

Det(Fo) = 1, and there is clearly only one way of tiling the remaining
area. |

If only two squares are removed from a grid, the matrix Fo will
differ from Do in only a few elements. Fisher and Stephenson have
developed a theory showing how the determinant -of a matrix which
differs in only a few elements from anotﬁer matrix can be calculated
from the second matrix.
Let A = Det(Dg) and

B = Det(Fo) = Det(Do + E)

where Dg, Fo, and E are antisymmetric and most elements of E are
zero. Assume A # 0 (since otherwise there would be no tilings of the

original matrix).

Let G = Do-1, which has been named the Green's function matrix.



Then,
B = Det(Dg + E) = Det(Dg (I + GE)) = Det(Do) Det(I + GE) = A Det(I + GE)

where I is the identity matrix of the appropriate size.

For every column of E that is identically zero, the corresponding
column of GE will be identically zero. When Det(I + GE) is expanded by
cofactors by one of these columns, say the ith column, it can be seen
that the determinant is unchanged if the ith row and column are
crossed out. In this way, I + GE can be reduced to a much smaller
matrix with the same determinant, and it can easily be verified that

Det(I + GE) = Det(I' + ge)
where g and e are the matrices formed from G and E by crossing out
the rows and columns in which E is identically zero, and I' is the
identity matrix of the appropriate size.

Thus, B/A = Det(I' + ge). Since Al/2 is the number of ways of tiling
the mutilated grid and B1/2 is the number of ways of tiling the |

original grid,

Detd + ge) = (the number of ways of tiling the mutilated grid) 2

the number of ways of tiling the original grid

Counting Tilings Using Reduced Matrices

When two squares are removed from a grid, relatively few elements
of Do are changed. The only elements which may change are in the
rows and columns of the removed squares and the squares adjacent to
them. For example, if square number three is removed, the entry in
the second row, third column changes from 1 to 0, since there can no
longer be a bond between squares two and three. If two squares are

removed from an edge of the grid, only eight squares are affected, so



eight rows and columns of Do are changed, and the reduced g and e
will be 8 x 8 matrices. In the case where two adjacent corners are

removed, only six squares are affected (see Figure 9), so the reduced g

and e are 6 x 6 matrices.
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Here is the reduced matrix. e for the removal of two corners:

(1,1) (2,1) (n-1,1) (n,1) (1,2) (n,2)

an [o -1 0 -1 i 0
2,1) |1 0 0 0 0 0|
(n-1,1) | 0 0 .0 -1 0 0
@1) |1 0 1 0 0 i
(12) | i 0 0 0 0 0
@2) |0 0 0 i 0 0

The corresponding g would be found by removing from the Green's
function matrix all the rows and columns éx’cépt the 1st, 2nd  (n-1)th
nth (n+1)th, and (2o)th. Similar e and g matrices can be found for the
‘various ways of removing two squares from the edges of the grid. For
example, here is the matrix e for the removal of the ith and jth
squares (see Figure 10) on one edge of the grid (assuming that i and j
have different parities, as they must have if ’any tilings of the

mutilated grid are to be possible; this corresponds with removing two

squares of different colors):
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(i-1,1) @G, (i+1,1) (-1,1) G.D G+1,1) (1,2) (4,2)

-1,y | O -1 0 0 0 0 0 0 |
1,1) 1 0 -1 0 -1 0 -1 0
i+, O 1 0 0 0 0 0 0
G-1,1) 0 0 0 0 -1 0 0 0
G,1) 0 1 0 1 0 -1 0 -i
G+1,1)| O 0 0 0 1 0 0 0
(1,2) 0 i 0 0 0 0 0 0
G2 |0 0 0 0 I 0 0 0 |
(¢,2) (5.2
CHYGDRCH (-0 ) |51,
Figure 10 |

Thus, the ratio of the number of ways of tiling the mutilated grid to
the number of ways of tiling the unmutilated grid can be calculated in
terms of appropriate Green's function elements. Fisher and
Stephenson have found a formula for the Gréen's function. If i=(t,s)
and j=(r',s") are two squares in an n x n grid, the Green's function for i

and j is given by:

 Gij = G(,5; r',s) = 2i T'T+s-5+]
(n+1)2 x
n n ’
sin(r8p)sin(r'0p)sin(séq)sin(s'aq)(-cos(8p) + i cos(dqg))
P P 0
| cos28p + cosZgq
=1 q=1

where 6p =px and 0q =gn
n+l n+l .
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It has been shown that if t=r'r and u=s'-s are of the same parity then
G(r,s; 1,s") = 0. If t is odd and u is even then G(r,s; 1',s') is real, and if t
is even and u is odd then G(r,s; r',s') is pure imaginary.

Since the reduced matrix e for a particular mutilationv(e.g. removal
of two corners, removal of two squares from the same edge) remains
invariant over the grids of different sizes, the ratio of the number of
tilings of the mutilated grid to the number of tilings of the |
unmutilated grid can be computed entirely in terms of Green's
function values. Table 1 shows numerical approximations of the ratios

(= Det(I' + ge)l/2) for the removal of corners from various sized grids.

Table 1: ratio of number of tilings of mutilated grid to number of

tilings of unmutilated grid when two adjacent corners are removed

from an n x n grid.

n Ratio

2 0.5

4 0.333333
6 0.241379
8 0.187569
10 0.153082
12 0.129264
14 0.111862
16 0.0985963
18 0.0881489
20 0.0797073

22 0.0727439
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It can be seen from these results that as n gets large, the number of
ways of tiling the mutilated grid becomes substantially smaller than
the number of ways of tiling the unmutilated grid, and that the ratio
decreases as n increases. |

These figures make it seem extremely likely that whenever twb
corners are removed from a square grid, the number of ways of tiling
the grid are reduced. To prove this would be equivalent to showing
that Det(I' + ge) < 1 for all n. One possible way of doing this is by
studying the eigenvalues of I' + ge. If they are all between -1 and 1,
with some strictly betweenw-l and 1, the result will follow.
Suppose (I' + ge)v = Av.
Then I'v+ (ge)v =Av.

(ge)v = Av -Iv=2Av -v = (A-1)v.

Thus, A is an eigenvalue of I' + ge if and only if A-1 is an eigenvalue of
ge. So it is sufficient to show that the ‘eigenvalues of ge are between
-2 and 0, with some strictly between -2 and O.

Wittemeyer's Theorem, obtained from E. Bodewig's Matrix Calculus,
states that if AAT=ATA and BBT=BTB, then
ABlmax < AAlmax MBlmax ,
where AM denotes an eigenvalue of the matrix M. Since g and e are
skew-symmetric, they satisfy the hypothesis of.the theorem, so
finding a bound for the eigenvalues of ge can be reduced to findin‘g a
bound for the eigenvalues of g and e. For the removal of two corners,
the eigenvalues of e are {0,0,0,0,i,-i}, which are bounded byl, so it is |
necessary to show that the eigenvalues of g are bounded above by 2.

Frobenius' theorem, which also may be found in Bodewig's book, states

that
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Almax < max X lajkl

ik
Thus, a bound can be found for the eigenvalues of g by finding bounds
for the Green's function elements that make up g. One possible way of
doing this is by approximating the Green's function elements by

integrals. If it can be shown that the eigenvalues of g are bounded by

2, it will only remain to show that the eigenvalues of ge are not

positive and not all 0 or -2.
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